1
|
Srivastava N, Garg P, Singh A, Srivastava P. Molecular docking approaches and its significance in assessing the antioxidant properties in different compounds. VITAMINS AND HORMONES 2022; 121:67-80. [PMID: 36707144 DOI: 10.1016/bs.vh.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In the last few years, the significance of antioxidant compounds and their properties has attracted great interest from the scientific community. The role of an antioxidant in managing & regulating oxidative stress and also in the protection of the human body from severe adverse effects due to excess release of free radicles or reactive oxygen species (ROS) is remarkable. From aiding protection & combating severe illnesses such as cancer, neurodegeneration, aging, and diabetes to being a vital part of the treatment of SARs-CoV-19 is of great importance. Therefore, the study of anti-oxidants is of great importance in human sustenance. Additionally, molecular docking techniques and their various mathematical features help in understanding the molecular interactions of anti-oxidants based on their lowest binding energy. The evaluation of the binding score between two constituent molecules will provide insight as to the binding process and also suggest possible novel therapeutic targets for the treatment of diseases. In this chapter, we will discuss the significance of molecular docking techniques in the study of antioxidant compounds.
Collapse
Affiliation(s)
- Neha Srivastava
- Excelra Knowledge Solution Pvt Ltd, NSL Arena, Uppal, Hyderabad, India
| | - Prekshi Garg
- Amity Institute of Biotechnology, Amity University, Lucknow, Uttar Pradesh, India
| | - Anurag Singh
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Prachi Srivastava
- Amity Institute of Biotechnology, Amity University, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
2
|
Adrenal histological and functional changes after hepatic encephalopathy: From mice model to an integrative bioinformatics analysis. Acta Histochem 2022; 124:151960. [DOI: 10.1016/j.acthis.2022.151960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/28/2022] [Indexed: 11/15/2022]
|
3
|
Xue W, Fu T, Deng S, Yang F, Yang J, Zhu F. Molecular Mechanism for the Allosteric Inhibition of the Human Serotonin Transporter by Antidepressant Escitalopram. ACS Chem Neurosci 2022; 13:340-351. [PMID: 35041375 DOI: 10.1021/acschemneuro.1c00694] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human serotine transporter (hSERT) is one of the most influential drug targets, and its allosteric modulators (e.g., escitalopram) have emerged to be the next-generation medication for psychiatric disorders. However, the molecular mechanism underlying the allosteric modulation of hSERT is still elusive. Here, the simulation strategies of conventional (cMD) and steered (SMD) molecular dynamics were applied to investigate this molecular mechanism from distinct perspectives. First, cMD simulations revealed that escitalopram's binding to hSERT's allosteric site simultaneously enhanced its binding to the orthosteric site. Then, SMD simulation identified that the occupation of hSERT's allosteric site by escitalopram could also block its dissociation from the orthosteric site. Finally, by comparing the simulated structures of two hSERT-escitalopram complexes with and without allosteric modulation, a new conformational coupling between an extracellular (Arg104-Glu494) and an intracellular (Lys490-Glu494) salt bridge was identified. In summary, this study explored the mechanism underlying the allosteric modulation of hSERT by collectively applying two MD simulation strategies, which could facilitate our understanding of the allosteric modulations of not only hSERT but also other clinically important therapeutic targets.
Collapse
Affiliation(s)
- Weiwei Xue
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou 646000, China
| | - Tingting Fu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Shengzhe Deng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Fengyuan Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Jingyi Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Feng Zhu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
4
|
An Q, Yu L. A heterogeneous network embedding framework for predicting similarity-based drug-target interactions. Brief Bioinform 2021; 22:6346805. [PMID: 34373895 DOI: 10.1093/bib/bbab275] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 01/09/2023] Open
Abstract
Accurate prediction of drug-target interactions (DTIs) through biological data can reduce the time and economic cost of drug development. The prediction method of DTIs based on a similarity network is attracting increasing attention. Currently, many studies have focused on predicting DTIs. However, such approaches do not consider the features of drugs and targets in multiple networks or how to extract and merge them. In this study, we proposed a Network EmbeDding framework in mulTiPlex networks (NEDTP) to predict DTIs. NEDTP builds a similarity network of nodes based on 15 heterogeneous information networks. Next, we applied a random walk to extract the topology information of each node in the network and learn it as a low-dimensional vector. Finally, the Gradient Boosting Decision Tree model was constructed to complete the classification task. NEDTP achieved accurate results in DTI prediction, showing clear advantages over several state-of-the-art algorithms. The prediction of new DTIs was also verified from multiple perspectives. In addition, this study also proposes a reasonable model for the widespread negative sampling problem of DTI prediction, contributing new ideas to future research. Code and data are available at https://github.com/LiangYu-Xidian/NEDTP.
Collapse
Affiliation(s)
- Qi An
- College of Computer Science and Technology at Xidian University, Xi'an 710071, P.R. China
| | - Liang Yu
- College of Computer Science and Technology at Xidian University, Xi'an 710071, P.R. China
| |
Collapse
|
5
|
Ru X, Ye X, Sakurai T, Zou Q, Xu L, Lin C. Current status and future prospects of drug-target interaction prediction. Brief Funct Genomics 2021; 20:312-322. [PMID: 34189559 DOI: 10.1093/bfgp/elab031] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 01/09/2023] Open
Abstract
Drug-target interaction prediction is important for drug development and drug repurposing. Many computational methods have been proposed for drug-target interaction prediction due to their potential to the time and cost reduction. In this review, we introduce the molecular docking and machine learning-based methods, which have been widely applied to drug-target interaction prediction. Particularly, machine learning-based methods are divided into different types according to the data processing form and task type. For each type of method, we provide a specific description and propose some solutions to improve its capability. The knowledge of heterogeneous network and learning to rank are also summarized in this review. As far as we know, this is the first comprehensive review that summarizes the knowledge of heterogeneous network and learning to rank in the drug-target interaction prediction. Moreover, we propose three aspects that can be explored in depth for future research.
Collapse
Affiliation(s)
| | - Xiucai Ye
- Department of Computer Science, and Center for Artificial Intelligence Research (C-AIR), University of Tsukuba
| | - Tetsuya Sakurai
- Department of Computer Science and is the director of the C-AIR, University of Tsukuba
| | - Quan Zou
- University of Electronic Science and Technology of China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic
| | | |
Collapse
|
6
|
Xu L, Ru X, Song R. Application of Machine Learning for Drug-Target Interaction Prediction. Front Genet 2021; 12:680117. [PMID: 34234813 PMCID: PMC8255962 DOI: 10.3389/fgene.2021.680117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/28/2021] [Indexed: 11/13/2022] Open
Abstract
Exploring drug–target interactions by biomedical experiments requires a lot of human, financial, and material resources. To save time and cost to meet the needs of the present generation, machine learning methods have been introduced into the prediction of drug–target interactions. The large amount of available drug and target data in existing databases, the evolving and innovative computer technologies, and the inherent characteristics of various types of machine learning have made machine learning techniques the mainstream method for drug–target interaction prediction research. In this review, details of the specific applications of machine learning in drug–target interaction prediction are summarized, the characteristics of each algorithm are analyzed, and the issues that need to be further addressed and explored for future research are discussed. The aim of this review is to provide a sound basis for the construction of high-performance models.
Collapse
Affiliation(s)
- Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Xiaoqing Ru
- Department of Computer Science, University of Tsukuba, Tsukuba, Japan
| | - Rong Song
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China
| |
Collapse
|
7
|
Tu G, Fu T, Yang F, Yang J, Zhang Z, Yao X, Xue W, Zhu F. Understanding the Polypharmacological Profiles of Triple Reuptake Inhibitors by Molecular Simulation. ACS Chem Neurosci 2021; 12:2013-2026. [PMID: 33977725 DOI: 10.1021/acschemneuro.1c00127] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The triple reuptake inhibitors (TRIs) class is a class of effective inhibitors of human monoamine transporters (hMATs), which includes dopamine, norepinephrine, and serotonin transporters (hDATs, hNETs, and hSERTs). Due to the high degree of structural homology of the binding sites of those transporters, it is a great challenge to design potent TRIs with fine-tuned binding profiles. The molecular determinants responsible for the binding selectivity of TRIs to hDATs, hNETs, and hSERTs remain elusive. In this study, the solved X-ray crystallographic structure of hSERT in complex with escitalopram was used as a basis for modeling nine complexes of three representative TRIs (SEP225289, NS2359, and EB1020) bound to their corresponding targets. Molecular dynamics (MD) and effective post-trajectory analysis were performed to estimate the drug binding free energies and characterize the selective profiles of each TRI to hMATs. The common binding mode of studied TRIs to hMATs was revealed by hierarchical clustering analysis of the per-residue energy. Furthermore, the combined protein-ligand interaction fingerprint and residue energy contribution analysis indicated that several conserved and nonconserved "Warm Spots" such as S149, V328, and M427 in hDAT, F317, F323, and V325 in hNET and F335, F341, and V343 in hSERT were responsible for the TRI-binding selectivity. These findings provided important information for rational design of a single drug with better polypharmacological profiles through modulating multiple targets.
Collapse
Affiliation(s)
- Gao Tu
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, China
| | - Tingting Fu
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fengyuan Yang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingyi Yang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, China
| | - Zhao Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Weiwei Xue
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou 646106, China
| | - Feng Zhu
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Fu J, Zhang Y, Liu J, Lian X, Tang J, Zhu F. Pharmacometabonomics: data processing and statistical analysis. Brief Bioinform 2021; 22:6236068. [PMID: 33866355 DOI: 10.1093/bib/bbab138] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/09/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Individual variations in drug efficacy, side effects and adverse drug reactions are still challenging that cannot be ignored in drug research and development. The aim of pharmacometabonomics is to better understand the pharmacokinetic properties of drugs and monitor the drug effects on specific metabolic pathways. Here, we systematically reviewed the recent technological advances in pharmacometabonomics for better understanding the pathophysiological mechanisms of diseases as well as the metabolic effects of drugs on bodies. First, the advantages and disadvantages of all mainstream analytical techniques were compared. Second, many data processing strategies including filtering, missing value imputation, quality control-based correction, transformation, normalization together with the methods implemented in each step were discussed. Third, various feature selection and feature extraction algorithms commonly applied in pharmacometabonomics were described. Finally, the databases that facilitate current pharmacometabonomics were collected and discussed. All in all, this review provided guidance for researchers engaged in pharmacometabonomics and metabolomics, and it would promote the wide application of metabolomics in drug research and personalized medicine.
Collapse
Affiliation(s)
- Jianbo Fu
- College of Pharmaceutical Sciences in Zhejiang University, China
| | - Ying Zhang
- College of Pharmaceutical Sciences in Zhejiang University, China
| | - Jin Liu
- College of Pharmaceutical Sciences in Zhejiang University, China
| | - Xichen Lian
- College of Pharmaceutical Sciences in Zhejiang University, China
| | - Jing Tang
- Department of Bioinformatics in Chongqing Medical University, China
| | - Feng Zhu
- College of Pharmaceutical Sciences in Zhejiang University, China
| |
Collapse
|
9
|
Shang Y, Gao L, Zou Q, Yu L. Prediction of drug-target interactions based on multi-layer network representation learning. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.12.068] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Lv Y, Huang S, Zhang T, Gao B. Application of Multilayer Network Models in Bioinformatics. Front Genet 2021; 12:664860. [PMID: 33868392 PMCID: PMC8044439 DOI: 10.3389/fgene.2021.664860] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 02/26/2021] [Indexed: 11/24/2022] Open
Abstract
Multilayer networks provide an efficient tool for studying complex systems, and with current, dramatic development of bioinformatics tools and accumulation of data, researchers have applied network concepts to all aspects of research problems in the field of biology. Addressing the combination of multilayer networks and bioinformatics, through summarizing the applications of multilayer network models in bioinformatics, this review classifies applications and presents a summary of the latest results. Among them, we classify the applications of multilayer networks according to the object of study. Furthermore, because of the systemic nature of biology, we classify the subjects into several hierarchical categories, such as cells, tissues, organs, and groups, according to the hierarchical nature of biological composition. On the basis of the complexity of biological systems, we selected brain research for a detailed explanation. We describe the application of multilayer networks and chronological networks in brain research to demonstrate the primary ideas associated with the application of multilayer networks in biological studies. Finally, we mention a quality assessment method focusing on multilayer and single-layer networks as an evaluation method emphasizing network studies.
Collapse
Affiliation(s)
- Yuanyuan Lv
- Hainan Key Laboratory for Computational Science and Application, Hainan Normal University, Haikou, China
- Yangtze Delta Region Institute, University of Electronic Science and Technology of China, Quzhou, China
| | - Shan Huang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianjiao Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Bo Gao
- Department of Radiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
11
|
Chen Y, Fu X, Li Z, Peng L, Zhuo L. Prediction of lncRNA-Protein Interactions via the Multiple Information Integration. Front Bioeng Biotechnol 2021; 9:647113. [PMID: 33718346 PMCID: PMC7947871 DOI: 10.3389/fbioe.2021.647113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/19/2021] [Indexed: 01/09/2023] Open
Abstract
The long non-coding RNA (lncRNA)-protein interaction plays an important role in the post-transcriptional gene regulation, such as RNA splicing, translation, signaling, and the development of complex diseases. The related research on the prediction of lncRNA-protein interaction relationship is beneficial in the excavation and the discovery of the mechanism of lncRNA function and action occurrence, which are important. Traditional experimental methods for detecting lncRNA-protein interactions are expensive and time-consuming. Therefore, computational methods provide many effective strategies to deal with this problem. In recent years, most computational methods only use the information of the lncRNA-lncRNA or the protein-protein similarity and cannot fully capture all features to identify their interactions. In this paper, we propose a novel computational model for the lncRNA-protein prediction on the basis of machine learning methods. First, a feature method is proposed for representing the information of the network topological properties of lncRNA and protein interactions. The basic composition feature information and evolutionary information based on protein, the lncRNA sequence feature information, and the lncRNA expression profile information are extracted. Finally, the above feature information is fused, and the optimized feature vector is used with the recursive feature elimination algorithm. The optimized feature vectors are input to the support vector machine (SVM) model. Experimental results show that the proposed method has good effectiveness and accuracy in the lncRNA-protein interaction prediction.
Collapse
Affiliation(s)
- Yifan Chen
- College of Information Science and Engineering, Hunan University, Changsha, China
- School of Computer and Information Science, Hunan Institute of Technology, Hengyang, China
| | - Xiangzheng Fu
- College of Information Science and Engineering, Hunan University, Changsha, China
| | - Zejun Li
- School of Computer and Information Science, Hunan Institute of Technology, Hengyang, China
| | - Li Peng
- College of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Linlin Zhuo
- Department of Mathematics and Information Engineering, Wenzhou University Oujiang College, Wenzhou, China
| |
Collapse
|
12
|
Recent Advances in Predicting Protein S-Nitrosylation Sites. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5542224. [PMID: 33628788 PMCID: PMC7892234 DOI: 10.1155/2021/5542224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 01/09/2023]
Abstract
Protein S-nitrosylation (SNO) is a process of covalent modification of nitric oxide (NO) and its derivatives and cysteine residues. SNO plays an essential role in reversible posttranslational modifications of proteins. The accurate prediction of SNO sites is crucial in revealing a certain biological mechanism of NO regulation and related drug development. Identification of the sites of SNO in proteins is currently a very hot topic. In this review, we briefly summarize recent advances in computationally identifying SNO sites. The challenges and future perspectives for identifying SNO sites are also discussed. We anticipate that this review will provide insights into research on SNO site prediction.
Collapse
|
13
|
Li Q, Zhou W, Wang D, Wang S, Li Q. Prediction of Anticancer Peptides Using a Low-Dimensional Feature Model. Front Bioeng Biotechnol 2020; 8:892. [PMID: 32903381 PMCID: PMC7434836 DOI: 10.3389/fbioe.2020.00892] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/10/2020] [Indexed: 01/09/2023] Open
Abstract
Cancer is still a severe health problem globally. The therapy of cancer traditionally involves the use of radiotherapy or anticancer drugs to kill cancer cells, but these methods are quite expensive and have side effects, which will cause great harm to patients. With the find of anticancer peptides (ACPs), significant progress has been achieved in the therapy of tumors. Therefore, it is invaluable to accurately identify anticancer peptides. Although biochemical experiments can solve this work, this method is expensive and time-consuming. To promote the application of anticancer peptides in cancer therapy, machine learning can be used to recognize anticancer peptides by extracting the feature vectors of anticancer peptides. Nevertheless, poor performance usually be found in training the machine learning model to utilizing high-dimensional features in practice. In order to solve the above job, this paper put forward a 19-dimensional feature model based on anticancer peptide sequences, which has lower dimensionality and better performance than some existing methods. In addition, this paper also separated a model with a low number of dimensions and acceptable performance. The few features identified in this study may represent the important features of anticancer peptides.
Collapse
Affiliation(s)
- Qingwen Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Wenyang Zhou
- Center for Bioinformatics, School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, China
| | - Donghua Wang
- Department of General Surgery, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin, China
| | - Sui Wang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Qingyuan Li
- Forestry and Fruit Tree Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|