1
|
Alkhateeb MA, Aljarba NH, Yousafi Q, Anwar F, Biswas P. Elucidating gastric cancer mechanisms and therapeutic potential of Adociaquinone A targeting EGFR: A genomic analysis and Computer Aided Drug Design (CADD) approach. J Cell Mol Med 2024; 28:e70133. [PMID: 39434198 PMCID: PMC11493557 DOI: 10.1111/jcmm.70133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/05/2024] [Accepted: 09/09/2024] [Indexed: 10/23/2024] Open
Abstract
Gastric cancer predominantly adenocarcinoma, accounts for over 85% of gastric cancer diagnoses. Current therapeutic options are limited, necessitating the discovery of novel drug targets and effective treatments. The Affymetrix gene expression microarray dataset (GSE64951) was retrieved from NCBI-GEO data normalization and DEGs identification was done by using R-Bioconductor package. Gene Ontology (GO) analysis of DEGs was performed using DAVID. The protein-protein interaction network was constructed by STRING database plugin in Cytoscape. Subclusters/modules of important interacting genes in main network were extracted by using MCODE. The hub genes from in the network were identified by using Cytohubba. The miRNet tool built a hub gene/mRNA-miRNA network and Kaplan-Meier-Plotter conducted survival analysis. AutoDock Vina and GROMACS MD simulations were used for docking and stability analysis of marine compounds against the 5CNN protein. Total 734 DEGs (507 up-regulated and 228 down-regulated) were identified. Differentially expressed genes (DEGs) were enriched in processes like cell-cell adhesion and ATP binding. Eight hub genes (EGFR, HSPA90AA1, MAPK1, HSPA4, PPP2CA, CDKN2A, CDC20, and ATM) were selected for further analysis. A total of 23 miRNAs associated with hub genes were identified, with 12 of them targeting PPP2CA. EGFR displayed the highest expression and hazard rate in survival analyses. The kinase domain of EGFR (PDBID: 5CNN) was chosen as the drug target. Adociaquinone A from Petrosia alfiani, docked with 5CNN, showed the lowest binding energy with stable interactions across a 50 ns MD simulation, highlighting its potential as a lead molecule against EGFR. This study has identified crucial DEGs and hub genes in gastric cancer, proposing novel therapeutic targets. Specifically, Adociaquinone A demonstrates promising potential as a bioactive drug against EGFR in gastric cancer, warranting further investigation. The predicted miRNA against the hub gene/proteins can also be used as potential therapeutic targets.
Collapse
Affiliation(s)
| | - Nada H. Aljarba
- Department of Biology, College of SciencePrincess Nourah bint Abdulrahman UniversityRiyadhSaudi Arabia
| | - Qudsia Yousafi
- Department of BiosciencesCOMSATS University Islamabad, Sahiwal CampusSahiwalPakistan
| | - Fatima Anwar
- Department of BiosciencesCOMSATS University Islamabad, Sahiwal CampusSahiwalPakistan
| | - Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and BiotechnologyJashore University of Science and TechnologyJashoreBangladesh
| |
Collapse
|
2
|
Chua HM, Moshawih S, Kifli N, Goh HP, Ming LC. Insights into the computer-aided drug design and discovery based on anthraquinone scaffold for cancer treatment: A systematic review. PLoS One 2024; 19:e0301396. [PMID: 38776291 PMCID: PMC11111074 DOI: 10.1371/journal.pone.0301396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/14/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND In the search for better anticancer drugs, computer-aided drug design (CADD) techniques play an indispensable role in facilitating the lengthy and costly drug discovery process especially when natural products are involved. Anthraquinone is one of the most widely-recognized natural products with anticancer properties. This review aimed to systematically assess and synthesize evidence on the utilization of CADD techniques centered on the anthraquinone scaffold for cancer treatment. METHODS The conduct and reporting of this review were done in accordance to the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) 2020 guideline. The protocol was registered in the "International prospective register of systematic reviews" database (PROSPERO: CRD42023432904) and also published recently. The search strategy was designed based on the combination of concept 1 "CADD or virtual screening", concept 2 "anthraquinone" and concept 3 "cancer". The search was executed in PubMed, Scopus, Web of Science and MedRxiv on 30 June 2023. RESULTS Databases searching retrieved a total of 317 records. After deduplication and applying the eligibility criteria, the final review ended up with 32 articles in which 3 articles were found by citation searching. The CADD methods used in the studies were either structure-based alone (69%) or combined with ligand-based methods via parallel (9%) or sequential (22%) approaches. Molecular docking was performed in all studies, with Glide and AutoDock being the most popular commercial and public software used respectively. Protein data bank was used in most studies to retrieve the crystal structure of the targets of interest while the main ligand databases were PubChem and Zinc. The utilization of in-silico techniques has enabled a deeper dive into the structural, biological and pharmacological properties of anthraquinone derivatives, revealing their remarkable anticancer properties in an all-rounded fashion. CONCLUSION By harnessing the power of computational tools and leveraging the natural diversity of anthraquinone compounds, researchers can expedite the development of better drugs to address the unmet medical needs in cancer treatment by improving the treatment outcome for cancer patients.
Collapse
Affiliation(s)
- Hui Ming Chua
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Said Moshawih
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Nurolaini Kifli
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Hui Poh Goh
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
- School of Medical and Life Sciences, Sunway University, Bandar Sunway, Malaysia
| |
Collapse
|
3
|
Shoaib M, Ali Y, Shen Y, Ni J. Identification of potential natural products derived from fungus growing termite, inhibiting Pseudomonas aeruginosa quorum sensing protein LasR using molecular docking and molecular dynamics simulation approach. J Biomol Struct Dyn 2024; 42:1126-1144. [PMID: 37096792 DOI: 10.1080/07391102.2023.2198607] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/26/2023] [Indexed: 04/26/2023]
Abstract
Pseudomonas aeruginosa, the most common opportunistic pathogen, is becoming antibiotic-resistant worldwide. The fate of P. aeruginosa, a multidrug-resistant strain, can be determined by multidrug efflux pumps, enzyme synthesis, outer membrane protein depletion, and target alterations. Microbial niches have long used quorum sensing (QS) to synchronize virulence gene expression. Computational methods can aid in the development of novel P. aeruginosa drug-resistant treatments. The tripartite symbiosis in termites that grow fungus may help special microbes find new antimicrobial drugs. To find anti-quorum sensing natural products that could be used as alternative therapies, a library of 376 fungal-growing termite-associated natural products (NPs) was screened for their physicochemical properties, pharmacokinetics, and drug-likeness. Using GOLD, the top 74 NPs were docked to the QS transcriptional regulator LasR protein. The five lead NPs with the highest gold score and drug-like properties were chosen for a 200-ns molecular dynamics simulation to test the competitive activity of different compounds against negative catechin. Fridamycin and Daidzein had stable conformations, with mean RMSDs of 2.48 and 3.67 Å, respectively, which were similar to Catechin's 3.22 Å. Fridamycin and Daidzein had absolute binding energies of -71.186 and -52.013 kcal/mol, respectively, which were higher than the control's -42.75 kcal/mol. All the compounds within the active site of the LasR protein were kept intact by Trp54, Arg55, Asp67, and Ser123. These findings indicate that termite gut and fungus-associated NPs, specifically Fridamycin and Daidzein, are potent QS antagonists that can be used to treat P. aeruginosa's multidrug resistance.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muhammad Shoaib
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, P. R. China
- Institute of Health Sciences, Islamabad Campus, Khyber Medical University, Peshawar, Pakistan
| | - Yasir Ali
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Yulong Shen
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, P. R. China
| | - Jinfeng Ni
- Institute of Health Sciences, Islamabad Campus, Khyber Medical University, Peshawar, Pakistan
| |
Collapse
|
4
|
Ajmal A, Ali Y, Khan A, Wadood A, Rehman AU. Identification of novel peptide inhibitors for the KRas-G12C variant to prevent oncogenic signaling. J Biomol Struct Dyn 2023; 41:8866-8875. [PMID: 36300526 DOI: 10.1080/07391102.2022.2138550] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/15/2022] [Indexed: 10/31/2022]
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRas) activating mutations are common in solid tumors, accounting for 90%, 45%, and 35% of pancreatic, colorectal, and lung cancers (LC), respectively. Each year, nearly 150k new cases (both men and women) of KRas-mutated malignancies are reported in the United States. NSCLC (non-small cell lung cancer) accounts for 80% of all LC cases. KRas mutations are found in 15% to 25% of NSCLC patients. The main cause of NSCLC is the KRas-G12C mutation. The drugs Sotorasib and Adagrasib were recently developed to treat advanced NSCLC caused by the KRas-G12C mutation. Most patients do not respond to KRas-G12C inhibitors due to cellular, molecular, and genetic resistance. Because of their safety, efficacy, and selectivity, peptide inhibitors have the potential to treat newly developing KRas mutations. Based on the KRas mutations, peptide inhibitors that are highly selective and specific to individual lung cancers can be rationally designed. The current study uses an alanine and residue scanning approach to design peptide inhibitors for KRas-G12C based on the known peptide. Our findings show that substitution of F3K, G11T, L8C, T14C, K13D, G11S, and G11P considerably enhances the binding affinity of the novel peptides, whereas F3K, G11T, L8C, and T14C peptides have higher stability and favorable binding to the altered peptides. Overall, our study paves the road for the development of potential therapeutic peptidomimetics that target the KRas-G12C complex and may inhibit the KRas and SOS complex from interacting.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amar Ajmal
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Yasir Ali
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Ashfaq Ur Rehman
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
5
|
Biswas P, Bibi S, Yousafi Q, Mehmood A, Saleem S, Ihsan A, Dey D, Hasan Zilani MN, Hasan MN, Saleem R, Awaji AA, Fahmy UA, Abdel-Daim MM. Study of MDM2 as Prognostic Biomarker in Brain-LGG Cancer and Bioactive Phytochemicals Inhibit the p53-MDM2 Pathway: A Computational Drug Development Approach. Molecules 2023; 28:2977. [PMID: 37049742 PMCID: PMC10095937 DOI: 10.3390/molecules28072977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/02/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
An evaluation of the expression and predictive significance of the MDM2 gene in brain lower-grade glioma (LGG) cancer was carried out using onco-informatics pipelines. Several transcriptome servers were used to measure the differential expression of the targeted MDM2 gene and search mutations and copy number variations. GENT2, Gene Expression Profiling Interactive Analysis, Onco-Lnc, and PrognoScan were used to figure out the survival rate of LGG cancer patients. The protein-protein interaction networks between MDM2 gene and its co-expressed genes were constructed by Gene-MANIA tool. Identified bioactive phytochemicals were evaluated through molecular docking using Schrödinger Suite Software, with the MDM2 (PDB ID: 1RV1) target. Protein-ligand interactions were observed with key residues of the macromolecular target. A molecular dynamics simulation of the novel bioactive compounds with the targeted protein was performed. Phytochemicals targeting MDM2 protein, such as Taxifolin and (-)-Epicatechin, have been shown with more highly stable results as compared to the control drug, and hence, concluded that phytochemicals with bioactive potential might be alternative therapeutic options for the management of LGG patients. Our once informatics-based designed pipeline has indicated that the MDM2 gene may have been a predictive biomarker for LGG cancer and selected phytochemicals possessed outstanding interaction results within the macromolecular target's active site after utilizing in silico approaches. In vitro and in vivo experiments are recommended to confirm these outcomes.
Collapse
Affiliation(s)
- Partha Biswas
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad 41000, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China
| | - Qudsia Yousafi
- Department of Biosciences, Sahiwal Campus, COMSATS University Islamabad, Sahiwal 57000, Pakistan
| | - Asim Mehmood
- Department of Biosciences, Sahiwal Campus, COMSATS University Islamabad, Sahiwal 57000, Pakistan
| | - Shahzad Saleem
- Department of Biosciences, Sahiwal Campus, COMSATS University Islamabad, Sahiwal 57000, Pakistan
| | - Awais Ihsan
- Department of Biosciences, Sahiwal Campus, COMSATS University Islamabad, Sahiwal 57000, Pakistan
| | - Dipta Dey
- Biochemistry and Molecular Biology Department, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj 8100, Bangladesh
| | - Md. Nazmul Hasan Zilani
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md. Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Rasha Saleem
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Al Bahah 65431, Saudi Arabia
| | - Aeshah A. Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
6
|
Ali Y, Ahmad F, Ullah MF, Haq NU, Haq MIU, Aziz A, Zouidi F, Khan MI, Eldin SM. Structural Evaluation and Conformational Dynamics of ZNF141T474I Mutation Provoking Postaxial Polydactyly Type A. Bioengineering (Basel) 2022; 9:bioengineering9120749. [PMID: 36550955 PMCID: PMC9774408 DOI: 10.3390/bioengineering9120749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/09/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
Postaxial Polydactyly (PAP) is a congenital disorder of limb abnormalities characterized by posterior extra digits. Mutations in the N-terminal region of the Zinc finger protein 141 (ZNF141) gene were recently linked with PAP type A. Zinc finger proteins exhibit similarity at their N-terminal regions due to C2-H2 type Zinc finger domains, but their functional preferences vary significantly by the binding patterns of DNA. Methods: This study delineates the pathogenic association, miss-fold aggregation, and conformational paradigm of a missense variant (c.1420C > T; p.T474I) in ZNF141 gene segregating PAP through a molecular dynamics simulations approach. Results: In ZNF141 protein, helices play a crucial role by attaching three specific target DNA base pairs. In ZNF141T474I protein, H1, H3, and H6 helices attain more flexibility by acquiring loop conformation. The outward disposition of the proximal portion of H9-helix in mutant protein occurs due to the loss of prior beta-hairpins at the C terminal region of the C2-H2 domain. The loss of hydrogen bonds and exposure of hydrophobic residues to solvent and helices turning to loops cause dysfunction of ZNF141 protein. These significant changes in the stability and conformation of the mutant protein were validated using essential dynamics and cross-correlation maps, which revealed that upon point mutation, the overall motion of the proteins and the correlation between them were completely different, resulting in Postaxial polydactyly type A. Conclusions: This study provides molecular insights into the structural association of ZNF141 protein with PAP type A. Identification of active site residues and legends offers new therapeutic targets for ZNF141 protein. Further, it reiterates the functional importance of the last residue of a protein.
Collapse
Affiliation(s)
- Yasir Ali
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak 27200, Pakistan
- National Centre for Bioinformatics, Quaid-I-Azam University, Islamabad 44000, Pakistan
| | - Faisal Ahmad
- National Centre for Bioinformatics, Quaid-I-Azam University, Islamabad 44000, Pakistan
| | - Muhammad Farhat Ullah
- National Centre for Bioinformatics, Quaid-I-Azam University, Islamabad 44000, Pakistan
| | - Noor Ul Haq
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak 27200, Pakistan
| | - M. Inam Ul Haq
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak 27200, Pakistan
| | - Abdul Aziz
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak 27200, Pakistan
| | - Ferjeni Zouidi
- Biology Department, Faculty of Arts and Sciences of Muhayil Aseer, King Khalid University, Abha 62529, Saudi Arabia
| | - M. Ijaz Khan
- Department of Mathematics and Statistics, Riphah International University I-14, Islamabad 44000, Pakistan
- Department of Mechanical Engineering, Lebanese American University, Beirut 13-5053, Lebanon
- Correspondence: or
| | - Sayed M. Eldin
- Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo 11835, Egypt
| |
Collapse
|
7
|
Shah M, Bibi S, Kamal Z, Al-Sabahi JN, Alam T, Ullah O, Murad W, Rehman NU, Al-Harrasi A. Bridging the Chemical Profile and Biomedical Effects of Scutellaria edelbergii Essential Oils. Antioxidants (Basel) 2022; 11:antiox11091723. [PMID: 36139797 PMCID: PMC9496006 DOI: 10.3390/antiox11091723] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
The present study explored chemical constituents of Scutellaria edelbergii essential oils (SEEO) for the first time, extracted through hydro-distillation, and screened them against the microbes and free radicals scavenging effect, pain-relieving, and anti-inflammatory potential employing standard techniques. The SEEO ingredients were noticed via Gas Chromatography-Mass-Spectrometry (GC-MS) analysis and presented fifty-two bioactive compounds contributed (89.52%) with dominant volatile constituent; 3-oxomanoyl oxide (10.09%), 24-norursa-3,12-diene (8.05%), and methyl 7-abieten-18-oate (7.02%). The MTT assay via 96 well-plate and agar-well diffusion techniques against various microbes was determined for minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), IC50, and zone of inhibitions (ZOIs). The SEEO indicated considerable antimicrobial significance against tested bacterial strains viz. Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Enterococcus faecalis and the fungal strains Fusarium oxysporum and Candida albicans. The free radicals scavenging potential was noticed to be significant in 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) as compared to 2,2′-azino-bis-3-ethylbenzotiazolin-6-sulfonic acid (ABTS) assays with IC50 = 125.0 ± 0.19 µg/mL and IC50 = 153.0 ± 0.31 µg/mL correspondingly; similarly, the antioxidant standard in the DPPH assay was found efficient as compared to ABTS assay. The SEEO also offered an appreciable analgesic significance and presented 54.71% in comparison with standard aspirin, 64.49% reduction in writhes, and an anti-inflammatory potential of 64.13%, as compared to the standard diclofenac sodium inhibition of 71.72%. The SEEO contain bioactive volatile ingredients with antimicrobial, free radical scavenging, pain, and inflammation relieving potentials. Computational analysis validated the anti-inflammatory potential of selected hit “methyl 7-abieten-18-oate” as a COX-2 enzyme inhibitor. Docking results were very good in terms of docked score (−7.8704 kcal/mol) and binding interactions with the functional residues; furthermore, MD simulation for 100 ns has presented a correlation with docking results with minor fluctuations. In silico, ADMET characteristics supported that methyl 7-abieten-18-oate could be recommended for further investigations in clinical tests and could prove its medicinal status as an anti-inflammatory drug.
Collapse
Affiliation(s)
- Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al-Mauz, P.O. Box 33, Nizwa 616, Oman
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China
| | - Zul Kamal
- Department of Pharmacy, Shaheed Benazir Bhutto University, Upper Dir 18000, Pakistan
| | - Jamal Nasser Al-Sabahi
- Central Instrument Laboratory, College of Agriculture and Marine Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Tanveer Alam
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al-Mauz, P.O. Box 33, Nizwa 616, Oman
| | - Obaid Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al-Mauz, P.O. Box 33, Nizwa 616, Oman
- Department of Chemistry, University of Chakdara, Chakdara 18800, Pakistan
| | - Waheed Murad
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
- Correspondence: (W.M.); (N.U.R.); (A.A.-H.)
| | - Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al-Mauz, P.O. Box 33, Nizwa 616, Oman
- Correspondence: (W.M.); (N.U.R.); (A.A.-H.)
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al-Mauz, P.O. Box 33, Nizwa 616, Oman
- Correspondence: (W.M.); (N.U.R.); (A.A.-H.)
| |
Collapse
|
8
|
In Silico and In Vitro Screening Constituents of Eclipta alba Leaf Extract to Reveal Antimicrobial Potential. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3290790. [PMID: 36034950 PMCID: PMC9402321 DOI: 10.1155/2022/3290790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022]
Abstract
Phytochemicals have been shown to possess multiple bioactives and have been reported to showcase many medicinal effects. A similar kind of evaluation of phytoconstituents for their antimicrobial action has been reported, based on in vitro and in silico data. The goal of the research was to explore bioactive phytoconstituents of Eclipta alba leaf for antimicrobial activity. The antimicrobial activity was validated by both molecular docking and antimicrobial assay. Bioactive metabolites were identified using GC-MS. The antimicrobial and antimycobacterial activity of Eclipta alba leaves was investigated using the Kirby–Bauer well diffusion method and the rapid culture—MGIT™ DST method against a variety of human pathogens, as well as Mycobacterium tuberculosis (H37Rv) and Mycobacterium tuberculosis bacteria resistant to isoniazid and rifampicin. Eclipta alba’s GC-MS studies confirmed the detection of 17 bioactive constituents. The extract demonstrates the highest antibacterial activity against Escherichia coli (sensitive), Pseudomonas aeruginosa (sensitive) and methicillin-resistant Staphylococcus aureus (MRSA), and Pseudomonas aeruginosa susceptible and MRSA (sensitive) with zone of inhibition of 27 mm, 24 mm, and 32 mm respectively. The extract showed no effect on Mycobacterium tuberculosis (H37Rv) and Mycobacterium tuberculosis bacteria resistant to isoniazid and rifampicin in antimycobacterial activity testing. Molecular docking investigation revealed that three compounds (phthalic acid, isobutyl octadecyl ester, hexadecanoic acid, 1(hydroxymethyl)1,2-ethanediylester, and 2,myristynoyl pantetheine) have generated the best results in terms of binding energies and significant interactions with key residues of target protein 3-hydroxydecanoyl-acyl carrier protein dehydratase (FabA) and confirm its activity as antimicrobial inhibitors. These two-dimensional plots show significant protein-ligand binding interactions (van der Waals interactions, hydrogen bond, alkyl, and Pi-alkyl interactions). ADMET (absorption, distribution, metabolism, excretion, and toxicity) results additionally support the drug-likeness characteristics of concluded potential compounds. The experimental and computational results demonstrated that methanolic extract of Eclipta alba leaves had antimicrobial effects for specific infections due to the presence of phytochemical compounds.
Collapse
|
9
|
Rani I, Kalsi A, Kaur G, Sharma P, Gupta S, Gautam RK, Chopra H, Bibi S, Ahmad SU, Singh I, Dhawan M, Emran TB. Modern drug discovery applications for the identification of novel candidates for COVID-19 infections. Ann Med Surg (Lond) 2022; 80:104125. [PMID: 35845863 PMCID: PMC9273307 DOI: 10.1016/j.amsu.2022.104125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/23/2022] Open
Abstract
In early December 2019, a large pneumonia epidemic occurred in Wuhan, China. The World Health Organization is concerned about the outbreak of another coronavirus with the powerful, rapid, and contagious transmission. Anyone with minor symptoms like fever and cough or travel history to contaminated places might be suspected of having COVID-19. COVID-19 therapy focuses on treating the disease's symptoms. So far, no such therapeutic molecule has been shown effective in treating this condition. So the treatment is mostly supportive and plasma. Globally, numerous studies and researchers have recently started fighting this virus. Vaccines and chemical compounds are also being investigated against infection. COVID-19 was successfully diagnosed using RNA detection and very sensitive RT-PCR (reverse transcription-polymerase chain reaction). The evolution of particular vaccinations is required to reduce illness severity and spread. Numerous computational analyses and molecular docking have predicted various target compounds that might stop this condition. This paper examines the main characteristics of coronavirus and the computational analyses necessary to avoid infection.
Collapse
Affiliation(s)
- Isha Rani
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Haryana, India
| | - Avjit Kalsi
- MM School of Pharmacy, MM University, Sadopur, Ambala, Haryana, India
| | - Gagandeep Kaur
- Chitkara School of Pharmacy, Chitkara University-Baddi, Himachal Pradesh, India
| | - Pankaj Sharma
- Apotex Research Pvt. Ltd, Bangalore, Karnataka, India
| | - Sumeet Gupta
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Haryana, India
| | - Rupesh K. Gautam
- MM School of Pharmacy, MM University, Sadopur, Ambala, Haryana, India
| | - Hitesh Chopra
- Department of Pharmaceutics, Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091, Yunnan, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, 650091, Yunnan, China
| | - Syed Umair Ahmad
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| | - Inderbir Singh
- Department of Pharmaceutics, Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
- Trafford College, Altrincham, Manchester, WA14 5PQ, UK
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| |
Collapse
|
10
|
Yousafi Q, Bibi S, Saleem S, Hussain A, Hasan MM, Tufail M, Qandeel A, Khan MS, Mazhar S, Yousaf M, Moustafa M, Al-Shehri M, Khalid M, Kabra A. Identification of Novel and Safe Fungicidal Molecules against Fusarium oxysporum from Plant Essential Oils: In Vitro and Computational Approaches. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5347224. [PMID: 35928915 PMCID: PMC9345698 DOI: 10.1155/2022/5347224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/24/2022] [Indexed: 11/18/2022]
Abstract
Phytopathogenic fungi are serious threats in the agriculture sector especially in fruit and vegetable production. The use of plant essential oil as antifungal agents has been in practice from many years. Plant essential oils (PEOs) of Cuminum cyminum, Trachyspermum ammi, Azadirachta indica, Syzygium aromaticum, Moringa oleifera, Mentha spicata, Eucalyptus grandis, Allium sativum, and Citrus sinensis were tested against Fusarium oxysporum. Three phase trials consist of lab testing (MIC and MFC), field testing (seed treatment and foliar spray), and computer-aided fungicide design (CAFD). Two concentrations (25 and 50 μl/ml) have been used to asses MIC while MFC was assessed at four concentrations (25, 50, 75, and 100 μl/ml). C. sinensis showed the largest inhibition zone (47.5 and 46.3 m2) for both concentrations. The lowest disease incidence and disease severity were recorded in treatments with C. sinensis PEO. Citrus sinensis that qualified in laboratory and field trials was selected for CAFD. The chemical compounds of C. sinensis PEO were docked with polyketide synthase beta-ketoacyl synthase domain of F. oxysporum by AutoDock Vina. The best docked complex was formed by nootkatone with -6.0 kcal/mol binding affinity. Pharmacophore of the top seven C. sinensis PEO compounds was used for merged pharmacophore generation. The best pharmacophore model with 0.8492 score was screened against the CMNP database. Top hit compounds from screening were selected and docked with polyketide synthase beta-ketoacyl synthase domain. Four compounds with the highest binding affinity and hydrogen bonding were selected for confirmation of lead molecule by doing MD simulation. The polyketide synthase-CMNPD24498 showed the highest stability throughout 80 ns run of MD simulation. CMNPD24498 (FW054-1) from Verrucosispora was selected as the lead compound against F. oxysporum.
Collapse
Affiliation(s)
- Qudsia Yousafi
- COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091 Yunnan, China
| | - Shahzad Saleem
- COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Abrar Hussain
- COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Maria Tufail
- COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Amina Qandeel
- COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | | | | | - Maha Yousaf
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
| | - Mahmoud Moustafa
- Department of Biology, College of Science, King Khalid University, 9004 Abha, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, Egypt
| | - Mohammed Al-Shehri
- Department of Biology, College of Science, King Khalid University, 9004 Abha, Saudi Arabia
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Atul Kabra
- University Institute of Pharma Sciences, Chandigarh University, Ghruan-140413, Mohali, Punjab, India
| |
Collapse
|
11
|
Identification of Effective and Nonpromiscuous Antidiabetic Drug Molecules from Penicillium Species. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7040547. [PMID: 35722152 PMCID: PMC9200499 DOI: 10.1155/2022/7040547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/08/2022] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus (DM) is a very common metabolic disorder/disease. The deterioration of β-cells by autoimmune system is the hallmark of this disease. Thioredoxin-Interacting Protein (TXNIP) is responsible for β-cells degradation by T-cells in the pancreas. This protein had been declared a good drug target for controlling DM. Lots of side effects have been reported as a result of long-time consumption of conventional antidiabetic drugs. The development of new and effective drugs with the minimal side effects needs time. TXNIP was selected as a target for Computer-Aided Drug Design. The antidiabetic fungal metabolite compounds were selected from the literature. The compounds were screened for their drug-likeness properties by DruLiTo and DataWarior tools. Twenty-two drug-like fungal compounds were subjected to Quantitative Structure-Activity Relationship (QSAR) analysis by using CheS-Mapper 2.0. The lowest (0.01) activity cliff was found for three compounds: Pinazaphilone A, Pinazaphilone B, and Chermesinone A. The highest value for apol (81.76) was shown by Asperphenamate, while Albonoursin and Sterenin L showed highest score (40.66) for bpol. The lowest value (0.46) for fractional molecular frame (FMF) was calculated for Pinazaphilone A and Pinazaphilone B. TPSA for Pinazaphilone A and Pinazaphilone B was 130.51 Å2.
was observed for all the twenty-two compounds. Molecular docking of fungal compounds with TXNIP was done by AutoDock Vina. The binding energy for complexes ranged between −9.2 and −4.6 kcal/mol. Four complexes, TXNIP-Pinazaphilone A, TXNIP-Pinazaphilone B, TXNIP-Asperphenamate, and TXNIP-Sterenin L, were selected for MD simulation to find out the best lead molecule. Only one complex, TXNIP-Pinazaphilone B, showed a stable conformation throughout the 80 ns run of MD simulation. Pinazaphilone B derived from the Penicillium species fungi was selected as the lead molecule for development of antidiabetic drug having the least side effects.
Collapse
|
12
|
Rahman MM, Bibi S, Rahaman MS, Rahman F, Islam F, Khan MS, Hasan MM, Parvez A, Hossain MA, Maeesa SK, Islam MR, Najda A, Al-Malky HS, Mohamed HRH, AlGwaiz HIM, Awaji AA, Germoush MO, Kensara OA, Abdel-Daim MM, Saeed M, Kamal MA. Natural therapeutics and nutraceuticals for lung diseases: Traditional significance, phytochemistry, and pharmacology. Biomed Pharmacother 2022; 150:113041. [PMID: 35658211 DOI: 10.1016/j.biopha.2022.113041] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/16/2022] [Accepted: 04/25/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Lung diseases including chronic obstructive pulmonary disease (COPD), infections like influenza, acute respiratory distress syndrome (ARDS), asthma and pneumonia lung cancer (LC) are common causes of sickness and death worldwide due to their remoteness, cold and harsh climatic conditions, and inaccessible health care facilities. PURPOSE Many drugs have already been proposed for the treatment of lung diseases. Few of them are in clinical trials and have the potential to cure infectious diseases. Plant extracts or herbal products have been extensively used as Traditional Chinese Medicine (TCM) and Indian Ayurveda. Moreover, it has been involved in the inhibition of certain genes/protiens effects to promote regulation of signaling pathways. Natural remedies have been scientifically proven with remarkable bioactivities and are considered a cheap and safe source for lung disease. METHODS This comprehensive review highlighted the literature about traditional plants and their metabolites with their applications for the treatment of lung diseases through experimental models in humans. Natural drugs information and mode of mechanism have been studied through the literature retrieved by Google Scholar, ScienceDirect, SciFinder, Scopus and Medline PubMed resources against lung diseases. RESULTS In vitro, in vivo and computational studies have been explained for natural metabolites derived from plants (like flavonoids, alkaloids, and terpenoids) against different types of lung diseases. Probiotics have also been biologically active therapeutics against cancer, anti-inflammation, antiplatelet, antiviral, and antioxidants associated with lung diseases. CONCLUSION The results of the mentioned natural metabolites repurposed for different lung diseases especially for SARS-CoV-2 should be evaluated more by advance computational applications, experimental models in the biological system, also need to be validated by clinical trials so that we may be able to retrieve potential drugs for most challenging lung diseases especially SARS-CoV-2.
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, Yunnan, China; Department of Biosciences, Shifa Tameer-e-Milat University, Islamabad, Pakistan.
| | - Md Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Firoza Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Muhammad Saad Khan
- Department of Biosciences, Faculty of Sciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Anwar Parvez
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md Abid Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Saila Kabir Maeesa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland.
| | - Hamdan S Al-Malky
- Regional Drug Information Center, Ministry of Health, Jeddah, Saudi Arabia
| | - Hanan R H Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Hussah I M AlGwaiz
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Aeshah A Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mousa O Germoush
- Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Osama A Kensara
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O. Box 7067, Makkah 21955, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudia Arabia
| | - Mohammad Amjad Kamal
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh; West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW 2770, Australia
| |
Collapse
|
13
|
Identification of α-Glucosidase Inhibitors from Scutellaria edelbergii: ESI-LC-MS and Computational Approach. Molecules 2022; 27:molecules27041322. [PMID: 35209111 PMCID: PMC8879825 DOI: 10.3390/molecules27041322] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/01/2022] [Accepted: 02/10/2022] [Indexed: 02/02/2023] Open
Abstract
The recent study investigated the in vitro anti-diabetic impact of the crude extract (MeOH) and subfractions ethyl acetate (EtOAc); chloroform; n-butanol; n-hexane; and aqueous fraction of S. edelbergii and processed the active EtOAc fraction for the identification of chemical constituents for the first time via ESI-LC-MS analysis through positive ionization mode (PIM) and negative ionization mode (NIM); the identified compounds were further validated through computational analysis via standard approaches. The crude extract and subfractions presented appreciable activity against the α-glucosidase inhibitory assay. However, the EtOAc fraction with IC50 = 0.14 ± 0.06 µg/mL revealed the maximum potential among the fractions used, followed by the MeOH and n-hexane extract with IC50 = 1.47 ± 0.14 and 2.18 ± 0.30 µg/mL, respectively. Moreover, the acarbose showed an IC50 = 377.26 ± 1.20 µg/ mL whereas the least inhibition was observed for the chloroform fraction, with an IC50 = 23.97 ± 0.14 µg/mL. Due to the significance of the EtOAc fraction, when profiled for its chemical constituents, it presented 16 compounds among which the flavonoid class was dominant, and offered eight compounds, of which six were identified in NIM, and two compounds in PIM. Moreover, five terpenoids were identified-three and two in NIM and PIM, respectively-as well as two alkaloids, both of which were detected in PIM. The EtOAc fraction also contained one phenol that was noticed in PIM. The detected flavonoids, terpenoids, alkaloids, and phenols are well-known for their diverse biomedical applications. The potent EtOAc fraction was submitted to computational analysis for further validation of α-glucosidase significance to profile the responsible compounds. The pharmacokinetic estimations and protein-ligand molecular docking results with the support of molecular dynamic simulation trajectories at 100 ns suggested that two bioactive compounds-dihydrocatalpol and leucosceptoside A-from the EtOAc fraction presented excellent drug-like properties and stable conformations; hence, these bioactive compounds could be potential inhibitors of alpha-glucosidase enzyme based on intermolecular interactions with significant residues, docking score, and binding free energy estimation. The stated findings reflect that S. edelbergii is a rich source of bioactive compounds offering potential cures for diabetes mellitus; in particular, dihydrocatalpol and leucosceptoside A could be excellent therapeutic options for the progress of novel drugs to overcome diabetes mellitus.
Collapse
|
14
|
α-Glucosidase inhibitory activity of cannabidiol, tetrahydrocannabinol and standardized cannabinoid extracts from Cannabis sativa. Curr Res Food Sci 2022; 5:1091-1097. [PMID: 35856057 PMCID: PMC9287184 DOI: 10.1016/j.crfs.2022.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/28/2022] [Accepted: 07/01/2022] [Indexed: 12/16/2022] Open
Abstract
Two major cannabinoids of cannabis, namely cannabidiol (CBD) and tetrahydrocannabinol (THC) have been reportedly used as alternative medicine for diabetes treatment in both pre-clinical and clinical research. However, their mechanisms of action still remain unclear. Therefore, this study aimed to evaluate the α-glucosidase inhibitory activity of THC, CBD and the standardized cannabinoid extracts. Based on in silico studies, THC generated hydrogen bonding and Van der Waals interactions, while CBD exhibited only Van der Waals interactions with functional residues of target α-glucosidase protein, with good binding energies of −7.5 and −6.9 kcal/mol, respectively. In addition, both of them showed excellent pharmacokinetic profiles with minor toxicity in terms of tumorigenic and reproductive effects. In addition, the enzyme based in vitro assay on α-glucosidase revealed that THC and CBD exhibited good inhibitory activity, with the IC50 values of 3.0 ± 0.37 and 5.5 ± 0.28 μg/ml, respectively. These were better than the standard drug, acarbose (IC50 of 488.6 ± 10.23 μg/ml). Furthermore, two standardized cannabinoid extracts, SCE-I (C. sativa leaf extract) and SCE-II (C. sativa inflorescence extract) exhibited stronger inhibitory activity than THC and CBD, with the IC50 values of 1.2 ± 0.62 and 0.16 ± 0.01 μg/ml, respectively. The present study provides the first evidence that the standardized cannabinoid extracts containing THC and CBD have greater potential than CBD and THC in application as an α-glucosidase inhibitor. In silico study illustrated the inhibitory action of THC and CBD on α-glucosidase. THC and CBD exhibited good pharmacokinetic profiles with low toxicity. In vitro study confirmed the inhibitory effect of THC and CBD against α-glucosidase. Standardized cannabinoid extracts showed higher inhibitory effect than THC and CBD.
Collapse
|
15
|
Chitranshi N, Kumar A, Sheriff S, Gupta V, Godinez A, Saks D, Sarkar S, Shen T, Mirzaei M, Basavarajappa D, Abyadeh M, Singh SK, Dua K, Zhang KYJ, Graham SL, Gupta V. Identification of Novel Cathepsin B Inhibitors with Implications in Alzheimer's Disease: Computational Refining and Biochemical Evaluation. Cells 2021; 10:cells10081946. [PMID: 34440715 PMCID: PMC8391575 DOI: 10.3390/cells10081946] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
Amyloid precursor protein (APP), upon proteolytic degradation, forms aggregates of amyloid β (Aβ) and plaques in the brain, which are pathological hallmarks of Alzheimer’s disease (AD). Cathepsin B is a cysteine protease enzyme that catalyzes the proteolytic degradation of APP in the brain. Thus, cathepsin B inhibition is a crucial therapeutic aspect for the discovery of new anti-Alzheimer’s drugs. In this study, we have employed mixed-feature ligand-based virtual screening (LBVS) by integrating pharmacophore mapping, docking, and molecular dynamics to detect small, potent molecules that act as cathepsin B inhibitors. The LBVS model was generated by using hydrophobic (HY), hydrogen bond acceptor (HBA), and hydrogen bond donor (HBD) features, using a dataset of 24 known cathepsin B inhibitors of both natural and synthetic origins. A validated eight-feature pharmacophore hypothesis (Hypo III) was utilized to screen the Maybridge chemical database. The docking score, MM-PBSA, and MM-GBSA methodology was applied to prioritize the lead compounds as virtual screening hits. These compounds share a common amide scaffold, and showed important interactions with Gln23, Cys29, His110, His111, Glu122, His199, and Trp221. The identified inhibitors were further evaluated for cathepsin-B-inhibitory activity. Our study suggests that pyridine, acetamide, and benzohydrazide compounds could be used as a starting point for the development of novel therapeutics.
Collapse
Affiliation(s)
- Nitin Chitranshi
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia; (S.S.); (A.G.); (D.S.); (S.S.); (T.S.); (M.M.); (D.B.); (S.L.G.)
- Correspondence: (N.C.); (V.G.); Tel.: +61-(02)-9850-2804 (N.C.)
| | - Ashutosh Kumar
- Center for Biosystems Dynamics Research, Laboratory for Structural Bioinformatics, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Kanagawa, Japan; (A.K.); (K.Y.J.Z.)
| | - Samran Sheriff
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia; (S.S.); (A.G.); (D.S.); (S.S.); (T.S.); (M.M.); (D.B.); (S.L.G.)
| | - Veer Gupta
- School of Medicine, Faculty of Health, Deakin University, Geelong, VIC 3220, Australia;
| | - Angela Godinez
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia; (S.S.); (A.G.); (D.S.); (S.S.); (T.S.); (M.M.); (D.B.); (S.L.G.)
| | - Danit Saks
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia; (S.S.); (A.G.); (D.S.); (S.S.); (T.S.); (M.M.); (D.B.); (S.L.G.)
| | - Soumalya Sarkar
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia; (S.S.); (A.G.); (D.S.); (S.S.); (T.S.); (M.M.); (D.B.); (S.L.G.)
| | - Ting Shen
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia; (S.S.); (A.G.); (D.S.); (S.S.); (T.S.); (M.M.); (D.B.); (S.L.G.)
| | - Mehdi Mirzaei
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia; (S.S.); (A.G.); (D.S.); (S.S.); (T.S.); (M.M.); (D.B.); (S.L.G.)
| | - Devaraj Basavarajappa
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia; (S.S.); (A.G.); (D.S.); (S.S.); (T.S.); (M.M.); (D.B.); (S.L.G.)
| | - Morteza Abyadeh
- Cell Science Research Center, Department of Molecular Systems Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran;
| | - Sachin K. Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia;
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kam Y. J. Zhang
- Center for Biosystems Dynamics Research, Laboratory for Structural Bioinformatics, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Kanagawa, Japan; (A.K.); (K.Y.J.Z.)
| | - Stuart L. Graham
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia; (S.S.); (A.G.); (D.S.); (S.S.); (T.S.); (M.M.); (D.B.); (S.L.G.)
| | - Vivek Gupta
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia; (S.S.); (A.G.); (D.S.); (S.S.); (T.S.); (M.M.); (D.B.); (S.L.G.)
- Correspondence: (N.C.); (V.G.); Tel.: +61-(02)-9850-2804 (N.C.)
| |
Collapse
|