1
|
Marth AA, Sommer S, Kajdi GW, Goller SS, Feiweier T, Sutter R, Nanz D, von Deuster C. Assessment of the supraspinatus muscle fiber architecture with diffusion tensor imaging in healthy volunteers. Insights Imaging 2024; 15:241. [PMID: 39382624 PMCID: PMC11464712 DOI: 10.1186/s13244-024-01800-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/22/2024] [Indexed: 10/10/2024] Open
Abstract
OBJECTIVES This study presents a framework for the calculation of supraspinatus (SSP) muscle pennation angles (PAs) from diffusion tensor imaging (DTI). MATERIALS AND METHODS Ten healthy individuals (five females and five males; age 32.0 ± 4.7 years) underwent three sessions of 3-T MRI, including a stimulated echo acquisition mode DTI sequence. The imaging plane of the DTI sequence was angled along the intramuscular part of the SSP tendon. A custom-built software was developed and implemented to compute DTI-based PAs of the anterior and posterior SSP in relation to the orientation of the tendon. Subsequently, three readers measured PAs from the post-processed images. Test-retest reliability, inter-reader agreement, and intra-reader agreement of PA measurements were evaluated with intraclass correlation coefficients (ICCs). RESULTS The mean PA in the anterior SSP was 15.6 ± 2.1° and 10.7 ± 0.9° in the posterior SSP. MRI-derived PAs showed good to excellent test-retest reliability (ICC: 0.856-0.945), inter-reader agreement (ICC: 0.863-0.955), and intra-reader agreement (ICC: 0.804-0.955). CONCLUSION PAs derived from DTI demonstrated good to excellent test-retest reliability, inter-reader agreement, and intra-reader agreement. We successfully implemented a highly standardized technique for evaluating PAs of the SSP muscle. CRITICAL RELEVANCE STATEMENT This proposed low-complex method might facilitate the increased use of the PA as a biomarker for pathological conditions of the rotator cuff. KEY POINTS A low-complex method for measuring PAs of the SSP might help identify pathology early. The mean PA was 15.6 ± 2.1° and 10.7 ± 0.9° in the anterior and posterior SSP, respectively. ICCs were ≥ 0.856 for test-retest reliability, ≥ 0.863 for inter-reader agreement, and ≥ 0.804 for intra-reader agreement.
Collapse
Affiliation(s)
- Adrian Alexander Marth
- Swiss Center for Musculoskeletal Imaging, Balgrist Campus AG, Zurich, Switzerland.
- Department of Radiology, Balgrist University Hospital, Zurich, Switzerland.
| | - Stefan Sommer
- Swiss Center for Musculoskeletal Imaging, Balgrist Campus AG, Zurich, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Zurich, Switzerland
| | | | | | | | - Reto Sutter
- Department of Radiology, Balgrist University Hospital, Zurich, Switzerland
- Medical Faculty, University of Zurich (UZH), Zurich, Switzerland
| | - Daniel Nanz
- Swiss Center for Musculoskeletal Imaging, Balgrist Campus AG, Zurich, Switzerland
- Medical Faculty, University of Zurich (UZH), Zurich, Switzerland
| | - Constantin von Deuster
- Swiss Center for Musculoskeletal Imaging, Balgrist Campus AG, Zurich, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Zurich, Switzerland
| |
Collapse
|
2
|
Rubin EB, Schmidt AM, Koff MF, Kogan F, Gao K, Majumdar S, Potter H, Gold GE. Advanced MRI Approaches for Evaluating Common Lower Extremity Injuries in Basketball Players: Current and Emerging Techniques. J Magn Reson Imaging 2024; 59:1902-1913. [PMID: 37854004 DOI: 10.1002/jmri.29019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 10/20/2023] Open
Abstract
Magnetic resonance imaging (MRI) can provide accurate and non-invasive diagnoses of lower extremity injuries in athletes. Sport-related injuries commonly occur in and around the knee and can affect the articular cartilage, patellar tendon, hamstring muscles, and bone. Sports medicine physicians utilize MRI to evaluate and diagnose injury, track recovery, estimate return to sport timelines, and assess the risk of recurrent injury. This article reviews the current literature and describes novel developments of quantitative MRI tools that can further advance our understanding of sports injury diagnosis, prevention, and treatment while minimizing injury risk and rehabilitation time. Innovative approaches for enhancing the early diagnosis and treatment of musculoskeletal injuries in basketball players span a spectrum of techniques. These encompass the utilization of T2, T1ρ, and T2* quantitative MRI, along with dGEMRIC and Na-MRI to assess articular cartilage injuries, 3D-Ultrashort echo time MRI for patellar tendon injuries, diffusion tensor imaging for acute myotendinous injuries, and sagittal short tau inversion recovery and axial long-axis T1-weighted, and 3D Cube sequences for bone stress imaging. Future studies should further refine and validate these MR-based quantitative techniques while exploring the lifelong cumulative impact of basketball on players' knees. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Elka B Rubin
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Andrew M Schmidt
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Matthew F Koff
- Department of Radiology and Imaging, Hospital for Special Surgery, New York City, New York, USA
| | - Feliks Kogan
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Kenneth Gao
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Sharmila Majumdar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Hollis Potter
- Department of Radiology and Imaging, Hospital for Special Surgery, New York City, New York, USA
| | - Garry E Gold
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| |
Collapse
|
3
|
Hooijmans MT, Lockard CA, Zhou X, Coolbaugh C, Pineda Guzman R, Kersh ME, Damon BM. A registration strategy to characterize DTI-observed changes in skeletal muscle architecture due to passive shortening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.589123. [PMID: 38645028 PMCID: PMC11030449 DOI: 10.1101/2024.04.11.589123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Skeletal muscle architecture is a key determinant of muscle function. Architectural properties such as fascicle length, pennation angle, and curvature can be characterized using Diffusion Tensor Imaging (DTI), but acquiring these data during a contraction is not currently feasible. However, an image registration-based strategy may be able to convert muscle architectural properties observed at rest to their contracted state. As an initial step toward this long-term objective, the aim of this study was to determine if an image registration strategy could be used to convert the whole-muscle average architectural properties observed in the extended joint position to those of a flexed position, following passive rotation. DTI and high-resolution fat/water scans were acquired in the lower leg of seven healthy participants on a 3T MR system in +20° (plantarflexion) and -10° (dorsiflexion) foot positions. The diffusion and anatomical images from the two positions were used to propagate DTI fiber-tracts from seed points along a mesh representation of the aponeurosis of fiber insertion. The -10° and +20° anatomical images were registered and the displacement fields were used to transform the mesh and fiber-tracts from the +20° to the -10° position. Student's paired t-tests were used to compare the mean architectural parameters between the original and transformed fiber-tracts. The whole-muscle average fiber-tract length, pennation angle, curvature, and physiological cross-sectional areas estimates did not differ significantly. DTI fiber-tracts in plantarflexion can be transformed to dorsiflexion position without significantly affecting the average architectural characteristics of the fiber-tracts. In the future, a similar approach could be used to evaluate muscle architecture in a contracted state.
Collapse
Affiliation(s)
- Melissa T. Hooijmans
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Carle Clinical Imaging Research Program, Stephens Family Clinical Research Institute, Carle Health, Urbana, IL, United States of America
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Carly A. Lockard
- Carle Clinical Imaging Research Program, Stephens Family Clinical Research Institute, Carle Health, Urbana, IL, United States of America
| | - Xingyu Zhou
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Carle Clinical Imaging Research Program, Stephens Family Clinical Research Institute, Carle Health, Urbana, IL, United States of America
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States of America
| | - Crystal Coolbaugh
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Roberto Pineda Guzman
- Carle Clinical Imaging Research Program, Stephens Family Clinical Research Institute, Carle Health, Urbana, IL, United States of America
| | - Mariana E. Kersh
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Bruce M. Damon
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Carle Clinical Imaging Research Program, Stephens Family Clinical Research Institute, Carle Health, Urbana, IL, United States of America
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States of America
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| |
Collapse
|
4
|
Bécam J, Ropars G, Dwiri FA, Brunaud C, Toutain J, Chazalviel L, Naveau M, Valable S, Bernaudin M, Touzani O, Pérès EA. Physical Activity Attenuates Brain Irradiation-Associated Skeletal Muscle Damage in the Rat. Int J Radiat Oncol Biol Phys 2024; 118:1081-1093. [PMID: 37866760 DOI: 10.1016/j.ijrobp.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/09/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023]
Abstract
PURPOSE Radiation therapy for brain tumors increases patient survival. Nonetheless, side effects are increasingly reported such as cognitive deficits and fatigue. The etiology of fatigue remains poorly described. Our hypothesis is that the abscopal effects of radiation therapy on skeletal muscle may be involved in fatigue. The present study aims to assess the effect of brain irradiation on skeletal muscles and its relationship with fatigue and to analyze whether physical activity could counteract brain radiation-induced side effects. METHODS AND MATERIALS Adult Wistar rats were randomly distributed between 4 groups: control (CTL), irradiated (IR), nonirradiated with physical activity (PA), and irradiated with physical activity (IR+PA). IR rats were exposed to a whole-brain irradiation (WBI) of 30 Gy (3 × 10 Gy). Rats subjected to PA underwent sessions of running on a treadmill, 3 times/week for 6 months. The effects of WBI on muscles were evaluated by complementary approaches: behavioral tests (fatigue, locomotion activity), magnetic resonance imaging, and histologic analyses. RESULTS IR rats displayed a significant fatigue and a reduced locomotor activity at short term compared with the CTL group, which were attenuated with PA at 6 months after WBI. The IR rat's gastrocnemius mass decreased compared with CTL rats, which was reversed by physical activity at 14 days after WBI. Multiparametric magnetic resonance imaging of the skeletal muscle highlighted an alteration of the fiber organization in IR rats as demonstrated by a significant decrease of the mean diffusivity in the gastrocnemius at short term. Alteration of fibers was confirmed by histologic analyses: the number of type I fibers was decreased, whereas that of type IIa fibers was increased in IR animals but not in the IR+PA group. CONCLUSIONS The data show that WBI induces skeletal muscle damage, which is attenuated by PA. This muscle damage may explain, at least in part, the fatigue of patients treated with radiation therapy.
Collapse
Affiliation(s)
- Julie Bécam
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT, UMR6030, GIP Cyceron, F-14000 Caen, France
| | - Gwenn Ropars
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT, UMR6030, GIP Cyceron, F-14000 Caen, France
| | - Fatima-Azzahra Dwiri
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT, UMR6030, GIP Cyceron, F-14000 Caen, France
| | - Carole Brunaud
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT, UMR6030, GIP Cyceron, F-14000 Caen, France
| | - Jérôme Toutain
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT, UMR6030, GIP Cyceron, F-14000 Caen, France
| | - Laurent Chazalviel
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT, UMR6030, GIP Cyceron, F-14000 Caen, France
| | - Mikaël Naveau
- Université de Caen Normandie, CNRS, INSERM, CEA, Normandie Université, UAR3408/US50, Cyceron, GIP Cyceron, F-14000 Caen, France
| | - Samuel Valable
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT, UMR6030, GIP Cyceron, F-14000 Caen, France
| | - Myriam Bernaudin
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT, UMR6030, GIP Cyceron, F-14000 Caen, France
| | - Omar Touzani
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT, UMR6030, GIP Cyceron, F-14000 Caen, France
| | - Elodie Anne Pérès
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT, UMR6030, GIP Cyceron, F-14000 Caen, France.
| |
Collapse
|
5
|
Sane H, Nivins S, Paranjape A, Gokulchandran N, Badhe S, Varghese R, Badhe P, Sharma A. Severity of muscle impairment and its progression assessed using musculoskeletal magnetic resonance imaging and diffusion tension imaging in 78 boys with Duchenne muscular dystrophy: a retrospective study. Pol J Radiol 2024; 89:e88-e105. [PMID: 38510548 PMCID: PMC10953512 DOI: 10.5114/pjr.2024.135718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/19/2024] [Indexed: 03/22/2024] Open
Abstract
Purpose Duchenne muscular dystrophy (DMD) is the most common and severe form of muscular dystrophy. Current diagnostic tests like genetic testing, needle electromyography, and muscle biopsy are either not easily available or invasive, and they are impractical for assessing disease progression and treatment outcomes. Therefore, there is a need for a non-invasive and accurate investigative modality for DMD. In recent years, musculoskeletal magnetic resonance imaging (MRI-MSK) along with fractional anisotropy (FA) and diffusion tensor imaging (DTI) have become major non-invasive tools. Material and methods T1-weighted MRI-MSK and FA measures of DTI of 78 DMD patients were retrospectively studied to identify the distinct pattern of muscle involvement and fatty infiltration as age and/or disease progresses. Correlation analysis was performed between MRI-MSK grade score vs. age, muscle strength, and Vignos scale. Spearman's rank correlation coefficient was used. Results As age increased, the MRI grade score and Vignos score increased. There was a statistically significant high positive correlation between MRI-MSK grade score and age, and low positive correlation with Vignos scores. With increasing age, the muscle strength on manual muscle testing (MMT) and FA value decreased. There was high negative correlation with muscle strength on MMT and low positive correlation between FA values and MMT score. Conclusions On T1-weighted MRI, a distinct pattern, extent, and distribution of lower limb muscle involvement can be seen. MRI-MSK grade score worsens with progressing age, reducing strength, and increasing functional impairment. FA alone may not be an accurate marker in assessing progression of DMD. MRI-MSK and other DTI measures should be further explored as diagnostic and prognostic tools for DMD.
Collapse
Affiliation(s)
- Hemangi Sane
- NeuroGen Brain and Spine Institute, Stemasia Hospital and Research Centre, Navi Mumbai , Maharashtra, India
| | - Samson Nivins
- NeuroGen Brain and Spine Institute, Stemasia Hospital and Research Centre, Navi Mumbai , Maharashtra, India
| | - Amruta Paranjape
- NeuroGen Brain and Spine Institute, Stemasia Hospital and Research Centre, Navi Mumbai , Maharashtra, India
| | - Nandini Gokulchandran
- NeuroGen Brain and Spine Institute, Stemasia Hospital and Research Centre, Navi Mumbai , Maharashtra, India
| | - Suvarna Badhe
- NeuroGen Brain and Spine Institute, Stemasia Hospital and Research Centre, Navi Mumbai , Maharashtra, India
| | - Ritu Varghese
- NeuroGen Brain and Spine Institute, Stemasia Hospital and Research Centre, Navi Mumbai , Maharashtra, India
| | - Prerna Badhe
- NeuroGen Brain and Spine Institute, Stemasia Hospital and Research Centre, Navi Mumbai , Maharashtra, India
| | - Alok Sharma
- NeuroGen Brain and Spine Institute, Stemasia Hospital and Research Centre, Navi Mumbai , Maharashtra, India
| |
Collapse
|
6
|
Joshi D, Sohn MH, Dewald JPA, Murray WM, Ingo C. Sensitivity analyses of probabilistic and deterministic DTI tractography methodologies for studying arm muscle architecture. Magn Reson Med 2024; 91:497-512. [PMID: 37814925 PMCID: PMC10841115 DOI: 10.1002/mrm.29862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 08/01/2023] [Accepted: 08/23/2023] [Indexed: 10/11/2023]
Abstract
PURPOSE To determine the sensitivity profiles of probabilistic and deterministic DTI tractography methods in estimating geometric properties in arm muscle anatomy. METHODS Spin-echo diffusion-weighted MR images were acquired in the dominant arm of 10 participants. Both deterministic and probabilistic tractography were performed in two different muscle architectures of the parallel-structured biceps brachii (and the pennate-structured flexor carpi ulnaris. Muscle fascicle geometry estimates and number of fascicles were evaluated with respect to tractography turning angle, polynomial fitting order, and SNR. The DTI tractography estimated fascicle lengths were compared with measurements obtained from conventional cadaveric dissection and ultrasound modalities. RESULTS The probabilistic method generally estimated fascicle lengths closer to ranges reported by conventional methods than the deterministic method, most evident in the biceps brachii (p > 0.05), consisting of longer, arc-like fascicles. For both methods, a wide turning angle (50º-90°) generated fascicle lengths that were in close agreement with conventional methods, most evident in the flexor carpi ulnaris (p > 0.05), consisting of shorter, feather-like fascicles. The probabilistic approach produced at least two times more fascicles than the deterministic approach. For both approaches, second-order fitting yielded about double the complete tracts as third-order fitting. In both muscles, as SNR decreased, deterministic tractography produced less fascicles but consistent geometry (p > 0.05), whereas probabilistic tractography produced a consistent number but altered geometry of fascicles (p < 0.001). CONCLUSION Findings from this study provide best practice recommendations for implementing DTI tractography in skeletal muscle and will inform future in vivo studies of healthy and pathological muscle structure.
Collapse
Affiliation(s)
- Divya Joshi
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
| | - M Hongchul Sohn
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Julius P A Dewald
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Wendy M Murray
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Carson Ingo
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
7
|
Otto LA, Froeling M, van Eijk RP, Wadman RI, Cuppen I, van der Woude DR, Bartels B, Asselman FL, Hendrikse J, van der Pol WL. Monitoring Nusinersen Treatment Effects in Children with Spinal Muscular Atrophy with Quantitative Muscle MRI. J Neuromuscul Dis 2024; 11:91-101. [PMID: 38073395 PMCID: PMC10789331 DOI: 10.3233/jnd-221671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is caused by deficiency of survival motor neuron (SMN) protein. Intrathecal nusinersen treatment increases SMN protein in motor neurons and has been shown to improve motor function in symptomatic children with SMA. OBJECTIVE We used quantitative MRI to gain insight in microstructure and fat content of muscle during treatment and to explore its use as biomarker for treatment effect. METHODS We used a quantitative MRI protocol before start of treatment and following the 4th and 6th injection of nusinersen in 8 children with SMA type 2 and 3 during the first year of treatment. The MR protocol allowed DIXON, T2 mapping and diffusion tensor imaging acquisitions. We also assessed muscle strength and motor function scores. RESULTS Fat fraction of all thigh muscles with the exception of the m. adductor longus increased in all patients during treatment (+3.2%, p = 0.02). WaterT2 showed no significant changes over time (-0.7 ms, p = 0.3). DTI parameters MD and AD demonstrate a significant decrease in the hamstrings towards values observed in healthy muscle. CONCLUSIONS Thigh muscles of children with SMA treated with nusinersen showed ongoing fatty infiltration and possible normalization of thigh muscle microstructure during the first year of nusinersen treatment. Quantitative muscle MRI shows potential as biomarker for the effects of SMA treatment strategies.
Collapse
Affiliation(s)
- Louise A.M. Otto
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - M. Froeling
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ruben P.A. van Eijk
- Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Renske I. Wadman
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Inge Cuppen
- Department of Neurology and Child Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Danny R. van der Woude
- Department of Child Development and Exercise Center, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Bart Bartels
- Department of Child Development and Exercise Center, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Fay-Lynn Asselman
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jeroen Hendrikse
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - W. Ludo van der Pol
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
8
|
Marth AA, Auer TA, Bertalan G, Gebert P, Kirchenberger T, Geisel D, Hamm B, Keller S. Advanced muscle imaging in adolescent elite rowers utilizing diffusion tensor imaging: Association of imaging findings with stroke typology. PLoS One 2023; 18:e0294693. [PMID: 38019893 PMCID: PMC10686450 DOI: 10.1371/journal.pone.0294693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
PURPOSE Muscular overuse injuries are a common health issue in elite athletes. Changes in the muscular microenvironment can be depicted by Diffusion Tensor Imaging (DTI). We hypothesize that the biomechanics of different stroke typologies plays a role in muscle injury and tested our hypothesis by magnetic resonance imaging (MRI) examination of the lumbar spine muscles of adolescent rowers utilizing DTI. METHODS AND MATERIALS Twenty-two male elite rowers (12 sweep, 10 scull rowers) with a mean age of 15.8 ± 1.2 years underwent 3-Tesla MRI of the lumbar spine 6 hours after cessation of training. Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) were calculated for the erector spinae and multifidus muscle. Student's t-test was used to test differences of DTI parameters between sweep and scull rowers and a Pearson correlation was utilized to correlate the parameters to training volume. RESULTS ADC values in the erector spinae and multifidus muscle were significantly higher (p = 0.039) and FA values significantly lower (p < 0.001) in sweep rowers compared to scull rowers. There was no significant association between DTI parameters and training volume (r ≤ -0.459, p ≥ 0.074). CONCLUSIONS Our DTI results show that lumbar spine muscle diffusivity is higher in sweep rowers than in scull rowers. Altered muscle diffusivity is suggestive of microscopic tissue disruption and might be attributable to biomechanical differences between stroke typologies.
Collapse
Affiliation(s)
- Adrian Alexander Marth
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Timo Alexander Auer
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Clinician Scientist Program, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Gergely Bertalan
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Pimrapat Gebert
- Institute for Biometry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Timo Kirchenberger
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dominik Geisel
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bernd Hamm
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sarah Keller
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
9
|
Berry DB, Galinsky VL, Hutchinson EB, Galons JP, Ward SR, Frank LR. Double pulsed field gradient diffusion MRI to assess skeletal muscle microstructure. Magn Reson Med 2023; 90:1582-1593. [PMID: 37392410 PMCID: PMC11390096 DOI: 10.1002/mrm.29751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/28/2023] [Accepted: 05/21/2023] [Indexed: 07/03/2023]
Abstract
PURPOSE Preliminary study to determine whether double pulsed field gradient (PFG) diffusion MRI is sensitive to key features of muscle microstructure related to function. METHODS The restricted diffusion profile of molecules in models of muscle microstructure derived from histology were systematically simulated using a numerical simulation approach. Diffusion tensor subspace imaging analysis of the diffusion signal was performed, and spherical anisotropy (SA) was calculated for each model. Linear regression was used to determine the predictive capacity of SA on the fiber area, fiber diameter, and surface area to volume ratio of the models. Additionally, a rat model of muscle hypertrophy was scanned using a single PFG and a double PFG pulse sequence, and the restricted diffusion measurements were compared with histological measurements of microstructure. RESULTS Excellent agreement between SA and muscle fiber area (r2 = 0.71; p < 0.0001), fiber diameter (r2 = 0.83; p < 0.0001), and surface area to volume ratio (r2 = 0.97; p < 0.0001) in simulated models was found. In a scanned rat leg, the distribution of these microstructural features measured from histology was broad and demonstrated that there is a wide variance in the microstructural features observed, similar to the SA distributions. However, the distribution of fractional anisotropy measurements in the same tissue was narrow. CONCLUSIONS This study demonstrates that SA-a scalar value from diffusion tensor subspace imaging analysis-is highly sensitive to muscle microstructural features predictive of function. Furthermore, these techniques and analysis tools can be translated to real experiments in skeletal muscle. The increased dynamic range of SA compared with fractional anisotropy in the same tissue suggests increased sensitivity to detecting changes in tissue microstructure.
Collapse
Affiliation(s)
- D B Berry
- Department of Orthopedic Surgery, University of California, San Diego, California, USA
- Department of Nanoengineering, University of California, San Diego, San Diego, California, USA
| | - V L Galinsky
- Center for Scientific Computation in Imaging, University of California, San Diego, San Diego, California, USA
| | - E B Hutchinson
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
| | - J P Galons
- Department of Medical Imaging, University of Arizona, Tucson, Arizona, USA
| | - S R Ward
- Department of Orthopedic Surgery, University of California, San Diego, California, USA
- Department of Radiology, University of California, San Diego, California, USA
- Department of Bioengineering, University of California, San Diego, California, USA
| | - L R Frank
- Center for Scientific Computation in Imaging, University of California, San Diego, San Diego, California, USA
| |
Collapse
|
10
|
Fernandez J, Shim V, Schneider M, Choisne J, Handsfield G, Yeung T, Zhang J, Hunter P, Besier T. A Narrative Review of Personalized Musculoskeletal Modeling Using the Physiome and Musculoskeletal Atlas Projects. J Appl Biomech 2023; 39:304-317. [PMID: 37607721 DOI: 10.1123/jab.2023-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/02/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023]
Abstract
In this narrative review, we explore developments in the field of computational musculoskeletal model personalization using the Physiome and Musculoskeletal Atlas Projects. Model geometry personalization; statistical shape modeling; and its impact on segmentation, classification, and model creation are explored. Examples include the trapeziometacarpal and tibiofemoral joints, Achilles tendon, gastrocnemius muscle, and pediatric lower limb bones. Finally, a more general approach to model personalization is discussed based on the idea of multiscale personalization called scaffolds.
Collapse
Affiliation(s)
- Justin Fernandez
- Auckland Bioengineering Institute, University of Auckland, Auckland,New Zealand
- Department of Engineering Science and Biomedical Engineering, University of Auckland, Auckland,New Zealand
| | - Vickie Shim
- Auckland Bioengineering Institute, University of Auckland, Auckland,New Zealand
| | - Marco Schneider
- Auckland Bioengineering Institute, University of Auckland, Auckland,New Zealand
| | - Julie Choisne
- Auckland Bioengineering Institute, University of Auckland, Auckland,New Zealand
| | - Geoff Handsfield
- Auckland Bioengineering Institute, University of Auckland, Auckland,New Zealand
| | - Ted Yeung
- Auckland Bioengineering Institute, University of Auckland, Auckland,New Zealand
| | - Ju Zhang
- Auckland Bioengineering Institute, University of Auckland, Auckland,New Zealand
| | - Peter Hunter
- Auckland Bioengineering Institute, University of Auckland, Auckland,New Zealand
| | - Thor Besier
- Auckland Bioengineering Institute, University of Auckland, Auckland,New Zealand
- Department of Engineering Science and Biomedical Engineering, University of Auckland, Auckland,New Zealand
| |
Collapse
|
11
|
Suskens JJM, Secondulfo L, Kiliç Ö, Hooijmans MT, Reurink G, Froeling M, Nederveen AJ, Strijkers GJ, Tol JL. Effect of two eccentric hamstring exercises on muscle architectural characteristics assessed with diffusion tensor MRI. Scand J Med Sci Sports 2023; 33:393-406. [PMID: 36514886 DOI: 10.1111/sms.14283] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To evaluate the effect of a Nordic hamstring exercise or Diver hamstring exercise intervention on biceps femoris long head, semitendinosus and semimembranosus muscle's fascicle length and orientation through diffusion tensor imaging (DTI) with magnetic resonance imaging. METHODS In this three-arm, single-center, randomized controlled trial, injury-free male basketball players were randomly assigned to a Nordic, Diver hamstring exercise intervention or control group. The primary outcome was the DTI-derived fascicle length and orientation of muscles over 12 weeks. RESULTS Fifty-three participants were included for analysis (mean age 22 ± 7 years). Fascicle length in the semitendinosus over 12 weeks significantly increased in the Nordic-group (mean [M]: 20.8 mm, 95% confidence interval [95% CI]: 7.8 to 33.8) compared with the Control-group (M: 0.9 mm, 95% CI: -7.1 to 8.9), mean between-groups difference: 19.9 mm, 95% CI: 1.9 to 37.9, p = 0.026. Fascicle orientation in the biceps femoris long head over 12 weeks significantly decreased in the Diver-group (mean: -2.6°, 95% CI: -4.1 to -1.0) compared with the Control-group (mean: -0.2°, 95% CI: -1.4 to 1.0), mean between-groups difference: -2.4°, 95% CI: -4.7 to -0.1, p = 0.039. CONCLUSION The Nordic hamstring exercise intervention did significantly increase the fascicle length of the semitendinosus and the Diver hamstring exercise intervention did significantly change the orientation of fascicles of the biceps femoris long head. As both exercises are complementary to each other, the combination is relevant for preventing hamstring injuries.
Collapse
Affiliation(s)
- Jozef J M Suskens
- Department of Orthopedic Surgery and Sports Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Movement Sciences, Sports, Amsterdam, The Netherlands.,AMC/VUmc IOC Research Center, Amsterdam Collaboration on Health & Safety in Sports (ACHSS), Amsterdam, Netherlands
| | - Laura Secondulfo
- Amsterdam Movement Sciences, Sports, Amsterdam, The Netherlands.,Department of Biomedical Engineering & Physics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Özgür Kiliç
- Department of Orthopedic Surgery and Sports Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Movement Sciences, Sports, Amsterdam, The Netherlands.,AMC/VUmc IOC Research Center, Amsterdam Collaboration on Health & Safety in Sports (ACHSS), Amsterdam, Netherlands
| | - Melissa T Hooijmans
- Amsterdam Movement Sciences, Sports, Amsterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Gustaaf Reurink
- Amsterdam Movement Sciences, Sports, Amsterdam, The Netherlands.,AMC/VUmc IOC Research Center, Amsterdam Collaboration on Health & Safety in Sports (ACHSS), Amsterdam, Netherlands
| | - Martijn Froeling
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Aart J Nederveen
- Amsterdam Movement Sciences, Sports, Amsterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Gustav J Strijkers
- Amsterdam Movement Sciences, Sports, Amsterdam, The Netherlands.,Department of Biomedical Engineering & Physics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Johannes L Tol
- Amsterdam Movement Sciences, Sports, Amsterdam, The Netherlands.,AMC/VUmc IOC Research Center, Amsterdam Collaboration on Health & Safety in Sports (ACHSS), Amsterdam, Netherlands.,Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| |
Collapse
|
12
|
Martín-Noguerol T, Barousse R, Wessell DE, Rossi I, Luna A. A handbook for beginners in skeletal muscle diffusion tensor imaging: physical basis and technical adjustments. Eur Radiol 2022; 32:7623-7631. [PMID: 35554647 DOI: 10.1007/s00330-022-08837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 01/03/2023]
Abstract
Magnetic resonance imaging (MRI) of skeletal muscle is routinely performed using morphological sequences to acquire anatomical information. Recently, there is an increasing interest in applying advanced MRI techniques that provide pathophysiologic information for skeletal muscle evaluation to complement standard morphologic information. Among these advanced techniques, diffusion tensor imaging (DTI) has emerged as a potential tool to explore muscle microstructure. DTI can noninvasively assess the movement of water molecules in well-organized tissues with anisotropic diffusion, such as skeletal muscle. The acquisition of DTI studies for skeletal muscle assessment requires specific technical adjustments. Besides, knowledge of DTI physical basis and skeletal muscle physiopathology facilitates the evaluation of this advanced sequence and both image and parameter interpretation. Parameters derived from DTI provide a quantitative assessment of muscle microstructure with potential to become imaging biomarkers of normal and pathological skeletal muscle. KEY POINTS: • Diffusion tensor imaging (DTI) allows to evaluate the three-dimensional movement of water molecules inside biological tissues. • The skeletal muscle structure makes it suitable for being evaluated with DTI. • Several technical adjustments have to be considered for obtaining robust and reproducible DTI studies for skeletal muscle assessment, minimizing potential artifacts.
Collapse
Affiliation(s)
- Teodoro Martín-Noguerol
- MRI Section, Radiology Department, SERCOSA, HT Médica, Carmelo Torres 2, 23007, Jaén, Spain.
| | | | | | | | - Antonio Luna
- MRI Section, Radiology Department, SERCOSA, HT Médica, Carmelo Torres 2, 23007, Jaén, Spain
| |
Collapse
|
13
|
Sugano T, Ogawa T, Yoda N, Hashimoto T, Shobara K, Niizuma K, Kawashima R, Sasaki K. Morphological comparison of masseter muscle fibers in the mandibular rest and open positions using diffusion tensor imaging. J Oral Rehabil 2022; 49:608-615. [PMID: 35334120 DOI: 10.1111/joor.13319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/22/2022] [Accepted: 03/19/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND The masseter muscle has a complicated multipennate internal structure and exhibits functional differentiation when performing various stomatognathic functions. It is important to understand the internal structural changes of the muscle during functioning to elucidate characteristic muscle disorders such as local myalgia. Diffusion tensor imaging (DTI) may be useful for investigating the internal structural features of muscle. OBJECTIVES To evaluate the features of masseter muscle fibers in human participants using DTI fiber tractography, and to elucidate the structural differences in the masseter muscle between the mandibular rest and open positions. METHODS Five healthy men (age 31±7 years) underwent DTI and T1-weighted MRI of the right masseter muscle in the mandibular rest and open positions. MR images were used as a reference for muscle layer segmentation (superficial, intermediate, and deep). DTI fiber tractography of the masseter muscle was performed and the orientation of the DTI fibers was analyzed in each layer using coordinates based on the Frankfurt horizontal plane. RESULTS The DTI fiber orientation of the deep layer significantly changed between the mandibular rest and open positions in the frontal plane (p<0.05, Wilcoxon rank sum test). However, no significant change was found in the superficial and intermediate layers. CONCLUSION DTI fiber tractography confirmed regional differences in the orientation change of the masseter muscle fibers between different mandibular positions. The results may support the existence of functional partitioning inside the masseter muscle and suggest that DTI may be useful for the evaluation of muscle fibers in multipennate muscles.
Collapse
Affiliation(s)
- Takehiko Sugano
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Japan
| | - Toru Ogawa
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Japan
| | - Nobuhiro Yoda
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Japan
| | - Teruo Hashimoto
- Institute of Development, Aging and Cancer, Tohoku University, Japan
| | - Kenta Shobara
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Japan
| | - Kuniyasu Niizuma
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Japan.,Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Japan.,Department of Neurosurgery, Tohoku University Graduate School of Medicine, Japan
| | - Ryuta Kawashima
- Institute of Development, Aging and Cancer, Tohoku University, Japan
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Japan
| |
Collapse
|
14
|
Repeatability of quantitative MRI in patients with rheumatoid arthritis. Radiography (Lond) 2022; 28:831-837. [DOI: 10.1016/j.radi.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/21/2022]
|
15
|
Tan ET, Zochowski KC, Sneag DB. Diffusion MRI fiber diameter for muscle denervation assessment. Quant Imaging Med Surg 2022; 12:80-94. [PMID: 34993062 PMCID: PMC8666740 DOI: 10.21037/qims-21-313] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND To develop and evaluate a diffusion MRI-based apparent muscle fiber diameter (AFD) method in patients with muscle denervation. It was hypothesized that AFD differences between denervated, non-denervated and control muscles would be greater than those from standard diffusion metrics. METHODS A spin-echo diffusion acquisition with multi-b-valued diffusion sampling was used. An orientation-invariant dictionary approach utilized a cylinder-based forward model and multi-compartment model for obtaining restricted and free fractions. Simulations were performed to determine precision, bias, and optimize dictionary parameters. In all, 18 exams of patients with muscle denervation and 8 exams of healthy subjects were performed at 3T. Six regions of interests (ROIs) within separate shoulder muscles were selected, yielding three groups consisting 47 control (healthy), 36 non-denervated (patients), and 68 denervated (patients) muscle ROIs. Two-sample t-tests (α=0.05) between groups were performed with Holm-Bonferroni correction. T2- and fat fraction (FF)-mapping were acquired for comparison. RESULTS Mean AFD was 89.7±13.6 µm in control, 71.6±15.3 µm in non-denervated, and 60.7±15.9 µm in denervated muscles and were significantly different (P<0.001) in paired comparisons and in 10/12 individual muscle region comparisons. Correlation between AFD and FF (-0.331, P<0.001) was low, but correlation between FA and FF was negligible (0.197, P=0.016). Correlation was low between AFD and T2 (-0.395, P<0.001) and between FA and T2 (0.359, P<0.001). CONCLUSIONS Diffusion MRI-based AFD complements T2- and FF-mapping techniques to non-invasively assess muscle denervation.
Collapse
Affiliation(s)
| | - Kelly C. Zochowski
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY, USA
| | - Darryl B. Sneag
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
16
|
Evans V, Behr M, Gangwar A, Noseworthy MD, Kumbhare D. Potential Role of MRI Imaging for Myofascial Pain: A Scoping Review for the Clinicians and Theoretical Considerations. J Pain Res 2021; 14:1505-1514. [PMID: 34079365 PMCID: PMC8166277 DOI: 10.2147/jpr.s302683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022] Open
Abstract
The most common cause of chronic musculoskeletal pain is chronic myofascial pain syndrome (MPS). MPS often presents with increased muscle stiffness, and the myofascial trigger point (MTrP). Imaging modalities have been used to identify the MTrP, but their role in the detection and diagnosis of MPS remains unclear. The purpose of this review was to identify evidence in literature for the use of imaging in the role of classifying and explaining the physiology of MTrPs. Since few imaging techniques have been performed on MTrPs, we explored the imaging techniques that can effectively image complex skeletal muscle microstructure, and how they could be used. As part of a scoping review, we conducted a systematic search from three medical databases (CINAHL, EMBASE and MEDLINE) from year to year to analyze past MTrP imaging, as well as analyzing imaging techniques performed on the microstructure of muscle. Previously, ultrasound has been used to differentiate active, latent MTrPs, but these studies do not adequately address their underlying anatomical structure. MRI remains the standard method of imaging skeletal muscle. The existing MRI literature suggests that the DTI technique can quantify muscle injury, strain, and structure. However, theoretically, HARDI and DKI techniques seem to provide more information for complex structural areas, although these modalities have a disadvantage of longer scan times and have not been widely used on skeletal muscle. Our review suggests that DTI is the most effective imaging modality that has been used to define the microstructure of muscle and hence, could be optimal to image the MTrP. HARDI and DKI are techniques with theoretical potential for analysis of muscle, which may provide more detailed information representative of finer muscle structural features. Future research utilizing MRI techniques to image muscle are necessary to provide a more robust means of imaging skeletal muscle and the MTrP.
Collapse
Affiliation(s)
- Valerie Evans
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario, Canada.,University Health Network - Toronto Rehabilitation Institute, Toronto, Ontario, Canada
| | - Michael Behr
- University Health Network - Toronto Rehabilitation Institute, Toronto, Ontario, Canada.,Department of Medicine, Division of Physical Medicine and Rehabilitation, University of Toronto, Toronto, Ontario, Canada
| | - Anshika Gangwar
- University Health Network - Toronto Rehabilitation Institute, Toronto, Ontario, Canada
| | - Michael D Noseworthy
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Dinesh Kumbhare
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario, Canada.,University Health Network - Toronto Rehabilitation Institute, Toronto, Ontario, Canada.,Department of Medicine, Division of Physical Medicine and Rehabilitation, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Schenk P, Papenkort S, Böl M, Siebert T, Grassme R, Rode C. A simple geometrical model accounting for 3D muscle architectural changes across muscle lengths. J Biomech 2020; 103:109694. [DOI: 10.1016/j.jbiomech.2020.109694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 10/24/2022]
|
18
|
Naughton NM, Georgiadis JG. Global sensitivity analysis of skeletal muscle dMRI metrics: Effects of microstructural and pulse parameters. Magn Reson Med 2019; 83:1458-1470. [DOI: 10.1002/mrm.28014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/26/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Noel M. Naughton
- Department of Mechanical Science and Engineering University of Illinois at Urbana‐Champaign Urbana Illinois
| | - John G. Georgiadis
- Department of Mechanical Science and Engineering University of Illinois at Urbana‐Champaign Urbana Illinois
- Department of Biomedical Engineering Illinois Institute of Technology Chicago Illinois
| |
Collapse
|
19
|
Naughton NM, Georgiadis JG. Comparison of two-compartment exchange and continuum models of dMRI in skeletal muscle. ACTA ACUST UNITED AC 2019; 64:155004. [DOI: 10.1088/1361-6560/ab2aa6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Klupp E, Cervantes B, Schlaeger S, Inhuber S, Kreuzpointer F, Schwirtz A, Rohrmeier A, Dieckmeyer M, Hedderich DM, Diefenbach MN, Freitag F, Rummeny EJ, Zimmer C, Kirschke JS, Karampinos DC, Baum T. Paraspinal Muscle DTI Metrics Predict Muscle Strength. J Magn Reson Imaging 2019; 50:816-823. [PMID: 30723976 PMCID: PMC6767405 DOI: 10.1002/jmri.26679] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/20/2019] [Accepted: 01/23/2019] [Indexed: 01/19/2023] Open
Abstract
Background The paraspinal muscles play an important role in the onset and progression of lower back pain. It would be of clinical interest to identify imaging biomarkers of the paraspinal musculature that are related to muscle function and strength. Diffusion tensor imaging (DTI) enables the microstructural examination of muscle tissue and its pathological changes. Purpose To investigate associations of DTI parameters of the lumbar paraspinal muscles with isometric strength measurements in healthy volunteers. Study Type Prospective. Subjects Twenty‐one healthy subjects (12 male, 9 female; age = 30.1 ± 5.6 years; body mass index [BMI] = 27.5 ± 2.6 kg/m2) were recruited. Field Strength/Sequence 3 T/single‐shot echo planar imaging (ss‐EPI) DTI in 24 directions; six‐echo 3D spoiled gradient echo sequence for chemical shift encoding‐based water–fat separation. Assessment Paraspinal muscles at the lumbar spine were examined. Erector spinae muscles were segmented bilaterally; cross‐sectional area (CSA), proton density fat fraction (PDFF), and DTI parameters were calculated. Muscle flexion and extension maximum isometric torque values [Nm] at the back were measured with an isokinetic dynamometer and the ratio of extension to flexion strength (E/F) calculated. Statistical Tests Pearson correlation coefficients; multivariate regression models. Results Significant positive correlations were found between the ratio of extension to flexion (E/F) strength and mean diffusivity (MD) (P = 0.019), RD (P = 0.02) and the eigenvalues (λ1: P = 0.026, λ2: P = 0.033, λ3: P = 0.014). In multivariate regression models λ3 of the erector spinae muscle λ3 and gender remained statistically significant predictors of E/F (R2adj = 0.42, P = 0.003). Data Conclusion DTI allowed the identification of muscle microstructure differences related to back muscle function that were not reflected by CSA and PDFF. DTI may potentially track subtle changes of back muscle tissue composition. Level of Evidence: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:816–823.
Collapse
Affiliation(s)
- Elisabeth Klupp
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Barbara Cervantes
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Sarah Schlaeger
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stephanie Inhuber
- Biomechanics in Sports, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Florian Kreuzpointer
- Biomechanics in Sports, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Ansgar Schwirtz
- Biomechanics in Sports, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Alexander Rohrmeier
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Michael Dieckmeyer
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dennis M Hedderich
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maximilian N Diefenbach
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Friedemann Freitag
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Ernst J Rummeny
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jan S Kirschke
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
21
|
Gomez AD, Elsaid N, Stone ML, Zhuo J, Prince JL. Laplace-based modeling of fiber orientation in the tongue. Biomech Model Mechanobiol 2018; 17:1119-1130. [PMID: 29675685 PMCID: PMC6050131 DOI: 10.1007/s10237-018-1018-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022]
Abstract
Mechanical modeling of tongue deformation plays a significant role in the study of breathing, swallowing, and speech production. In the absence of internal joints, fiber orientations determine the direction of sarcomeric contraction and have great influence over real and simulated tissue motion. However, subject-specific experimental observations of fiber distribution are difficult to obtain; thus, models of fiber distribution are generally used in mechanical simulations. This paper describes modeling of fiber distribution using solutions of Laplace equations and compares the effectiveness of this approach against tractography from diffusion tensor magnetic resonance imaging. The experiments included qualitative comparison of streamlines from the fiber model against experimental tractography, as well as quantitative differences between biomechanical simulations focusing in the region near the genioglossus. The model showed good overall agreement in terms of fiber directionality and muscle positioning when compared to subject-specific imaging results and the literature. The angle between the fiber distribution model against tractography in the genioglossus and geniohyoid muscles averaged [Formula: see text] likely due to experimental noise. However, kinematic responses were similar between simulations with modeled fibers versus experimentally obtained fibers; average discrepancy in surface displacement ranged from 1 to 7 mm, and average strain residual magnitude ranged from [Formula: see text] to 0.2. The results suggest that, for simulation purposes, the modeled fibers can act as a reasonable approximation for the tongue's fiber distribution. Also, given its agreement with the global tongue anatomy, the approach may be used in model-based reconstruction of displacement tracking and diffusion results.
Collapse
Affiliation(s)
- Arnold D Gomez
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, USA.
| | - Nahla Elsaid
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, USA
| | - Maureen L Stone
- Department of Neural and Pain Sciences, University of Maryland Dental School, Baltimore, USA
- Department of Orthodontics and Pediatrics, University of Maryland Dental School, Baltimore, USA
| | - Jiachen Zhuo
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, USA
| | - Jerry L Prince
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, USA
| |
Collapse
|
22
|
Kobayashi Y, Terada Y. Diffusion-weighting Caused by Spoiler Gradients in the Fast Imaging with Steady-state Precession Sequence May Lead to Inaccurate T 2 Measurements in MR Fingerprinting. Magn Reson Med Sci 2018; 18:96-104. [PMID: 29794408 PMCID: PMC6326765 DOI: 10.2463/mrms.tn.2018-0027] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Magnetic resonance fingerprinting (MRF) is a promising framework that allows the quantification of multiple magnetic resonance parameters with a single scan. MRF using fast imaging with steady-state precession (MRF-FISP) has robustness to off-resonance artifacts and has many applications in inhomogeneous fields. However, the spoiler gradient used in MRF-FISP is sensitive to diffusion motion, and may lead to quantification errors when the spoiler moment increases. In this study, we examined the effect of the diffusion weighting in MRF-FISP caused by spoiler gradients. The T2 relaxation times were greatly underestimated when large spoiler moments were used. The T2 underestimation was prominent for tissues with large values of T2 and diffusion coefficients. The T2 bias was almost independent of the apparent diffusion coefficient (ADC) and T2 values when the ADC map was measured and incorporated into the matching process. These results reveal that the T2 underestimation resulted from the diffusion weighting caused by the spoiler gradients.
Collapse
|
23
|
Sigmund EE, Baete SH, Patel K, Wang D, Stoffel D, Otazo R, Parasoglou P, Bencardino J. Spatially resolved kinetics of skeletal muscle exercise response and recovery with multiple echo diffusion tensor imaging (MEDITI): a feasibility study. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2018; 31:599-608. [PMID: 29761414 DOI: 10.1007/s10334-018-0686-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 03/26/2018] [Accepted: 04/23/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVES We describe measurement of skeletal muscle kinetics with multiple echo diffusion tensor imaging (MEDITI). This approach allows characterization of the microstructural dynamics in healthy and pathologic muscle. MATERIALS AND METHODS In a Siemens 3-T Skyra scanner, MEDITI was used to collect dynamic DTI with a combination of rapid diffusion encoding, radial imaging, and compressed sensing reconstruction in a multi-compartment agarose gel rotation phantom and within in vivo calf muscle. An MR-compatible ergometer (Ergospect Trispect) was employed to enable in-scanner plantar flexion exercise. In a HIPAA-compliant study with written informed consent, post-exercise recovery of DTI metrics was quantified in eight volunteers. Exercise response of DTI metrics was compared with that of T2-weighted imaging and characterized by a gamma variate model. RESULTS Phantom results show quantification of diffusivities in each compartment over its full dynamic rotation. In vivo calf imaging results indicate larger radial than axial exercise response and recovery in the plantar flexion-challenged gastrocnemius medialis (fractional response: nT2w = 0.385 ± 0.244, nMD = 0.163 ± 0.130, nλ1 = 0.110 ± 0.093, nλrad = 0.303 ± 0.185). Diffusion and T2-weighted response magnitudes were correlated (e.g., r = 0.792, p = 0.019 for nMD vs. nT2w). CONCLUSION We have demonstrated the feasibility of MEDITI for capturing spatially resolved diffusion tensor data in dynamic systems including post-exercise skeletal muscle recovery following in-scanner plantar flexion.
Collapse
Affiliation(s)
- E E Sigmund
- Department of Radiology, New York University Langone Health, New York, NY, USA. .,Center for Advanced Imaging and Innovation (CAI2R), New York University Langone Health, New York, NY, USA.
| | - S H Baete
- Department of Radiology, New York University Langone Health, New York, NY, USA.,Center for Advanced Imaging and Innovation (CAI2R), New York University Langone Health, New York, NY, USA
| | - K Patel
- Department of Radiology, New York University Langone Health, New York, NY, USA.,NYU Tandon School of Engineering, Brooklyn, NY, USA
| | - D Wang
- Department of Radiology, New York University Langone Health, New York, NY, USA.,NYU Tandon School of Engineering, Brooklyn, NY, USA
| | - D Stoffel
- Department of Radiology, New York University Langone Health, New York, NY, USA.,Center for Advanced Imaging and Innovation (CAI2R), New York University Langone Health, New York, NY, USA
| | - R Otazo
- Department of Radiology, New York University Langone Health, New York, NY, USA.,Center for Advanced Imaging and Innovation (CAI2R), New York University Langone Health, New York, NY, USA.,Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - P Parasoglou
- Department of Radiology, New York University Langone Health, New York, NY, USA.,Center for Advanced Imaging and Innovation (CAI2R), New York University Langone Health, New York, NY, USA
| | - J Bencardino
- Department of Radiology, New York University Langone Health, New York, NY, USA
| |
Collapse
|
24
|
Porcari P, Hall MG, Clark CA, Greally E, Straub V, Blamire AM. The effects of ageing on mouse muscle microstructure: a comparative study of time-dependent diffusion MRI and histological assessment. NMR IN BIOMEDICINE 2018; 31:e3881. [PMID: 29315904 DOI: 10.1002/nbm.3881] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 06/07/2023]
Abstract
The investigation of age-related changes in muscle microstructure between developmental and healthy adult mice may help us to understand the clinical features of early-onset muscle diseases, such as Duchenne muscular dystrophy. We investigated the evolution of mouse hind-limb muscle microstructure using diffusion imaging of in vivo and in vitro samples from both actively growing and mature mice. Mean apparent diffusion coefficients (ADCs) of the gastrocnemius and tibialis anterior muscles were determined as a function of diffusion time (Δ), age (7.5, 22 and 44 weeks) and diffusion gradient direction, applied parallel or transverse to the principal axis of the muscle fibres. We investigated a wide range of diffusion times with the goal of probing a range of diffusion lengths characteristic of muscle microstructure. We compared the diffusion time-dependent ADC of hind-limb muscles with histology. ADC was found to vary as a function of diffusion time in muscles at all stages of maturation. Muscle water diffusivity was higher in younger (7.5 weeks) than in adult (22 and 44 weeks) mice, whereas no differences were observed between the older ages. In vitro data showed the same diffusivity pattern as in vivo data. The highlighted differences in diffusion properties between young and mature muscles suggested differences in underlying muscle microstructure, which were confirmed by histological assessment. In particular, although diffusion was more restricted in older muscle, muscle fibre size increased significantly from young to adult age. The extracellular space decreased with age by only ~1%. This suggests that the observed diffusivity differences between young and adult muscles may be caused by increased membrane permeability in younger muscle associated with properties of the sarcolemma.
Collapse
Affiliation(s)
- Paola Porcari
- Institute of Genetic Medicine and Centre for In Vivo Imaging, Newcastle University, Newcastle-upon-Tyne, UK
| | - Matt G Hall
- Developmental Imaging and Biophysics Section, UCL GOS Institute of Child Health, University College London, London, UK
| | - Chris A Clark
- Developmental Imaging and Biophysics Section, UCL GOS Institute of Child Health, University College London, London, UK
| | - Elizabeth Greally
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Andrew M Blamire
- Institute of Cellular Medicine and Centre for In Vivo Imaging, Newcastle University, Newcastle-upon-Tyne, UK
| |
Collapse
|
25
|
Chianca V, Albano D, Messina C, Cinnante CM, Triulzi FM, Sardanelli F, Sconfienza LM. Diffusion tensor imaging in the musculoskeletal and peripheral nerve systems: from experimental to clinical applications. Eur Radiol Exp 2017; 1:12. [PMID: 29708174 PMCID: PMC5909344 DOI: 10.1186/s41747-017-0018-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/01/2017] [Indexed: 12/14/2022] Open
Abstract
Magnetic resonance imaging (MRI) is a well-established imaging modality which is used in all districts of the musculoskeletal and peripheral nerve systems. More recently, initial studies have applied multiparametric MRI to evaluate quantitatively different aspects of musculoskeletal and peripheral nerve diseases, thus providing not only images but also numbers and clinical data. Besides 1H and 31P magnetic resonance spectroscopy, diffusion-weighted imaging (DWI) and blood oxygenation level-dependent imaging, diffusion tensor imaging (DTI) is a relatively new MRI-based technique relying on principles of DWI, which has traditionally been used mainly for evaluating the central nervous system to track fibre course. In the musculoskeletal and peripheral nerve systems, DTI has been mostly used in experimental settings, with still few indications in clinical practice. In this review, we describe the potential use of DTI to evaluate different musculoskeletal and peripheral nerve conditions, emphasising the translational aspects of this technique from the experimental to the clinical setting.
Collapse
Affiliation(s)
- Vito Chianca
- 1Department of Advanced Biomedical Sciences, Università Federico II, Via Pansini 5, 80131 11 Napoli, Italy
| | - Domenico Albano
- 2Department of Radiology, DIBIMED, Università di Palermo, Via del Vespro 127, 90127 Palermo, Italy
| | - Carmelo Messina
- 7Unit of Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161 Milano, Italy
| | - Claudia Maria Cinnante
- 3Unit of Neuroradiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milano, Italy
| | - Fabio Maria Triulzi
- 3Unit of Neuroradiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milano, Italy.,5Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via Festa del Perdono 7, 20122 Milano, Italy
| | - Francesco Sardanelli
- 4Unit of Radiology, IRCCS Policlinico San Donato, Via Morandi 30, 20097 San Donato Milanese, Italy.,6Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133, 20122 Milano, Italy
| | - Luca Maria Sconfienza
- 6Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133, 20122 Milano, Italy.,7Unit of Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161 Milano, Italy
| |
Collapse
|
26
|
Schwartz M, Steidle G, Martirosian P, Ramos-Murguialday A, Preißl H, Stemmer A, Yang B, Schick F. Spontaneous mechanical and electrical activities of human calf musculature at rest assessed by repetitive single-shot diffusion-weighted MRI and simultaneous surface electromyography. Magn Reson Med 2017; 79:2784-2794. [PMID: 28921633 DOI: 10.1002/mrm.26921] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/07/2017] [Accepted: 08/24/2017] [Indexed: 12/14/2022]
Abstract
PURPOSE Assessment of temporal and spatial relations between spontaneous mechanical activities in musculature (SMAM) at rest as revealed by diffusion-weighted imaging (DWI) and electrical muscular activities in surface EMG (sEMG). Potential influences of static and radiofrequency magnetic fields on muscular activity on sEMG measurements at rest were examined systematically. METHODS Series of diffusion-weighted stimulated echo planar imaging were recorded with concurrent sEMG measurements. Electrical activities in sEMG were analyzed by non-parametric Friedman and two-sample Kolmogorov-Smirnov test. Direct correlation of both modalities was investigated by temporal mapping of electrical activity in sEMG to DWI repetition interval. RESULTS Electrical activities in sEMG and number of visible SMAMs in DWI showed a strong correlation (ρ = 0.9718). High accordance between sEMG activities and visible SMAMs in DWI in a near-surface region around sEMG electrodes was achieved. Characteristics of sEMG activities were almost similar under varying magnetic field conditions. CONCLUSION Visible SMAMs in DWI have shown a close and direct relation to concurrent signals recorded by sEMG. MR-related magnetic fields had no significant effects on findings in sEMG. Hence, appearance of SMAMs in DWI should not be considered as imaging artifact or as effects originating from the special conditions of MR examinations. Spatial and temporal distributions of SMAMs indicate characteristics of spontaneous (microscopic) mechanical muscular action at rest. Therefore, DWI techniques should be considered as non-invasive tools for studying physiology and pathophysiology of spontaneous activities in resting muscle. Magn Reson Med 79:2784-2794, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Martin Schwartz
- Section on Experimental Radiology, University of Tübingen, Tübingen, Germany.,Institute of Signal Processing and System Theory, University of Stuttgart, Stuttgart, Germany
| | - Günter Steidle
- Section on Experimental Radiology, University of Tübingen, Tübingen, Germany
| | - Petros Martirosian
- Section on Experimental Radiology, University of Tübingen, Tübingen, Germany
| | - Ander Ramos-Murguialday
- Institute for Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany.,Neurotechnology Laboratory, TECNALIA Health Department, San Sebastian, Spain
| | - Hubert Preißl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tuebingen, German Centre for Diabetes Research (DZD), Tübingen, Germany.,Department of Pharmacy and Biochemistry, Institute of Pharmaceutical Sciences, Interfaculty Centre for Pharmacogenomics and Pharma Research, University of Tübingen, Tübingen, Germany
| | | | - Bin Yang
- Institute of Signal Processing and System Theory, University of Stuttgart, Stuttgart, Germany
| | - Fritz Schick
- Section on Experimental Radiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
27
|
Bontempi P, Busato A, Bonafede R, Schiaffino L, Scambi I, Sbarbati A, Mariotti R, Marzola P. MRI reveals therapeutical efficacy of stem cells: An experimental study on the SOD1(G93A) animal model. Magn Reson Med 2017; 79:459-469. [PMID: 28370153 DOI: 10.1002/mrm.26685] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/25/2017] [Accepted: 03/03/2017] [Indexed: 12/22/2022]
Abstract
PURPOSE The first part of the experiment identifies and validates MRI biomarkers distinctive of the disease progression in the transgenic superoxide dismutase gene (SOD1(G93A)) animal model. The second part assesses the efficacy of a mesenchymal stem cell-based therapy through the MRI biomarkers previously defined. METHODS The first part identifies MRI differences between SOD1(G93A) and healthy mice. The second part of the experiment follows the disease evolution of stem cell-treated and non-stem-cell treated SOD1(G93A) mice. The analysis focused on voxel-based morphometry and T2 mapping on the brain tissues, and T2-weighted imaging and diffusion tensor imaging (DTI) on the hind limbs. RESULTS Comparing diseased mice to healthy control revealed gray matter alterations in the brainstem area, accompanied by increased T2 relaxation time. Differences in muscle volume, muscle signal intensity, fractional anisotropy, axial diffusivity, and radial diffusivity were measured in the hind limbs. In the comparison between stem cell-treated mice and nontreated ones, differences in muscle volume, muscle signal intensity, and DTI-derived maps were found. CONCLUSION MRI-derived biomarkers can be used to identify differences between stem cell-treated and nontreated SOD1(G93A) mice. Magn Reson Med 79:459-469, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Pietro Bontempi
- Department of Computer Science, University of Verona, Verona, Italy
| | - Alice Busato
- Department of Computer Science, University of Verona, Verona, Italy
| | - Roberta Bonafede
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Lorenzo Schiaffino
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Ilaria Scambi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Andrea Sbarbati
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Raffaella Mariotti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Pasquina Marzola
- Department of Computer Science, University of Verona, Verona, Italy
| |
Collapse
|
28
|
Correa-de-Araujo R, Harris-Love MO, Miljkovic I, Fragala MS, Anthony BW, Manini TM. The Need for Standardized Assessment of Muscle Quality in Skeletal Muscle Function Deficit and Other Aging-Related Muscle Dysfunctions: A Symposium Report. Front Physiol 2017; 8:87. [PMID: 28261109 PMCID: PMC5310167 DOI: 10.3389/fphys.2017.00087] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/31/2017] [Indexed: 12/12/2022] Open
Abstract
A growing body of scientific literature suggests that not only changes in skeletal muscle mass, but also other factors underpinning muscle quality, play a role in the decline in skeletal muscle function and impaired mobility associated with aging. A symposium on muscle quality and the need for standardized assessment was held on April 28, 2016 at the International Conference on Frailty and Sarcopenia Research in Philadelphia, Pennsylvania. The purpose of this symposium was to provide a venue for basic science and clinical researchers and expert clinicians to discuss muscle quality in the context of skeletal muscle function deficit and other aging-related muscle dysfunctions. The present article provides an expanded introduction concerning the emerging definitions of muscle quality and a potential framework for scientific inquiry within the field. Changes in muscle tissue composition, based on excessive levels of inter- and intra-muscular adipose tissue and intramyocellular lipids, have been found to adversely impact metabolism and peak force generation. However, methods to easily and rapidly assess muscle tissue composition in multiple clinical settings and with minimal patient burden are needed. Diagnostic ultrasound and other assessment methods continue to be developed for characterizing muscle pathology, and enhanced sonography using sensors to provide user feedback and improve reliability is currently the subject of ongoing investigation and development. In addition, measures of relative muscle force such as specific force or grip strength adjusted for body size have been proposed as methods to assess changes in muscle quality. Furthermore, performance-based assessments of muscle power via timed tests of function and body size estimates, are associated with lower extremity muscle strength may be responsive to age-related changes in muscle quality. Future aims include reaching consensus on the definition and standardized assessments of muscle quality, and providing recommendations to address critical clinical and technology research gaps within the field.
Collapse
Affiliation(s)
- Rosaly Correa-de-Araujo
- Division of Geriatrics and Clinical Gerontology, National Institute on Aging, National Institutes of Health, U.S. Department of Health and Human Services Bethesda, MD, USA
| | - Michael O Harris-Love
- Muscle Morphology, Mechanics and Performance Laboratory, Clinical Research Center - Human Performance Research Unit, Veterans Affairs Medical CenterWashington, DC, USA; Geriatrics and Extended Care Service/Research Service, Veterans Affairs Medical CenterWashington, DC, USA; Department of Exercise and Nutritional Sciences, Milken Institute School of Public Health, The George Washington UniversityWashington, DC, USA
| | - Iva Miljkovic
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh Pittsburgh, PA, USA
| | | | - Brian W Anthony
- Laboratory for Manufacturing and Productivity, Massachusetts Institute of TechnologyCambridge, MA, USA; Medical Electronic Device Realization Center, Massachusetts Institute of TechnologyCambridge, MA, USA
| | - Todd M Manini
- Department of Aging & Geriatric Research, Institute on Aging, University of Florida College of Medicine Gainesville, FL, USA
| |
Collapse
|
29
|
Ajijola OA, Lux RL, Khahera A, Kwon O, Aliotta E, Ennis DB, Fishbein MC, Ardell JL, Shivkumar K. Sympathetic modulation of electrical activation in normal and infarcted myocardium: implications for arrhythmogenesis. Am J Physiol Heart Circ Physiol 2017; 312:H608-H621. [PMID: 28087519 DOI: 10.1152/ajpheart.00575.2016] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 11/22/2022]
Abstract
The influence of cardiac sympathetic innervation on electrical activation in normal and chronically infarcted ventricular myocardium is not understood. Yorkshire pigs with normal hearts (NL, n = 12) or anterior myocardial infarction (MI, n = 9) underwent high-resolution mapping of the anteroapical left ventricle at baseline and during left and right stellate ganglion stimulation (LSGS and RSGS, respectively). Conduction velocity (CV), activation times (ATs), and directionality of propagation were measured. Myocardial fiber orientation was determined using diffusion tensor imaging and histology. Longitudinal CV (CVL) was increased by RSGS (0.98 ± 0.11 vs. 1.2 ± 0.14m/s, P < 0.001) but not transverse CV (CVT). This increase was abrogated by β-adrenergic receptor and gap junction (GJ) blockade. Neither CVL nor CVT was increased by LSGS. In the peri-infarct region, both RSGS and LSGS shortened ARIs in sinus rhythm (423 ± 37 vs. 322 ± 30 ms, P < 0.001, and 423 ± 36 vs. 398 ± 36 ms, P = 0.035, respectively) and altered activation patterns in all animals. CV, as estimated by mean ATs, increased in a directionally dependent manner by RSGS (14.6 ± 1.2 vs. 17.3 ± 1.6 ms, P = 0.015), associated with GJ lateralization. RSGS and LSGS inhomogeneously modulated AT and induced relative or absolute functional activation delay in parts of the mapped regions in 75 and 67%, respectively, in MI animals, and in 0 and 15%, respectively, in control animals (P < 0.001 for both). In conclusion, sympathoexcitation increases CV in normal myocardium and modulates activation propagation in peri-infarcted ventricular myocardium. These data demonstrate functional control of arrhythmogenic peri-infarct substrates by sympathetic nerves and in part explain the temporal nature of arrhythmogenesis.NEW & NOTEWORTHY This study demonstrates regional control of conduction velocity in normal hearts by sympathetic nerves. In infarcted hearts, however, not only is modulation of propagation heterogeneous, some regions showed paradoxical conduction slowing. Sympathoexcitation altered propagation in all infarcted hearts studied, and we describe the temporal arrhythmogenic potential of these findings.Listen to this article's corresponding podcast at http://ajpheart.podbean.com/e/sympathetic-nerves-and-cardiac-propagation/.
Collapse
Affiliation(s)
- Olujimi A Ajijola
- Cardiac Arrhythmia Center, University of California, Los Angeles, California; .,Neurocardiology Research Center of Excellence, University of California, Los Angeles, California
| | - Robert L Lux
- Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Anadjeet Khahera
- Cardiac Arrhythmia Center, University of California, Los Angeles, California
| | - OhJin Kwon
- Cardiac Arrhythmia Center, University of California, Los Angeles, California
| | - Eric Aliotta
- Department of Radiology, University of California, Los Angeles, California
| | - Daniel B Ennis
- Department of Radiology, University of California, Los Angeles, California
| | - Michael C Fishbein
- Department of Pathology, University of California, Los Angeles, California; and
| | - Jeffrey L Ardell
- Cardiac Arrhythmia Center, University of California, Los Angeles, California.,Neurocardiology Research Center of Excellence, University of California, Los Angeles, California
| | - Kalyanam Shivkumar
- Cardiac Arrhythmia Center, University of California, Los Angeles, California.,Neurocardiology Research Center of Excellence, University of California, Los Angeles, California
| |
Collapse
|
30
|
Clemen CB, Benderoth GEK, Schmidt A, Hübner F, Vogl TJ, Silber G. Human skeletal muscle behavior in vivo: Finite element implementation, experiment, and passive mechanical characterization. J Mech Behav Biomed Mater 2016; 65:679-687. [PMID: 27743943 DOI: 10.1016/j.jmbbm.2016.09.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/20/2016] [Accepted: 09/26/2016] [Indexed: 11/26/2022]
Abstract
In this study, useful methods for active human skeletal muscle material parameter determination are provided. First, a straightforward approach to the implementation of a transversely isotropic hyperelastic continuum mechanical material model in an invariant formulation is presented. This procedure is found to be feasible even if the strain energy is formulated in terms of invariants other than those predetermined by the software's requirements. Next, an appropriate experimental setup for the observation of activation-dependent material behavior, corresponding data acquisition, and evaluation is given. Geometry reconstruction based on magnetic resonance imaging of different deformation states is used to generate realistic, subject-specific finite element models of the upper arm. Using the deterministic SIMPLEX optimization strategy, a convenient quasi-static passive-elastic material characterization is pursued; the results of this approach used to characterize the behavior of human biceps in vivo indicate the feasibility of the illustrated methods to identify active material parameters comprising multiple loading modes. A comparison of a contact simulation incorporating the optimized parameters to a reconstructed deformed geometry of an indented upper arm shows the validity of the obtained results regarding deformation scenarios perpendicular to the effective direction of the nonactivated biceps. However, for a valid, activatable, general-purpose material characterization, the material model needs some modifications as well as a multicriteria optimization of the force-displacement data for different loading modes.
Collapse
Affiliation(s)
- Christof B Clemen
- Institute for Materials Science, Faculty of Computer Science and Engineering, Frankfurt University of Applied Sciences, Nibelungenplatz 1, 60318 Frankfurt, Germany.
| | - Günther E K Benderoth
- Institute for Materials Science, Faculty of Computer Science and Engineering, Frankfurt University of Applied Sciences, Nibelungenplatz 1, 60318 Frankfurt, Germany.
| | - Andreas Schmidt
- Institute for Materials Science, Faculty of Computer Science and Engineering, Frankfurt University of Applied Sciences, Nibelungenplatz 1, 60318 Frankfurt, Germany.
| | - Frank Hübner
- Department of Diagnostic and Interventional Radiology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| | - Thomas J Vogl
- Department of Diagnostic and Interventional Radiology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| | - Gerhard Silber
- Institute for Materials Science, Faculty of Computer Science and Engineering, Frankfurt University of Applied Sciences, Nibelungenplatz 1, 60318 Frankfurt, Germany.
| |
Collapse
|
31
|
Effectiveness of diffusion tensor imaging in assessing disease severity in Duchenne muscular dystrophy: preliminary study. Pediatr Radiol 2015; 45:582-9. [PMID: 25246097 DOI: 10.1007/s00247-014-3187-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/22/2014] [Accepted: 09/11/2014] [Indexed: 01/20/2023]
Abstract
BACKGROUND There is currently a lack of suitable objective endpoints to measure disease progression in Duchenne muscular dystrophy (DMD). Emerging research suggests that diffusion tensor imaging (DTI) has potential as an outcome measure for the evaluation of skeletal muscle injury. OBJECTIVE The objective of this study was to evaluate the potential of DTI as quantitative magnetic resonance imaging (MRI) markers of disease severity in DMD. MATERIALS AND METHODS Thirteen consecutive boys (8.9 years ± 3.0 years) with DMD were evaluated using DTI. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were compared with clinical outcome measures of manual muscle testing and MRI determinations of muscle fat fraction (MFF) in the right lower extremity. RESULTS Both MRI measures of FA and ADC strongly correlated with age and muscle strength. Values for FA positively correlated with age and negatively correlated with muscle strength (r = 0.78 and -0.96; both P ≤ 0.002) while measures of ADC negatively correlated age, but positively correlated with muscle strength (r = -0.87 and 0.83; both P ≤ 0.0004). Additionally, ADC and FA strongly correlated with MFF (r = -0.891 and 0.894, respectively; both P ≤ 0.0001). Mean MMF was negatively correlated with muscle strength (r = -0.89, P = 0.0001). CONCLUSION DTI measures of muscle structure strongly correlated with muscle strength and adiposity in boys with DMD in this pilot study, although these markers may be more reflective of fat replacement rather than muscle damage in later stages of the disease. Further studies in presymptomatic younger children are needed to assess the ability of DTI to detect early changes in DMD.
Collapse
|
32
|
Repeatability of chemical-shift-encoded water-fat MRI and diffusion-tensor imaging in lower extremity muscles in children. AJR Am J Roentgenol 2014; 202:W567-73. [PMID: 24848851 DOI: 10.2214/ajr.13.11081] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE The purpose of this study was to assess the repeatability of water-fat MRI and diffusion-tensor imaging (DTI) as quantitative biomarkers of pediatric lower extremity skeletal muscle. SUBJECTS AND METHODS MRI at 3 T of a randomly selected thigh and lower leg of seven healthy children was studied using water-fat separation and DTI techniques. Muscle-fat fraction, apparent diffusion coefficient (ADC), and fractional anisotropy (FA) values were calculated. Test-retest and interrater repeatability were assessed by calculating the Pearson correlation coefficient, intraclass correlation coefficient, and Bland-Altman analysis. RESULTS Bland-Altman plots show that the mean difference between test-retest and interrater measurements of muscle-fat fraction, ADC, and FA was near 0. The correlation coefficients and intraclass correlation coefficients were all between 0.88 and 0.99 (p < 0.05), suggesting excellent reliability of the measurements. Muscle-fat fraction measurements from water-fat MRI exhibited the highest intraclass correlation coefficient. Interrater agreement was consistently better than test-retest comparisons. CONCLUSION Water-fat MRI and DTI measurements in lower extremity skeletal muscles are objective repeatable biomarkers in children. This knowledge should aid in the understanding of the number of participants needed in clinical trials when using these determinations as an outcome measure to noninvasively monitor neuromuscular disease.
Collapse
|
33
|
Froeling M, Nederveen AJ, Nicolay K, Strijkers GJ. DTI of human skeletal muscle: the effects of diffusion encoding parameters, signal-to-noise ratio and T2 on tensor indices and fiber tracts. NMR IN BIOMEDICINE 2013; 26:1339-52. [PMID: 23670990 DOI: 10.1002/nbm.2959] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 03/11/2013] [Accepted: 03/15/2013] [Indexed: 05/18/2023]
Abstract
In this study, we have performed simulations to address the effects of diffusion encoding parameters, signal-to-noise ratio (SNR) and T2 on skeletal muscle diffusion tensor indices and fiber tracts. Where appropriate, simulations were corroborated and validated by in vivo diffusion tensor imaging (DTI) of human skeletal muscle. Specifically, we have addressed: (i) the accuracy and precision of the diffusion parameters and eigenvectors at different SNR levels; (ii) the effects of the diffusion gradient direction encoding scheme; (iii) the optimal b value for diffusion tensor estimation; (iv) the effects of changes in skeletal muscle T2; and, finally, the influence of SNR on fiber tractography and derived (v) fiber lengths, (vi) pennation angles and (vii) fiber curvatures. We conclude that accurate DTI of skeletal muscle requires an SNR of at least 25, a b value of between 400 and 500 s/mm(2), and data acquired with at least 12 diffusion gradient directions homogeneously distributed on half a sphere. Furthermore, for DTI studies focusing on skeletal muscle injury or pathology, apparent changes in the diffusion parameters need to be interpreted with great care in view of the confounding effects of T2, particularly for moderate to low SNR values.
Collapse
Affiliation(s)
- Martijn Froeling
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands
| | | | | | | |
Collapse
|
34
|
Cermak NM, Noseworthy MD, Bourgeois JM, Tarnopolsky MA, Gibala MJ. Diffusion tensor MRI to assess skeletal muscle disruption following eccentric exercise. Muscle Nerve 2012; 46:42-50. [DOI: 10.1002/mus.23276] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2011] [Indexed: 12/24/2022]
|
35
|
Karampinos DC, Banerjee S, King KF, Link TM, Majumdar S. Considerations in high-resolution skeletal muscle diffusion tensor imaging using single-shot echo planar imaging with stimulated-echo preparation and sensitivity encoding. NMR IN BIOMEDICINE 2012; 25:766-78. [PMID: 22081519 PMCID: PMC3299872 DOI: 10.1002/nbm.1791] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 06/28/2011] [Accepted: 08/22/2011] [Indexed: 05/11/2023]
Abstract
Previous studies have shown that skeletal muscle diffusion tensor imaging (DTI) can noninvasively probe changes in the muscle fiber architecture and microstructure in diseased and damaged muscles. However, DTI fiber reconstruction in small muscles and in muscle regions close to aponeuroses and tendons remains challenging because of partial volume effects. Increasing the spatial resolution of skeletal muscle single-shot diffusion-weighted echo planar imaging (DW-EPI) can be hindered by the inherently low signal-to-noise ratio (SNR) of muscle DW-EPI because of the short muscle T(2) and the high sensitivity of single-shot EPI to off-resonance effects and T(2)* blurring. In this article, eddy current-compensated diffusion-weighted stimulated-echo preparation is combined with sensitivity encoding (SENSE) to maintain good SNR properties and to reduce the sensitivity to distortions and T(2)* blurring in high-resolution skeletal muscle single-shot DW-EPI. An analytical framework is developed to optimize the reduction factor and diffusion weighting time to achieve maximum SNR. Arguments for the selection of the experimental parameters are then presented considering the compromise between SNR, B(0)-induced distortions, T(2)* blurring effects and tissue incoherent motion effects. On the basis of the selected parameters in a high-resolution skeletal muscle single-shot DW-EPI protocol, imaging protocols at lower acquisition matrix sizes are defined with matched bandwidth in the phase-encoding direction and SNR. In vivo results show that high-resolution skeletal muscle DTI with minimized sensitivity to geometric distortions and T(2)* blurring is feasible using the proposed methodology. In particular, a significant benefit is demonstrated from a reduction in partial volume effects for resolving multi-pennate muscles and muscles with small cross-sections in calf muscle DTI.
Collapse
Affiliation(s)
- Dimitrios C Karampinos
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA, USA.
| | | | | | | | | |
Collapse
|
36
|
Berquist RM, Gledhill KM, Peterson MW, Doan AH, Baxter GT, Yopak KE, Kang N, Walker HJ, Hastings PA, Frank LR. The Digital Fish Library: using MRI to digitize, database, and document the morphological diversity of fish. PLoS One 2012; 7:e34499. [PMID: 22493695 PMCID: PMC3321017 DOI: 10.1371/journal.pone.0034499] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 03/02/2012] [Indexed: 01/01/2023] Open
Abstract
Museum fish collections possess a wealth of anatomical and morphological data that are essential for documenting and understanding biodiversity. Obtaining access to specimens for research, however, is not always practical and frequently conflicts with the need to maintain the physical integrity of specimens and the collection as a whole. Non-invasive three-dimensional (3D) digital imaging therefore serves a critical role in facilitating the digitization of these specimens for anatomical and morphological analysis as well as facilitating an efficient method for online storage and sharing of this imaging data. Here we describe the development of the Digital Fish Library (DFL, http://www.digitalfishlibrary.org), an online digital archive of high-resolution, high-contrast, magnetic resonance imaging (MRI) scans of the soft tissue anatomy of an array of fishes preserved in the Marine Vertebrate Collection of Scripps Institution of Oceanography. We have imaged and uploaded MRI data for over 300 marine and freshwater species, developed a data archival and retrieval system with a web-based image analysis and visualization tool, and integrated these into the public DFL website to disseminate data and associated metadata freely over the web. We show that MRI is a rapid and powerful method for accurately depicting the in-situ soft-tissue anatomy of preserved fishes in sufficient detail for large-scale comparative digital morphology. However these 3D volumetric data require a sophisticated computational and archival infrastructure in order to be broadly accessible to researchers and educators.
Collapse
Affiliation(s)
- Rachel M. Berquist
- Center for Scientific Computation in Imaging, University of California San Diego, La Jolla, California, United States of America
| | - Kristen M. Gledhill
- Center for Scientific Computation in Imaging, University of California San Diego, La Jolla, California, United States of America
| | - Matthew W. Peterson
- Center for Scientific Computation in Imaging, University of California San Diego, La Jolla, California, United States of America
| | - Allyson H. Doan
- Center for Scientific Computation in Imaging, University of California San Diego, La Jolla, California, United States of America
| | - Gregory T. Baxter
- Center for Scientific Computation in Imaging, University of California San Diego, La Jolla, California, United States of America
| | - Kara E. Yopak
- Center for Scientific Computation in Imaging, University of California San Diego, La Jolla, California, United States of America
| | - Ning Kang
- Center for Scientific Computation in Imaging, University of California San Diego, La Jolla, California, United States of America
| | - H. J. Walker
- Marine Vertebrate Collection and Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
| | - Philip A. Hastings
- Marine Vertebrate Collection and Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
| | - Lawrence R. Frank
- Center for Scientific Computation in Imaging, University of California San Diego, La Jolla, California, United States of America
- Center for Functional Magnetic Resonance Imaging, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
37
|
Froeling M, Nederveen AJ, Heijtel DF, Lataster A, Bos C, Nicolay K, Maas M, Drost MR, Strijkers GJ. Diffusion-tensor MRI reveals the complex muscle architecture of the human forearm. J Magn Reson Imaging 2012; 36:237-48. [DOI: 10.1002/jmri.23608] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 01/11/2012] [Indexed: 11/06/2022] Open
|
38
|
Thrippleton MJ, Bastin ME, Munro KI, Williams AR, Oniscu A, Jansen MA, Merrifield GD, McKillop G, Newby DE, Semple SI, Marshall I, Critchley HO. Ex vivo water diffusion tensor properties of the fibroid uterus at 7 T and their relation to tissue morphology. J Magn Reson Imaging 2011; 34:1445-51. [PMID: 21953730 DOI: 10.1002/jmri.22793] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 07/29/2011] [Indexed: 12/15/2022] Open
Abstract
PURPOSE To investigate the water diffusion tensor properties of ex vivo tissue in the fibroid uterus, including the influence of degeneration, and the relevance of the principal eigenvector orientation to the underlying tissue structure. MATERIALS AND METHODS Following hysterectomy, high-resolution structural T(2) -weighted and diffusion tensor magnetic resonance imaging (DT-MRI) were performed on nine uteri at 7 T. Mean diffusivity (MD), fractional anisotropy (FA), and principal eigenvector orientation were measured in myometrium and in myxoid and dense tissue in fibroids. Imaging data and measurements of water diffusion parameters were compared with histopathology findings. RESULTS The nine uteri yielded 23 fibroids. MD was 50% higher in regions of myxoid degeneration compared to dense fibroid tissue (P = 0.001), while myometrium was intermediate in value (dense fibroid tissue, P = 0.15; myxoid degeneration, P = 0.23). FA was lower in dense fibroid tissue than in myometrium (P = 3 × 10(-5) ), but higher than in myxoid tissue (P = 0.003). Principal eigenvector orientation corresponded qualitatively with that of uterine smooth muscle fibers. CONCLUSION The water diffusion tensor measured ex vivo in the fibroid uterus is a sensitive probe of tissue type, myxoid degeneration, and morphology.
Collapse
|
39
|
Masad IS, Grant SC. A retunable surface coil for high field31P and1H magnetic resonance evaluations of the living mouse leg. Physiol Meas 2011; 32:1061-81. [PMID: 21677364 DOI: 10.1088/0967-3334/32/8/005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Froeling M, Oudeman J, van den Berg S, Nicolay K, Maas M, Strijkers GJ, Drost MR, Nederveen AJ. Reproducibility of diffusion tensor imaging in human forearm muscles at 3.0 T in a clinical setting. Magn Reson Med 2010; 64:1182-90. [DOI: 10.1002/mrm.22477] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Heemskerk AM, Sinha TK, Wilson KJ, Ding Z, Damon BM. Repeatability of DTI-based skeletal muscle fiber tracking. NMR IN BIOMEDICINE 2010; 23:294-303. [PMID: 20099372 PMCID: PMC4416059 DOI: 10.1002/nbm.1463] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Diffusion tensor imaging (DTI)-based muscle fiber tracking enables the measurement of muscle architectural parameters, such as pennation angle (theta) and fiber tract length (L(ft)), throughout the entire muscle. Little is known, however, about the repeatability of either the muscle architectural measures or the underlying diffusion measures. Therefore, the goal of this study was to investigate the repeatability of DTI fiber tracking-based measurements and theta and L(ft). Four DTI acquisitions were performed on two days that allowed for between acquisition, within day, and between day analyses. The eigenvalues and fractional anisotropy were calculated at the maximum cross-sectional area of, and fiber tracking was performed in, the tibialis anterior muscle of nine healthy subjects. The between acquisitions condition had the highest repeatability for the DTI indices and the architectural parameters. The overall inter class correlation coefficients (ICC's) were greater than 0.6 for both theta and L(ft) and the repeatability coefficients were theta < 10.2 degrees and L(ft) < 50 mm. In conclusion, under the experimental and data analysis conditions used, the repeatability of the diffusion measures is very good and repeatability of the architectural measurements is acceptable. Therefore, this study demonstrates the feasibility for longitudinal studies of alterations in muscle architecture using DTI-based fiber tracking, under similar noise conditions and with similar diffusion characteristics.
Collapse
Affiliation(s)
- Anneriet M Heemskerk
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232-2310, USA.
| | | | | | | | | |
Collapse
|
42
|
Heemskerk AM, Sinha TK, Wilson KJ, Ding Z, Damon BM. Quantitative assessment of DTI-based muscle fiber tracking and optimal tracking parameters. Magn Reson Med 2009; 61:467-72. [PMID: 19161166 DOI: 10.1002/mrm.21819] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Diffusion tensor imaging-based fiber tracking in skeletal muscle has been used to reconstruct and quantify muscle architecture. In addition, the consistent pattern of muscle fiber geometry enables a quantitative assessment of the fiber tracking. This work describes a method to determine the accuracy of individual muscle fiber tracts based on the location at which the fibers terminate, the fiber path, and similarity to the neighboring fibers. In addition, the effect of different stop criteria settings on this quantitative assessment was investigated. Fiber tracking was performed on the tibialis anterior muscle of nine healthy subjects. Complete fiber tracts covered 89.4 +/- 9.6% and 75.0 +/- 15.2% of the aponeurosis area in the superficial and deep compartments, respectively. Applications of the method include the exclusion of erroneous fiber-tracking results, quantitative assessment of data set quality, and the assessment of fiber-tracking stop criteria.
Collapse
Affiliation(s)
- Anneriet M Heemskerk
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee 37232-2310, USA.
| | | | | | | | | |
Collapse
|