1
|
Wei Z, Wang X, Lu L, Li S, Long W, Zhang L, Shen S. Construction of an Early Risk Prediction Model for Type 2 Diabetic Peripheral Neuropathy Based on Random Forest. Comput Inform Nurs 2024; 42:665-674. [PMID: 38913980 DOI: 10.1097/cin.0000000000001157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Diabetic peripheral neuropathy is a major cause of disability and death in the later stages of diabetes. A retrospective chart review was performed using a hospital-based electronic medical record database to identify 1020 patients who met the criteria. The objective of this study was to explore and analyze the early risk factors for peripheral neuropathy in patients with type 2 diabetes, even in the absence of specific clinical symptoms or signs. Finally, the random forest algorithm was used to rank the influencing factors and construct a predictive model, and then the model performance was evaluated. Logistic regression analysis revealed that vitamin D plays a crucial protective role in preventing diabetic peripheral neuropathy. The top three risk factors with significant contributions to the model in the random forest algorithm eigenvalue ranking were glycosylated hemoglobin, disease duration, and vitamin D. The areas under the receiver operating characteristic curve of the model ware 0.90. The accuracy, precision, specificity, and sensitivity were 0.85, 0.83, 0.92, and 0.71, respectively. The predictive model, which is based on the random forest algorithm, is intended to support clinical decision-making by healthcare professionals and help them target timely interventions to key factors in early diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Zhengang Wei
- Author Affiliations: Department of Nursing, Affiliated Hospital of Zunyi Medical University (Mr Wei; Mss Lu, Long, and Zhang; and Dr Shen); Department of Endocrinology and Metabolic Diseases, Affiliated Hospital of Zunyi Medical (Ms Li); and Department of Information Technology, Affiliated Hospital of Zunyi Medical University (Dr Wang), China
| | | | | | | | | | | | | |
Collapse
|
2
|
Mittal R, McKenna K, Keith G, McKenna E, Sinha R, Lemos JRN, Hirani K. Systematic review of translational insights: Neuromodulation in animal models for Diabetic Peripheral Neuropathy. PLoS One 2024; 19:e0308556. [PMID: 39116099 PMCID: PMC11309513 DOI: 10.1371/journal.pone.0308556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Diabetic Peripheral Neuropathy (DPN) is a prevalent and debilitating complication of diabetes, affecting a significant proportion of the diabetic population. Neuromodulation, an emerging therapeutic approach, has shown promise in the management of DPN symptoms. This systematic review aims to synthesize and analyze the current advancements in neuromodulation techniques for the treatment of DPN utilizing studies with preclinical animal models. A comprehensive search was conducted across multiple databases, including PubMed, Scopus, and Web of Science. Inclusion criteria were focused on studies utilizing preclinical animal models for DPN that investigated the efficacy of various neuromodulation techniques, such as spinal cord stimulation, transcranial magnetic stimulation, and peripheral nerve stimulation. The findings suggest that neuromodulation significantly alleviated pain symptoms associated with DPN. Moreover, some studies reported improvements in nerve conduction velocity and reduction in nerve damage. The mechanisms underlying these effects appeared to involve modulation of pain pathways and enhancement of neurotrophic factors. However, the review also highlights the variability in methodology and stimulation parameters across studies, highlighting the need for standardization in future research. Additionally, while the results are promising, the translation of these findings from animal models to human clinical practice requires careful consideration. This review concludes that neuromodulation presents a potentially effective therapeutic strategy for DPN, but further research is necessary to optimize protocols and understand the underlying molecular mechanisms. It also emphasizes the importance of bridging the gap between preclinical findings and clinical applications to improve the management of DPN in diabetic patients.
Collapse
Affiliation(s)
- Rahul Mittal
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Keelin McKenna
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| | - Grant Keith
- School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Evan McKenna
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Rahul Sinha
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Joana R. N. Lemos
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Khemraj Hirani
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| |
Collapse
|
3
|
Yum Y, Park S, Nam YH, Yoon J, Song H, Kim HJ, Lim J, Jung SC. Therapeutic Effect of Schwann Cell-Like Cells Differentiated from Human Tonsil-Derived Mesenchymal Stem Cells on Diabetic Neuropathy in db/db Mice. Tissue Eng Regen Med 2024; 21:761-776. [PMID: 38619758 PMCID: PMC11187028 DOI: 10.1007/s13770-024-00638-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/23/2024] [Accepted: 03/12/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Diabetic neuropathy (DN) is the most common complication of diabetes, and approximately 50% of patients with this disease suffer from peripheral neuropathy. Nerve fiber loss in DN occurs due to myelin defects and is characterized by symptoms of impaired nerve function. Schwann cells (SCs) are the main support cells of the peripheral nervous system and play important roles in several pathways contributing to the pathogenesis and development of DN. We previously reported that human tonsil-derived mesenchymal stem cells differentiated into SCs (TMSC-SCs), named neuronal regeneration-promoting cells (NRPCs), which cells promoted nerve regeneration in animal models with peripheral nerve injury or hereditary peripheral neuropathy. METHODS In this study, NRPCs were injected into the thigh muscles of BKS-db/db mice, a commonly used type 2 diabetes model, and monitored for 26 weeks. Von Frey test, sensory nerve conduction study, and staining of sural nerve, hind foot pad, dorsal root ganglia (DRG) were performed after NRPCs treatment. RESULTS Von Frey test results showed that the NRPC treatment group (NRPC group) showed faster responses to less force than the vehicle group. Additionally, remyelination of sural nerve fibers also increased in the NRPC group. After NRPCs treatment, an improvement in response to external stimuli and pain sensation was expected through increased expression of PGP9.5 in the sole and TRPV1 in the DRG. CONCLUSION The NRPCs treatment may alleviate DN through the remyelination and the recovery of sensory neurons, could provide a better life for patients suffering from complications of this disease.
Collapse
Affiliation(s)
- Yoonji Yum
- Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
| | - Saeyoung Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
| | - Yu Hwa Nam
- Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
| | - Juhee Yoon
- Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
| | - Hyeryung Song
- Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
| | - Ho Jin Kim
- Cellatoz Therapeutics Lnc., 17, Pangyo-ro 228beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13487, Republic of Korea
| | - Jaeseung Lim
- Cellatoz Therapeutics Lnc., 17, Pangyo-ro 228beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13487, Republic of Korea
| | - Sung-Chul Jung
- Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea.
- Graduate Program in System Health Science and Engineering, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea.
| |
Collapse
|
4
|
Cheng Y, Chen Y, Li K, Liu S, Pang C, Gao L, Xie J, Wenjing LV, Yu H, Deng B. How inflammation dictates diabetic peripheral neuropathy: An enlightening review. CNS Neurosci Ther 2024; 30:e14477. [PMID: 37795833 PMCID: PMC11017439 DOI: 10.1111/cns.14477] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/28/2023] [Accepted: 09/08/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Diabetic peripheral neuropathy (DPN) constitutes a debilitating complication associated with diabetes. Although, the past decade has seen rapid developments in understanding the complex etiology of DPN, there are no approved therapies that can halt the development of DPN, or target the damaged nerve. Therefore, clarifying the pathogenesis of DPN and finding effective treatment are the crucial issues for the clinical management of DPN. AIMS This review is aiming to summary the current knowledge on the pathogenesis of DPN, especially the mechanism and application of inflammatory response. METHODS We systematically summarized the latest studies on the pathogenesis and therapeutic strategies of diabetic neuropathy in PubMed. RESULTS In this seminal review, the underappreciated role of immune activation in the progression of DPN is scrutinized. Novel insights into the inflammatory regulatory mechanisms of DPN have been unearthed, illuminating potential therapeutic strategies of notable clinical significance. Additionally, a nuanced examination of DPN's complex etiology, including aberrations in glycemic control and insulin signaling pathways, is presented. Crucially, an emphasis has been placed on translating these novel understandings into tangible clinical interventions to ameliorate patient outcomes. CONCLUSIONS This review is distinguished by synthesizing cutting-edge mechanisms linking inflammation to DPN and identifying innovative, inflammation-targeted therapeutic approaches.
Collapse
Affiliation(s)
- Yifan Cheng
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's HospitalAffiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Yinuo Chen
- Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
- First School of Clinical MedicineWenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Kezheng Li
- Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
- First School of Clinical MedicineWenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Shuwei Liu
- First School of Clinical MedicineWenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Chunyang Pang
- Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Lingfei Gao
- Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Jiali Xie
- Department of Neurology, Shanghai East HospitalTongji UniversityShanghaiP.R. China
| | - L. V. Wenjing
- Department of GeriatricsThe Affiliated Hospital of Qingdao UniversityQingdaoShandong ProvinceChina
| | - Huan Yu
- Department of PediatricsSecond Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Binbin Deng
- Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
- First School of Clinical MedicineWenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| |
Collapse
|
5
|
Zhang K, Peng P, Huang J, Chen M, Liu F, Zhu C, Lu Q, Wang M, Lin C. Integrating plasma metabolomics and gut microbiome to reveal the mechanisms of Huangqi Guizhi Wuwu Decoction intervene diabetic peripheral neuropathy. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117301. [PMID: 37820997 DOI: 10.1016/j.jep.2023.117301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/01/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huangqi Guizhi Wuwu Decoction (HGWD) is a classic traditional Chinese herbal formula from "Synopsis of Golden Chamber," which is used to treat blood stagnation and has been used for alleviating diabetic peripheral neuropathy (DPN) in the clinic. However, the mechanisms of HGWD intervention DPN are still to be discovered. AIM OF THE STUDY This study aims to explore the mechanism of HGWD intervention DPN by integrating plasma metabolomics and gut microbiome. MATERIALS AND METHODS BKS Cg-m+/+Leprdb/J (db/db) mice with DPN were at 16 weeks of age. The indices of DPN phenotypes in db/db mice, pathomorphology of the sciatic nerve, intraepithelial nerve fibers (IENF) of the foot pad, levels of blood lipids and oxidative stress, and inflammatory reaction were used to appraise the HGWD efficacy. Finally, the pharmacological mechanisms of HGWD intervening DPN were explored by metabolomics and 16S rRNA gene sequencing. RESULTS HGWD reversed DPN phenotypes in db/db mice, improved peripheral nerve structure, ameliorated the level of blood lipids and nerve growth factor in plasma, enhanced antioxidant capacity, and alleviated inflammatory responses. Plasma metabolomics disclosed that HGWD remarkably regulated the unusual levels of thirty-seven metabolites involved in sphingolipid metabolism, biosynthesis of unsaturated fatty acids, arachidonic acid metabolism, and amino acid biosynthesis pathways. The gut microbiome showed that nine bacteria were highly correlated with the efficacy of HGWD in DPN. Integrating analysis of microbiome and metabolomics demonstrated that the interaction of four bacteria with four metabolic pathways might be the significant mechanism of HGWD intervention in DPN. CONCLUSIONS The mediation of gut microbiota and plasma metabolism may be the potential mechanism of HGWD ameliorating DPN in db/db mice. The interaction of Lactobacillus, Alloprevotella, Bacteroides, and Desulfovibio with four metabolic pathways might be the critical mechanism for HGWD treating DPN.
Collapse
Affiliation(s)
- Kaihui Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Peng Peng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Jinhao Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Ming Chen
- Guangzhou BaiYunShan PanGaoShou Pharmaceutical Company Limited, Guangzhou, 511400, PR China
| | - Fangle Liu
- The First Affiliated Hospital, Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510405, PR China
| | - Chenchen Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Qifu Lu
- Guangzhou BaiYunShan PanGaoShou Pharmaceutical Company Limited, Guangzhou, 511400, PR China.
| | - Meiqi Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China.
| | - Chaozhan Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China.
| |
Collapse
|
6
|
Lee D, Yoon E, Ham SJ, Lee K, Jang H, Woo D, Lee DH, Kim S, Choi S, Chung J. Diabetic sensory neuropathy and insulin resistance are induced by loss of UCHL1 in Drosophila. Nat Commun 2024; 15:468. [PMID: 38212312 PMCID: PMC10784524 DOI: 10.1038/s41467-024-44747-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024] Open
Abstract
Diabetic sensory neuropathy (DSN) is one of the most common complications of type 2 diabetes (T2D), however the molecular mechanistic association between T2D and DSN remains elusive. Here we identify ubiquitin C-terminal hydrolase L1 (UCHL1), a deubiquitinase highly expressed in neurons, as a key molecule underlying T2D and DSN. Genetic ablation of UCHL1 leads to neuronal insulin resistance and T2D-related symptoms in Drosophila. Furthermore, loss of UCHL1 induces DSN-like phenotypes, including numbness to external noxious stimuli and axonal degeneration of sensory neurons in flies' legs. Conversely, UCHL1 overexpression improves DSN-like defects of T2D model flies. UCHL1 governs insulin signaling by deubiquitinating insulin receptor substrate 1 (IRS1) and antagonizes an E3 ligase of IRS1, Cullin 1 (CUL1). Consistent with these results, genetic and pharmacological suppression of CUL1 activity rescues T2D- and DSN-associated phenotypes. Therefore, our findings suggest a complete set of genetic factors explaining T2D and DSN, together with potential remedies for the diseases.
Collapse
Affiliation(s)
- Daewon Lee
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eunju Yoon
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Su Jin Ham
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kunwoo Lee
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Hansaem Jang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Daihn Woo
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Da Hyun Lee
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sehyeon Kim
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sekyu Choi
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| | - Jongkyeong Chung
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea.
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
7
|
Yeung AM, Huang J, Nguyen KT, Xu NY, Hughes LT, Agrawal BK, Ejskjaer N, Klonoff DC. Painful Diabetic Neuropathy: The Need for New Approaches. J Diabetes Sci Technol 2024; 18:159-167. [PMID: 36305521 PMCID: PMC10899841 DOI: 10.1177/19322968221132252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Painful diabetic neuropathy is a common vexing problem for people with diabetes and a costly problem for society. The pathophysiology is not well understood, and no safe and effective mechanistically-based treatment has been identified. Poor glycemic control is a risk factor for painful diabetic neuropathy. Excessive intraneuronal glucose in people with diabetes can be shunted away from physiological glycolysis into multiple pathological pathways associated with neuropathy and pain. The first three treatments that are traditionally offered consist of risk factor reduction, lifestyle modifications, and pharmacological therapy, which includes only three drugs that are approved for this indication by the United States Food and Drug Administration. All of these traditional treatments are often inadequate for relieving neuropathic pain, and thus, new approaches are needed. Modern devices based on neuromodulation technology, which act directly on the nervous system, have been recently cleared by the United States Food and Drug Administration for painful diabetic neuropathy and offer promise as next-in-line therapy when traditional therapies fail.
Collapse
Affiliation(s)
| | | | | | - Nicole Y. Xu
- Diabetes Technology Society, Burlingame, CA, USA
| | - Lorenzo T. Hughes
- Balance Health, San Francisco, CA, USA
- Mills-Peninsula Medical Center, Burlingame, CA, USA
| | | | - Niels Ejskjaer
- Steno Diabetes Center North Denmark and Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - David C. Klonoff
- Diabetes Technology Society, Burlingame, CA, USA
- Diabetes Research Institute, Mills-Peninsula Medical Center, San Mateo, CA, USA
| |
Collapse
|
8
|
Hu Y, Chen C, Liang Z, Liu T, Hu X, Wang G, Hu J, Xie X, Liu Z. Compound Qiying Granules alleviates diabetic peripheral neuropathy by inhibiting endoplasmic reticulum stress and apoptosis. Mol Med 2023; 29:98. [PMID: 37464341 PMCID: PMC10354983 DOI: 10.1186/s10020-023-00698-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Diabetic peripheral neuropathy (DPN) is a major complication of diabetes. This study aimed to investigate the therapeutic effects and molecular mechanisms of Compound Qiying Granules (CQYG) for DPN. METHODS Rats and RSC96 cells of DPN models were established to evaluate the therapeutic effects of CQYG. Then the morphology and apoptotic changes of sciatic nerves were detected. Further, tandem mass tag based quantitative proteomics technology was used to identify differentially expressed proteins (DEPs) and the underlying molecular mechanisms. Protein expression of key signaling pathways was also detected. RESULTS CQYG treatment significantly improved blood glucose and oxidative stress levels, and further reduced nerve fiber myelination lesions, denervation, and apoptosis in DPN rats. Further, 2176 DEPs were found in CQYG treated DPN rats. Enrichment analysis showed that protein processing in the endoplasmic reticulum (ER), and apoptosis were all inhibited after CQYG treatment. Next, CQYG treatment reduced inflammatory factor expression, mitochondrial damage, and apoptosis in RSC96 cells which induced by high glucose. Transmission electron microscopy results found that CQYG treatment improved the morphology of nerve myelin, mitochondria, and ER. CQYG treatment decreased ER stress and apoptosis pathway proteins that were highly expressed in DPN models. In addition, we also predicted the potential targets of CQYG in DEPs. CONCLUSIONS CQYG exerts neuroprotective effects in experimental diabetic neuropathy through anti-ER stress and anti-apoptosis.
Collapse
Affiliation(s)
- Yan Hu
- Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Chen Chen
- Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Zhengting Liang
- Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Tao Liu
- Xinjiang Medical University, Urumqi, 830011, Xinjiang, China.
- Traditional Chinese Medicine Hospital Affiliated With Xinjiang Medical University, Urumqi, 830000, Xinjiang, China.
| | - Xiaoling Hu
- Traditional Chinese Medicine Hospital Affiliated With Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
| | - Guanying Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Jinxia Hu
- Traditional Chinese Medicine Hospital Affiliated With Xinjiang Medical University, Urumqi, 830000, Xinjiang, China.
| | - Xiaolin Xie
- Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Zhiyan Liu
- Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| |
Collapse
|
9
|
Canta A, Carozzi VA, Chiorazzi A, Meregalli C, Oggioni N, Rodriguez-Menendez V, Sala B, Melcangi RC, Giatti S, Lombardi R, Bianchi R, Marmiroli P, Cavaletti G. Multimodal Comparison of Diabetic Neuropathy in Aged Streptozotocin-Treated Sprague-Dawley and Zucker Diabetic Fatty Rats. Biomedicines 2022; 11:20. [PMID: 36672528 PMCID: PMC9855818 DOI: 10.3390/biomedicines11010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/02/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The development and progression of diabetic polyneuropathy (DPN) are due to multiple mechanisms. The creation of reliable animal models of DPN has been challenging and this issue has not yet been solved. However, despite some recognized differences from humans, most of the current knowledge on the pathogenesis of DPN relies on results achieved using rodent animal models. The simplest experimental DPN model reproduces type 1 diabetes, induced by massive chemical destruction of pancreatic beta cells with streptozotocin (STZ). Spontaneous/transgenic models of diabetes are less frequently used, mostly because they are less predictable in clinical course, more expensive, and require a variable time to achieve homogeneous metabolic conditions. Among them, Zucker diabetic fatty (ZDF) rats represent a typical type 2 diabetes model. Both STZ-induced and ZDF rats have been extensively used, but only very few studies have compared the long-term similarities and differences existing between these two models. Moreover, inconsistencies have been reported regarding several aspects of short-term in vivo studies using these models. In this study, we compared the long-term course of DPN in STZ-treated Sprague-Dawley and ZDF rats with a multimodal set of readout measures.
Collapse
Affiliation(s)
- Annalisa Canta
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Valentina A. Carozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Alessia Chiorazzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Cristina Meregalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Norberto Oggioni
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Virginia Rodriguez-Menendez
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Barbara Sala
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Roberto Cosimo Melcangi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20100 Milano, Italy
| | - Silvia Giatti
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20100 Milano, Italy
| | - Raffaella Lombardi
- Neuroalgology Unit, IRCCS Fondazione Istituto Neurologico “Carlo Besta”, 20100 Milano, Italy
| | - Roberto Bianchi
- Neuroalgology Unit, IRCCS Fondazione Istituto Neurologico “Carlo Besta”, 20100 Milano, Italy
| | - Paola Marmiroli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
10
|
Elafros MA, Andersen H, Bennett DL, Savelieff MG, Viswanathan V, Callaghan BC, Feldman EL. Towards prevention of diabetic peripheral neuropathy: clinical presentation, pathogenesis, and new treatments. Lancet Neurol 2022; 21:922-936. [PMID: 36115364 PMCID: PMC10112836 DOI: 10.1016/s1474-4422(22)00188-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/15/2022] [Accepted: 04/29/2022] [Indexed: 12/24/2022]
Abstract
Diabetic peripheral neuropathy (DPN) occurs in up to half of individuals with type 1 or type 2 diabetes. DPN results from the distal-to-proximal loss of peripheral nerve function, leading to physical disability and sometimes pain, with the consequent lowering of quality of life. Early diagnosis improves clinical outcomes, but many patients still develop neuropathy. Hyperglycaemia is a risk factor and glycaemic control prevents DPN development in type 1 diabetes. However, glycaemic control has modest or no benefit in individuals with type 2 diabetes, probably because they usually have comorbidities. Among them, the metabolic syndrome is a major risk factor for DPN. The pathophysiology of DPN is complex, but mechanisms converge on a unifying theme of bioenergetic failure in the peripheral nerves due to their unique anatomy. Current clinical management focuses on controlling diabetes, the metabolic syndrome, and pain, but remains suboptimal for most patients. Thus, research is ongoing to improve early diagnosis and prognosis, to identify molecular mechanisms that could lead to therapeutic targets, and to investigate lifestyle interventions to improve clinical outcomes.
Collapse
Affiliation(s)
| | - Henning Andersen
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - David L Bennett
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | | | - Vijay Viswanathan
- MV Hospital for Diabetes and Prof M Viswanathan Diabetes Research Centre, Royapuram, Chennai, India
| | | | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|