1
|
Younes AH, Mustafa YF. Sweet Bell Pepper: A Focus on Its Nutritional Qualities and Illness-Alleviated Properties. Indian J Clin Biochem 2024; 39:459-469. [PMID: 39346723 PMCID: PMC11436515 DOI: 10.1007/s12291-023-01165-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 10/01/2024]
Abstract
Sweet bell pepper (SBP, Capsicum annuum L.) can be employed as a spice in many dishes and may also be eaten as a delicious fruit. These two nutritional attributes are owing to the strong, deep taste of many SBP phytochemicals. This fruit has many additional beneficial properties because it contains high concentrations of minerals and vitamins that distinguish it from other kinds of fruits. Almost every part of the SBP is thought to be an excellent source of bioactive substances that are health supporters, such as flavonoids, polyphenols, and various aromatic substances. The ability of SBP-phytochemicals to work as antioxidants, reducing the harmful effects of oxidative stress and consequently preventing many chronic illnesses, is one of their main biomedical characteristics. These phytochemicals have good antibacterial properties, mostly against gram-positive pathogenic microbes, in addition to their anti-carcinogenic and cardio-preventive effects. So, this review aims to highlight the nutritional qualities of SBP-derived phytochemicals and their illness-alleviated characteristics. Antioxidant, anti-inflammatory, antitumor, antidiabetic, and analgesic properties are some of the ones discussed.
Collapse
Affiliation(s)
- Areej Hazem Younes
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
2
|
Badiche-El Hilali F, García-Pastor ME, Valverde JM, Castillo S, Valero D, Serrano M. Melatonin as an Efficient and Eco-Friendly Tool to Increase Yield and to Maintain Quality Attributes during Lemon Storage. Int J Mol Sci 2024; 25:10025. [PMID: 39337511 PMCID: PMC11432733 DOI: 10.3390/ijms251810025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Lemon fruit (Citrus limon (L.) Burm.) is highly appreciated by consumers due to its antioxidant properties and health benefits. However, its shelf life can be limited by various factors, reducing the economy, and thereafter, new strategies to maintain the quality of lemons are necessary. Melatonin is a derivative of tryptamine, which is ubiquitously found in plants and has a wide range of functions regulating numerous physiological processes in plants. During two consecutive harvests, we evaluated the effect of preharvest treatments with melatonin on crop yield and on quality and functional properties of fruit of lemon cv. Verna at harvest and weekly after storage up to 28 days at 2 and 10 °C plus 2 days at 20 °C. Melatonin was applied as foliar spray treatments at dosages of 0.1, 0.3, and 0.5 mM and at three different stages of fruit development. The results showed that melatonin treatment had a positive impact on crop yield as well as in fruit quality parameters, such as firmness, content of bioactive compounds, and antioxidant activity, especially for a 0.5 mM dose. Taking all these effects into account, the application of melatonin along the growth cycle of fruit development could be considered a non-contaminant and eco-friendly tool for improving crop yield and quality of 'Verna' lemons at harvest and during postharvest storage.
Collapse
Affiliation(s)
- Fátima Badiche-El Hilali
- Department of AgroFood Technology, Escuela Politécnica Superior de Orihuela (EPSO), Instituto de Investigación e Innovación Agroalimentario y Agroambiental (CIAGRO), University Miguel Hernández, Ctra. Beniel km. 3.2, Orihuela, 03312 Alicante, Spain
| | - María E García-Pastor
- Department of Applied Biology, Escuela Politécnica Superior de Orihuela (EPSO), Instituto de Investigación e Innovación Agroalimentario y Agroambiental (CIAGRO), University Miguel Hernández, Ctra. Beniel km. 3.2, Orihuela, 03312 Alicante, Spain
| | - Juan Miguel Valverde
- Department of AgroFood Technology, Escuela Politécnica Superior de Orihuela (EPSO), Instituto de Investigación e Innovación Agroalimentario y Agroambiental (CIAGRO), University Miguel Hernández, Ctra. Beniel km. 3.2, Orihuela, 03312 Alicante, Spain
| | - Salvador Castillo
- Department of AgroFood Technology, Escuela Politécnica Superior de Orihuela (EPSO), Instituto de Investigación e Innovación Agroalimentario y Agroambiental (CIAGRO), University Miguel Hernández, Ctra. Beniel km. 3.2, Orihuela, 03312 Alicante, Spain
| | - Daniel Valero
- Department of AgroFood Technology, Escuela Politécnica Superior de Orihuela (EPSO), Instituto de Investigación e Innovación Agroalimentario y Agroambiental (CIAGRO), University Miguel Hernández, Ctra. Beniel km. 3.2, Orihuela, 03312 Alicante, Spain
| | - María Serrano
- Department of Applied Biology, Escuela Politécnica Superior de Orihuela (EPSO), Instituto de Investigación e Innovación Agroalimentario y Agroambiental (CIAGRO), University Miguel Hernández, Ctra. Beniel km. 3.2, Orihuela, 03312 Alicante, Spain
| |
Collapse
|
3
|
Melkis K, Jakubczyk K. The Chemical Profiles and Antioxidant Properties of Live Fruit or Vegetable Vinegars Available on the Polish Food Market. Foods 2024; 13:1488. [PMID: 38790788 PMCID: PMC11119752 DOI: 10.3390/foods13101488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Live vinegar is a product formed through a two-step fermentation process of a sugar substrate that has not been subjected to filtration or pasteurization. This is considered to preserve all nutrients and biologically active microorganisms, making it a product with a valuable composition and beneficial properties. Therefore, the purpose of this study was to analyze the chemical composition and antioxidant properties of the selected vinegars available on the Polish food market. The material in the study consisted of four live (naturally turbid, unfiltered, unpasteurized) fruit or vegetable vinegars: apple, pear, rhubarb, and lemon. Spectrophotometric, HPLC, and GC methods were used. Among the vinegars tested, lemon vinegar had the highest vitamin C content-15.95 mg/100 mL. Apple vinegar proved to be the best source of polyphenols and flavonoids (TPC-191.97 mg GAE/L, TFC-70.22 mg RE/L). All of the vinegars contained dihydroxybenzoic acid, 4-hydroxybenzoic acid, caffeic acid, 2-hydroxycinnamic acid, and myricetin. The acetic acid content of the tested vinegars ranged from 29.180 to 38.125 mM/L. The pH values ranged from 3.14 to 3.41. In conclusion, the most promising nutraceutical with potentially beneficial health-promoting properties seems to be apple vinegar.
Collapse
Affiliation(s)
| | - Karolina Jakubczyk
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego Street, 71-460 Szczecin, Poland;
| |
Collapse
|
4
|
Huang X, Yang L, Lyu Y, Ma H, Zhou X, Ye K, Feng J. Dried lemon slices improve bowel cleansing quality of polyethylene glycol for colonoscopy preparation: randomized controlled trial. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2024; 116:7-13. [PMID: 37539523 DOI: 10.17235/reed.2023.9676/2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
BACKGROUND adequate bowel preparation is related to the quality of colonoscopy. Dried lemon slices can increase gastrointestinal peristalsis, which has shown potential as an adjuvant of bowel preparation. We hypothesized that the combination of dried lemon slices and polyethylene glycol (PEG) could improve the efficacy of bowel preparation and be more acceptable to participants. AIM to investigate the effectiveness of lemon slices combined with PEG for colonoscopy preparation. METHODS a prospective, single-center, randomized, controlled trial was performed of 521 patients randomly assigned to two groups. A total of 254 patients were given lemon slices based on conventional 4-L PEG treatment for the bowel, while 267 patients received only 4-L PEG treatment. Patients' basic information, procedure-related parameters, adverse effects, and subjective feelings were collected by questionnaires. Intestinal tract cleanliness was scored according to the Boston Bowel Preparation Scale (BBPS) by experienced endoscopists. Data were analyzed by the two-sample t-test or the Chi-squared test. RESULTS the BBPS scores were significantly higher in the PEG + lemon slice group (p < 0.05). The taste acceptability, satisfaction, and willingness to repeat bowel preparation were significantly higher in the PEG+ lemon slice group (p < 0.05). However, a larger proportion of patients from the PEG+ lemon slice group (30.7 %) suffered abdominal distension compared with the PEG group (20.6 %), while the incidence of other adverse effects was comparable between the two groups. CONCLUSION the addition of dried lemon slices to conventional PEG showed its superiority for bowel preparation.
Collapse
Affiliation(s)
- Xiawei Huang
- Nursing, The First Affiliated Hospital. College of Medicine. Zhejiang University
| | - Liping Yang
- Gastroenterology, The First Affiliated Hospital. College of Medicine. Zhejiang University
| | - Yingbo Lyu
- Gastroenterology, The First Affiliated Hospital. College of Medicine. Zhejiang University
| | - Han Ma
- Gastroenterology, The First Affiliated Hospital. College of Medicine. Zhejiang University
| | - Xiaoli Zhou
- Gastroenterology, The First Affiliated Hospital. College of Medicine. Zhejiang University
| | - Kexin Ye
- Gastroenterology, The First Affiliated Hospital. College of Medicine. Zhejiang University
| | - Jiehui Feng
- Nursing, The First Affiliated Hospital. College of Medicine. Zhejiang University, China
| |
Collapse
|
5
|
Bao Y, Zeng Z, Yao W, Chen X, Jiang M, Sehrish A, Wu B, Powell CA, Chen B, Xu J, Zhang X, Zhang M. A gap-free and haplotype-resolved lemon genome provides insights into flavor synthesis and huanglongbing (HLB) tolerance. HORTICULTURE RESEARCH 2023; 10:uhad020. [PMID: 37035858 PMCID: PMC10076211 DOI: 10.1093/hr/uhad020] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/06/2023] [Indexed: 05/15/2023]
Abstract
The lemon (Citrus limon; family Rutaceae) is one of the most important and popular fruits worldwide. Lemon also tolerates huanglongbing (HLB) disease, which is a devastating citrus disease. Here we produced a gap-free and haplotype-resolved chromosome-scale genome assembly of the lemon by combining Pacific Biosciences circular consensus sequencing, Oxford Nanopore 50-kb ultra-long, and high-throughput chromatin conformation capture technologies. The assembly contained nine-pair chromosomes with a contig N50 of 35.6 Mb and zero gaps, while a total of 633.0 Mb genomic sequences were generated. The origination analysis identified 338.5 Mb genomic sequences originating from citron (53.5%), 147.4 Mb from mandarin (23.3%), and 147.1 Mb from pummelo (23.2%). The genome included 30 528 protein-coding genes, and most of the assembled sequences were found to be repetitive sequences. Several significantly expanded gene families were associated with plant-pathogen interactions, plant hormone signal transduction, and the biosynthesis of major active components, such as terpenoids and flavor compounds. Most HLB-tolerant genes were expanded in the lemon genome, such as 2-oxoglutarate (2OG)/Fe(II)-dependent oxygenase and constitutive disease resistance 1, cell wall-related genes, and lignin synthesis genes. Comparative transcriptomic analysis showed that phloem regeneration and lower levels of phloem plugging are the elements that contribute to HLB tolerance in lemon. Our results provide insight into lemon genome evolution, active component biosynthesis, and genes associated with HLB tolerance.
Collapse
Affiliation(s)
| | | | - Wei Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agric-Biological Resources, Guangxi University, Nanning 530005, China
| | - Xiao Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Mengwei Jiang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Akbar Sehrish
- State Key Laboratory for Conservation and Utilization of Subtropical Agric-Biological Resources, Guangxi University, Nanning 530005, China
| | - Bo Wu
- School of Computing, Clemson University, 821 McMillan Rd, Clemson, SC 29631, USA
| | | | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agric-Biological Resources, Guangxi University, Nanning 530005, China
| | - Jianlong Xu
- Hainan Yazhou Bay Seed Laboratory, National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | | |
Collapse
|
6
|
Maiuolo J, Musolino V, Gliozzi M, Carresi C, Oppedisano F, Nucera S, Scarano F, Scicchitano M, Guarnieri L, Bosco F, Macrì R, Ruga S, Cardamone A, Coppoletta AR, Ilari S, Mollace A, Muscoli C, Cognetti F, Mollace V. The Employment of Genera Vaccinium, Citrus, Olea, and Cynara Polyphenols for the Reduction of Selected Anti-Cancer Drug Side Effects. Nutrients 2022; 14:1574. [PMID: 35458136 PMCID: PMC9025632 DOI: 10.3390/nu14081574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is one of the most widespread diseases globally and one of the leading causes of death. Known cancer treatments are chemotherapy, surgery, radiation therapy, targeted hormonal therapy, or a combination of these methods. Antitumor drugs, with different mechanisms, interfere with cancer growth by destroying cancer cells. However, anticancer drugs are dangerous, as they significantly affect both cancer cells and healthy cells. In addition, there may be the onset of systemic side effects perceived and mutagenicity, teratogenicity, and further carcinogenicity. Many polyphenolic extracts, taken on top of common anti-tumor drugs, can participate in the anti-proliferative effect of drugs and significantly reduce the side effects developed. This review aims to discuss the current scientific knowledge of the protective effects of polyphenols of the genera Vaccinium, Citrus, Olea, and Cynara on the side effects induced by four known chemotherapy, Cisplatin, Doxorubicin, Tamoxifen, and Paclitaxel. In particular, the summarized data will help to understand whether polyphenols can be used as adjuvants in cancer therapy, although further clinical trials will provide crucial information.
Collapse
Affiliation(s)
- Jessica Maiuolo
- Laboratoy of Pharmaceutical Biology, IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Canzaro, Italy;
| | - Vincenzo Musolino
- Laboratoy of Pharmaceutical Biology, IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Canzaro, Italy;
| | - Micaela Gliozzi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
| | - Cristina Carresi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
| | - Francesca Oppedisano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
| | - Saverio Nucera
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
| | - Federica Scarano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
| | - Miriam Scicchitano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
| | - Lorenza Guarnieri
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Francesca Bosco
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
| | - Roberta Macrì
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Stefano Ruga
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Antonio Cardamone
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Anna Rita Coppoletta
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Sara Ilari
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
| | - Annachiara Mollace
- Medical Oncology 1, Regina Elena National Cancer Institute, IRCCS, 00144 Rome, Italy; (A.M.); (F.C.)
| | - Carolina Muscoli
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
| | - Francesco Cognetti
- Medical Oncology 1, Regina Elena National Cancer Institute, IRCCS, 00144 Rome, Italy; (A.M.); (F.C.)
| | - Vincenzo Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
- IRCCS San Raffaele, Via di Valcannuta 247, 00133 Rome, Italy
| |
Collapse
|
7
|
Li C, Cai Q, Wu X, Tan Z, Huang S, Wei C, Zhang W, Chen Z, Zhang L, Xiang H. Variation in compositions and biological activities of essential oils from four Citrus species: Citrus limon, Citrus sinensis, Citrus paradisi, and Citrus reticulata. Chem Biodivers 2022; 19:e202100910. [PMID: 35143705 DOI: 10.1002/cbdv.202100910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/08/2022] [Indexed: 11/05/2022]
Abstract
Species of the genus Citrus are cultivated in many regions of China and are widely used for medicinal purposes. In the present study, essential oils (EOs) were extracted from four different Citrus species using steam distillation. The chemical components of these four essential oils were separated using gas chromatography-mass spectrometry, and 56 compounds were confirmed. D-limonene was found to be the most abundant compound. All four essential oils demonstrated varied but remarkable radical scavenging capacity (IC50; 0.77-13.9%). Citrus paradisi essential oil exhibited excellent antioxidant activity. Compared to ibuprofen, topical application of the four Citrus spp. essential oils significantly inhibited ear edema formation in mice. Furthermore, essential oils from the four Citrus species reduced the expression levels of interleukin-6 (IL-6), cyclooxygenase-2 (COX-2) and nuclear transcription factor kappa B p65 (NF-κB) to different degrees. The cytotoxicity of the four essential oils on BV2 microglial cells was determined using the MTT assay (IC50; 321.37-1558.87 μg/mL), wherein Citrus limon essential oil showed the lowest cytotoxicity. The essential oils of Citrus limon, Citrus reticulata, and Citrus paradisi had an inhibitory effect on the lung cancer cell line H1299 by inducing a G0/G1 cell cycle arrest. Cluster and principal component analyses were used to determine the relationship among the Citrus species. These results suggest that the four Citrus essential oils have potential for use as active ingredients in functional foods or cosmeceutical products.
Collapse
Affiliation(s)
- Chunlian Li
- Guangdong University of Technology School of Biomedical and Pharmaceutical Sciences, School of Biomedical and Pharmaceutical Sciences, 100 Huanxi Road, University City, Panyu District, Guangzhou, CHINA
| | - Qiuyang Cai
- Guangdong University of Technology School of Biomedical and Pharmaceutical Sciences, School of Biomedical and Pharmaceutical Sciences, 100 Huanxi Road, University City, Panyu District, Guangzhou, CHINA
| | - Xianyi Wu
- Guangdong University of Technology School of Biomedical and Pharmaceutical Sciences, School of Biomedical and Pharmaceutical Sciences, 100 Huanxi Road, University City, Panyu District, Guangzhou, CHINA
| | - Zekai Tan
- Guangdong University of Technology School of Biomedical and Pharmaceutical Sciences, School of Biomedical and Pharmaceutical Sciences, 100 Huanxi Road, University City, Panyu District, Guangzhou, CHINA
| | - Shiyuan Huang
- Guangdong University of Technology School of Biomedical and Pharmaceutical Sciences, School of Biomedical and Pharmaceutical Sciences, 100 Huanxi Road, University City, Panyu District, Guangzhou, CHINA
| | - Chuqi Wei
- Guangdong University of Technology - University Town Campus: Guangdong University of Technology, School of Materials and Energ, Guangzhou 510006, Guangdong, PR China, Guangzhou, CHINA
| | - Weicheng Zhang
- Guangdong University of Technology School of Biomedical and Pharmaceutical Sciences, School of Biomedical and Pharmaceutical Sciences, 100 Huanxi Road, University City, Panyu District, Guangzhou, CHINA
| | - Zhuoyu Chen
- Guangdong University of Technology School of Biomedical and Pharmaceutical Sciences, School of Biomedical and Pharmaceutical Sciences, 100 Huanxi Road, University City, Panyu District, Guangzhou, CHINA
| | - Lanyue Zhang
- Guangdong University of Technology, School of Biomedical and Pharmaceutical Sciences, 100 Huanxi Road, University City, Panyu District, 510006, Guangzhou, CHINA
| | - Hongping Xiang
- Guangdong University of Technology School of Materials and Energy, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, 100 Huanxi Road, University City, Panyu District, Guangzhou, CHINA
| |
Collapse
|
8
|
Sharma B. Meet the Editorial Board Member. CURRENT DRUG THERAPY 2021. [DOI: 10.2174/157488551602210604092815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Bechan Sharma
- Department of Biochemistry University of Allahabad, Allahabad-UP, India
| |
Collapse
|
9
|
Bhardwaj JK, Paliwal A, Saraf P. Effects of heavy metals on reproduction owing to infertility. J Biochem Mol Toxicol 2021; 35:e22823. [PMID: 34051019 DOI: 10.1002/jbt.22823] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/22/2021] [Accepted: 05/18/2021] [Indexed: 01/17/2023]
Abstract
The reproductive performance of most of the species is adversely affected by hazardous heavy metals like lead, cadmium, mercury, arsenic, zinc, and copper. Heavy metals are liberated in the environment by natural sources like rock weathering, volcanic eruption, and other human activities like industrial discharge, mineral mining, automobile exhaust, and so forth. Heavy metals alter several reproductive functions in both males and females like a decrease in sperm count, motility, viability, spermatogenesis, hormonal imbalance, follicular atresia, and delay in oocyte maturation, and so forth, and thus, forms an important aspect of reproductive toxicology. The present review compiles toxicity aspects of various heavy metals and their efficacy and mechanism of action in mammals.
Collapse
Affiliation(s)
- Jitender K Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Aakansha Paliwal
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Priyanka Saraf
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
10
|
Behl T, Kaur G, Sehgal A, Zengin G, Singh S, Ahmadi A, Bungau S. Flavonoids, the Family of Plant-derived Antioxidants making inroads into Novel Therapeutic Design against IR-induced Oxidative Stress in Parkinson's Disease. Curr Neuropharmacol 2021; 20:324-343. [PMID: 34030619 PMCID: PMC9413797 DOI: 10.2174/1570159x19666210524152817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/17/2021] [Accepted: 05/05/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Ionizing radiation from telluric sources is unceasingly an unprotected pitfall to humans. Thus, the foremost contributors to human exposure are global and medical radiations. Various evidences assembled during preceding years reveal the pertinent role of ionizing radiation-induced oxidative stress in the progression of neurodegenerative insults, such as Parkinson’s disease, which have been contributing to increased proliferation and generation of reactive oxygen species. Objective: This review delineates the role of ionizing radiation-induced oxidative stress in Parkinson’s disease and proposes novel therapeutic interventions of flavonoid family, offering effective management and slowing down the progression of Parkinson’s disease. Methods: Published papers were searched in MEDLINE, PubMed, etc., published to date for in-depth database collection. Results: The oxidative damage may harm the non-targeted cells. It can also modulate the functions of the central nervous system, such as protein misfolding, mitochondria dysfunction, increased levels of oxidized lipids, and dopaminergic cell death, which accelerate the progression of Parkinson’s disease at the molecular, cellular, or tissue levels. In Parkinson’s disease, reactive oxygen species exacerbate the production of nitric oxides and superoxides by activated microglia, rendering death of dopaminergic neuronal cell through different mechanisms. Conclusion: Rising interest has extensively engrossed in the clinical trial designs based on the plant-derived family of antioxidants. They are known to exert multifarious impact on neuroprotection via directly suppressing ionizing radiation-induced oxidative stress and reactive oxygen species production or indirectly increasing the dopamine levels and activating the glial cells.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Gagandeep Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Centre, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari. Iran
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea. Romania
| |
Collapse
|
11
|
Oyibo A, Gbadegesin MA, Odunola OA. Ethanol extract of Vitellaria paradoxa (Gaertn, F) leaves protects against sodium arsenite - induced toxicity in male wistar rats. Toxicol Rep 2021; 8:774-784. [PMID: 33854955 PMCID: PMC8027566 DOI: 10.1016/j.toxrep.2021.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/27/2022] Open
Abstract
The inadvertent exposure to arsenic has been associated with diverse diseases such as cancers. Vitellaria paradoxa is a medicinal plant with antidiabetic and antiproliferative properties. Here, we assessed the ameliorative role of Ethanol Leaf extract of Vitellaria paradoxa (ELVp) in Sodium Arsenite (SA) - induced toxicity in rats after oral treatment for two weeks as follows: Group 1 (Control, distilled water), Group 2 (Vitamin E, 100 mg/kg), Groups 3 and 4 (ELVp, 100 & 200 mg/kg respectively), Group 5 (SA, 2.5 mg/kg), Group 6 (SA + Vit E) and Group 7 (SA + ELVp (100 mg/kg) and Group 8 (SA + ELVp (200 mg/kg). The results indicated that SA significantly increased liver and kidney function markers and elevated platelet, white blood cell (WBC) count and malondialdehyde levels in rats. Additionally, SA decreased Red Blood Cell (RBC), Hemoglobin (HGB) and Hematocrit (HCT) levels in rats (p < 0.05). Sodium arsenite caused mild expression of BCL-2 protein> NF-Kb = p53 in the kidney of rats. However, ELVp ameliorated SA-induced toxicity in the liver and kidney of rats with respect to these markers. Overall, ELVp has hepatoprotective, nephroprotective and apoptotic properties against sodium arsenite-induced toxicity.
Collapse
Affiliation(s)
- Aghogho Oyibo
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Michael A. Gbadegesin
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oyeronke A. Odunola
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|