1
|
Lei L, Li J, Liu Z, Zhang D, Liu Z, Wang Q, Gao Y, Mo B, Li J. Identification of diagnostic markers pyrodeath-related genes in non-alcoholic fatty liver disease based on machine learning and experiment validation. Sci Rep 2024; 14:25541. [PMID: 39462099 PMCID: PMC11513955 DOI: 10.1038/s41598-024-77409-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) poses a global health challenge. While pyroptosis is implicated in various diseases, its specific involvement in NAFLD remains unclear. Thus, our study aims to elucidate the role and mechanisms of pyroptosis in NAFLD. Utilizing data from the Gene Expression Omnibus (GEO) database, we analyzed the expression levels of pyroptosis-related genes (PRGs) in NAFLD and normal tissues using the R data package. We investigated protein interactions, correlations, and functional enrichment of these genes. Key genes were identified employing multiple machine learning techniques. Immunoinfiltration analyses were conducted to discern differences in immune cell populations between NAFLD patients and controls. Key gene expression was validated using a cell model. Analysis of GEO datasets, comprising 206 NAFLD samples and 10 controls, revealed two key PRGs (TIRAP, and GSDMD). Combining these genes yielded an area under the curve (AUC) of 0.996 for diagnosing NAFLD. In an external dataset, the AUC for the two key genes was 0.825. Nomogram, decision curve, and calibration curve analyses further validated their diagnostic efficacy. These genes were implicated in multiple pathways associated with NAFLD progression. Immunoinfiltration analysis showed significantly lower numbers of various immune cell types in NAFLD patient samples compared to controls. Single sample gene set enrichment analysis (ssGSEA) was employed to assess the immune microenvironment. Finally, the expression of the two key genes was validated in cell NAFLD model using qRT-PCR. We developed a prognostic model for NAFLD based on two PRGs, demonstrating robust predictive efficacy. Our findings enhance the understanding of pyroptosis in NAFLD and suggest potential avenues for therapeutic exploration.
Collapse
Affiliation(s)
- Liping Lei
- Department of Geriatric Medicine, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
- Division of Hepatobiliary Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Jixue Li
- Division of Hepatobiliary Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Zirui Liu
- Division of Hepatobiliary Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Dongdong Zhang
- Division of Hepatobiliary Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Zihan Liu
- Division of Hepatobiliary Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Qing Wang
- Division of Hepatobiliary Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Yi Gao
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Biwen Mo
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541002, Guangxi, China.
| | - Jiangfa Li
- Division of Hepatobiliary Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, 530021, Guangxi, China.
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, 530021, Guangxi, China.
| |
Collapse
|
2
|
Li J, Wang Y, Wu Z, Zhong M, Feng G, Liu Z, Zeng Y, Wei Z, Mueller S, He S, Ouyang G, Yuan G. Identification of diagnostic markers and molecular clusters of cuproptosis-related genes in alcohol-related liver disease based on machine learning and experimental validation. Heliyon 2024; 10:e37612. [PMID: 39315155 PMCID: PMC11417179 DOI: 10.1016/j.heliyon.2024.e37612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/15/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Background and aims Alcohol-related liver disease (ALD) is a worldwide burden. Cuproptosis has been shown to play a key role in the development of several diseases. However, the role and mechanisms of cuproptosis in ALD remain unclear. Methods The RNA-sequencing data of ALD liver samples were downloaded from the Gene Expression Omnibus (GEO) database. Bioinformatical analyses were performed using the R data package. We then identified key genes through multiple machine learning methods. Immunoinfiltration analyses were used to identify different immune cells in ALD patients and controls. The expression levels of key genes were further verified. Results We identified three key cuproptosis-related genes (CRGs) (DPYD, SLC31A1, and DBT) through an in-depth analysis of two GEO datasets, including 28 ALD samples and eight control samples. The area under the curve (AUC) value of these three genes combined in determining ALD was 1.0. In the external datasets, the three key genes had AUC values as high as 1.0 and 0.917, respectively. Nomogram, decision curve, and calibration curve analyses also confirmed these genes' ability to predict the diagnosis. These three key genes were found to be involved in multiple pathways associated with ALD progression. We confirmed the mRNA expression of these three key genes in mouse ALD liver samples. Regarding immune cell infiltration, the numbers of B cells, CD8 (+) T cells, NK cells, T-helper cells, and Th1 cells were significantly lower in ALD patient samples than in control liver samples. Single sample gene set enrichment analysis (ssGSEA) was then used to estimate the immune microenvironment of different CRG clusters and CRG-related gene clusters. In addition, we calculated CRG scores through principal component analysis (PCA) and selected Sankey plots to represent the correlation between CRG clusters, gene clusters, and CRG scores. Finally, the three key genes were confirmed in mouse ALD liver samples and liver cells treated with ethanol. Conclusions We first established a prognostic model for ALD based on 3 CRGs and robust prediction efficacy was confirmed. Our investigation contributes to a comprehensive understanding of the role of cuproptosis in ALD, presenting promising avenues for the exploration of therapeutic strategies.
Collapse
Affiliation(s)
- Jiangfa Li
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Yong Wang
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Zhan Wu
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Mingbei Zhong
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Gangping Feng
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Zhipeng Liu
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Yonglian Zeng
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Zaiwa Wei
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Sebastian Mueller
- Center for Alcohol Research, University Hospital Heidelberg, Heidelberg, Germany
| | - Songqing He
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Guoqing Ouyang
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Guandou Yuan
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| |
Collapse
|
3
|
Zhang ZY, Zhang Z, Ye X, Sakurai T, Lin H. A BERT-based model for the prediction of lncRNA subcellular localization in Homo sapiens. Int J Biol Macromol 2024; 265:130659. [PMID: 38462114 DOI: 10.1016/j.ijbiomac.2024.130659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Understanding the subcellular localization of lncRNAs is crucial for comprehending their regulation activities. The conventional detection of lncRNA subcellular location usually uses in situ detection techniques, which are resource intensive. Some machine learning-based algorithms have been proposed for lncRNA subcellular location prediction in mammals. However, due to the low level of conservation of lncRNA sequence, the performance of cross-species models remains unsatisfactory. In this study, we curated a novel dataset containing subcellular location information of lncRNAs in Homo sapiens. Subsequently, based on the BERT pre-trained language algorithm, we developed a model for lncRNA subcellular location prediction. Our model achieved a micro-average area under the receiver operating characteristic (AUROC) of 0.791 on the training set and an AUROC of 0.700 on the testing nucleus set. Additionally, we conducted cross-species validation and motif discovery to further investigate underlying patterns. In summary, our study provides valuable guidance and computational analysis tools for exploring the mechanisms of lncRNA subcellular localization and the dynamic spatial changes of RNA in abnormal physiological states.
Collapse
Affiliation(s)
- Zhao-Yue Zhang
- Tsukuba Life Science Innovation Program, University of Tsukuba, Tsukuba 3058577, Japan
| | - Zheng Zhang
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL 36849, USA
| | - Xiucai Ye
- Department of Computer Science, University of Tsukuba, Tsukuba 3058577, Japan.
| | - Tetsuya Sakurai
- Department of Computer Science, University of Tsukuba, Tsukuba 3058577, Japan
| | - Hao Lin
- Center for Information Biology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
4
|
Shi H, Wu C, Bai T, Chen J, Li Y, Wu H. Identify essential genes based on clustering based synthetic minority oversampling technique. Comput Biol Med 2023; 153:106523. [PMID: 36652869 DOI: 10.1016/j.compbiomed.2022.106523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/13/2022] [Accepted: 12/31/2022] [Indexed: 01/03/2023]
Abstract
Prediction of essential genes in a life organism is one of the central tasks in synthetic biology. Computational predictors are desired because experimental data is often unavailable. Recently, some sequence-based predictors have been constructed to identify essential genes. However, their predictive performance should be further improved. One key problem is how to effectively extract the sequence-based features, which are able to discriminate the essential genes. Another problem is the imbalanced training set. The amount of essential genes in human cell lines is lower than that of non-essential genes. Therefore, predictors trained with such imbalanced training set tend to identify an unseen sequence as a non-essential gene. Here, a new over-sampling strategy was proposed called Clustering based Synthetic Minority Oversampling Technique (CSMOTE) to overcome the imbalanced data issue. Combining CSMOTE with the Z curve, the global features, and Support Vector Machines, a new protocol called iEsGene-CSMOTE was proposed to identify essential genes. The rigorous jackknife cross validation results indicated that iEsGene-CSMOTE is better than the other competing methods. The proposed method outperformed λ-interval Z curve by 35.48% and 11.25% in terms of Sn and BACC, respectively.
Collapse
Affiliation(s)
- Hua Shi
- School of Opto-electronic and Communication Engineering, Xiamen University of Technology, Xiamen, China.
| | - Chenjin Wu
- School of Opto-electronic and Communication Engineering, Xiamen University of Technology, Xiamen, China.
| | - Tao Bai
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China; School of Mathematics & Computer Science, Yanan University, Shanxi, 716000, China.
| | - Jiahai Chen
- Xiamen Sankuai Online Technology Co., Ltd, Xiamen, China.
| | - Yan Li
- School of Opto-electronic and Communication Engineering, Xiamen University of Technology, Xiamen, China.
| | - Hao Wu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
5
|
Cai J, Wang T, Deng X, Tang L, Liu L. GM-lncLoc: LncRNAs subcellular localization prediction based on graph neural network with meta-learning. BMC Genomics 2023; 24:52. [PMID: 36709266 PMCID: PMC9883864 DOI: 10.1186/s12864-022-09034-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/21/2022] [Indexed: 01/29/2023] Open
Abstract
In recent years, a large number of studies have shown that the subcellular localization of long non-coding RNAs (lncRNAs) can bring crucial information to the recognition of lncRNAs function. Therefore, it is of great significance to establish a computational method to accurately predict the subcellular localization of lncRNA. Previous prediction models are based on low-level sequences information and are troubled by the few samples problem. In this study, we propose a new prediction model, GM-lncLoc, which is based on the initial information extracted from the lncRNA sequence, and also combines the graph structure information to extract high level features of lncRNA. In addition, the training mode of meta-learning is introduced to obtain meta-parameters by training a series of tasks. With the meta-parameters, the final parameters of other similar tasks can be learned quickly, so as to solve the problem of few samples in lncRNA subcellular localization. Compared with the previous methods, GM-lncLoc achieved the best results with an accuracy of 93.4 and 94.2% in the benchmark datasets of 5 and 4 subcellular compartments, respectively. Furthermore, the prediction performance of GM-lncLoc was also better on the independent dataset. It shows the effectiveness and great potential of our proposed method for lncRNA subcellular localization prediction. The datasets and source code are freely available at https://github.com/JunzheCai/GM-lncLoc .
Collapse
Affiliation(s)
- Junzhe Cai
- grid.410739.80000 0001 0723 6903School of Information, Yunnan Normal University, Kunming, Yunnan China
| | - Ting Wang
- grid.410739.80000 0001 0723 6903School of Information, Yunnan Normal University, Kunming, Yunnan China
| | - Xi Deng
- grid.410739.80000 0001 0723 6903School of Information, Yunnan Normal University, Kunming, Yunnan China
| | - Lin Tang
- grid.410739.80000 0001 0723 6903Key Laboratory of Educational Information for Nationalities Ministry of Education, Yunnan Normal University, Kunming, Yunnan China
| | - Lin Liu
- grid.410739.80000 0001 0723 6903School of Information, Yunnan Normal University, Kunming, Yunnan China
| |
Collapse
|
6
|
Yuan SS, Gao D, Xie XQ, Ma CY, Su W, Zhang ZY, Zheng Y, Ding H. IBPred: A sequence-based predictor for identifying ion binding protein in phage. Comput Struct Biotechnol J 2022; 20:4942-4951. [PMID: 36147670 PMCID: PMC9474292 DOI: 10.1016/j.csbj.2022.08.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Ion binding proteins (IBPs) can selectively and non-covalently interact with ions. IBPs in phages also play an important role in biological processes. Therefore, accurate identification of IBPs is necessary for understanding their biological functions and molecular mechanisms that involve binding to ions. Since molecular biology experimental methods are still labor-intensive and cost-ineffective in identifying IBPs, it is helpful to develop computational methods to identify IBPs quickly and efficiently. In this work, a random forest (RF)-based model was constructed to quickly identify IBPs. Based on the protein sequence information and residues' physicochemical properties, the dipeptide composition combined with the physicochemical correlation between two residues were proposed for the extraction of features. A feature selection technique called analysis of variance (ANOVA) was used to exclude redundant information. By comparing with other classified methods, we demonstrated that our method could identify IBPs accurately. Based on the model, a Python package named IBPred was built with the source code which can be accessed at https://github.com/ShishiYuan/IBPred.
Collapse
Affiliation(s)
- Shi-Shi Yuan
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Dong Gao
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xue-Qin Xie
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Cai-Yi Ma
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Wei Su
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhao-Yue Zhang
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu 611844, China
| | - Yan Zheng
- Baotou Medical College, Baotou 014040, China
| | - Hui Ding
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
7
|
Asim MN, Ibrahim MA, Malik MI, Zehe C, Cloarec O, Trygg J, Dengel A, Ahmed S. EL-RMLocNet: An explainable LSTM network for RNA-associated multi-compartment localization prediction. Comput Struct Biotechnol J 2022; 20:3986-4002. [PMID: 35983235 PMCID: PMC9356161 DOI: 10.1016/j.csbj.2022.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/16/2022] [Accepted: 07/16/2022] [Indexed: 11/23/2022] Open
Abstract
Subcellular localization of Ribonucleic Acid (RNA) molecules provide significant insights into the functionality of RNAs and helps to explore their association with various diseases. Predominantly developed single-compartment localization predictors (SCLPs) lack to demystify RNA association with diverse biochemical and pathological processes mainly happen through RNA co-localization in multiple compartments. Limited multi-compartment localization predictors (MCLPs) manage to produce decent performance only for target RNA class of particular sub-type. Further, existing computational approaches have limited practical significance and potential to optimize therapeutics due to the poor degree of model explainability. The paper in hand presents an explainable Long Short-Term Memory (LSTM) network "EL-RMLocNet", predictive performance and interpretability of which are optimized using a novel GeneticSeq2Vec statistical representation learning scheme and attention mechanism for accurate multi-compartment localization prediction of different RNAs solely using raw RNA sequences. GeneticSeq2Vec generates optimized statistical vectors of raw RNA sequences by capturing short and long range relations of nucleotide k-mers. Using sequence vectors generated by GeneticSeq2Vec scheme, Long Short Term Memory layers extract most informative features, weighting of which on the basis of discriminative potential for accurate multi-compartment localization prediction is performed using attention layer. Through reverse engineering, weights of statistical feature space are mapped to nucleotide k-mers patterns to make multi-compartment localization prediction decision making transparent and explainable for different RNA classes and species. Empirical evaluation indicates that EL-RMLocNet outperforms state-of-the-art predictor for subcellular localization prediction of 4 different RNA classes by an average accuracy figure of 8% for Homo Sapiens species and 6% for Mus Musculus species. EL-RMLocNet is freely available as a web server at (https://sds_genetic_analysis.opendfki.de/subcellular_loc/).
Collapse
Affiliation(s)
- Muhammad Nabeel Asim
- Department of Computer Science, Technical University of Kaiserslautern, Kaiserslautern 67663, Germany
- German Research Center for Artificial Intelligence GmbH, Kaiserslautern 67663, Germany
| | - Muhammad Ali Ibrahim
- Department of Computer Science, Technical University of Kaiserslautern, Kaiserslautern 67663, Germany
- German Research Center for Artificial Intelligence GmbH, Kaiserslautern 67663, Germany
| | - Muhammad Imran Malik
- School of Computer Science & Electrical Engineering, National University of Sciences and Technology, 44000, Islamabad, Pakistan
| | - Christoph Zehe
- Sartorius Corporate Research, Sartorius Stedim Cellca GmbH, 89081 Ulm, Germany
| | - Olivier Cloarec
- Sartorius Corporate Research, Sartorius Stedim Cellca GmbH, 89081 Ulm, Germany
| | - Johan Trygg
- Computational Life Science Cluster (CLiC), Umeå University, 90187 Umea, Sweden
- Sartorius Corporate Research, Sartorius Stedim Data Analytics, 90333 Umea, Sweden
| | - Andreas Dengel
- Department of Computer Science, Technical University of Kaiserslautern, Kaiserslautern 67663, Germany
- German Research Center for Artificial Intelligence GmbH, Kaiserslautern 67663, Germany
| | - Sheraz Ahmed
- German Research Center for Artificial Intelligence GmbH, Kaiserslautern 67663, Germany
| |
Collapse
|
8
|
Wu L, Gao S, Yao S, Wu F, Li J, Dong Y, Zhang Y. Gm-PLoc: A Subcellular Localization Model of Multi-Label Protein Based on GAN and DeepFM. Front Genet 2022; 13:912614. [PMID: 35783287 PMCID: PMC9240597 DOI: 10.3389/fgene.2022.912614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Identifying the subcellular localization of a given protein is an essential part of biological and medical research, since the protein must be localized in the correct organelle to ensure physiological function. Conventional biological experiments for protein subcellular localization have some limitations, such as high cost and low efficiency, thus massive computational methods are proposed to solve these problems. However, some of these methods need to be improved further for protein subcellular localization with class imbalance problem. We propose a new model, generating minority samples for protein subcellular localization (Gm-PLoc), to predict the subcellular localization of multi-label proteins. This model includes three steps: using the position specific scoring matrix to extract distinguishable features of proteins; synthesizing samples of the minority category to balance the distribution of categories based on the revised generative adversarial networks; training a classifier with the rebalanced dataset to predict the subcellular localization of multi-label proteins. One benchmark dataset is selected to evaluate the performance of the presented model, and the experimental results demonstrate that Gm-PLoc performs well for the multi-label protein subcellular localization.
Collapse
Affiliation(s)
- Liwen Wu
- Engineering Research Center of Cyberspace, Yunnan University, Kunming, China
- School of Software, Yunnan University, Kunming, China
| | - Song Gao
- Engineering Research Center of Cyberspace, Yunnan University, Kunming, China
- School of Software, Yunnan University, Kunming, China
| | - Shaowen Yao
- Engineering Research Center of Cyberspace, Yunnan University, Kunming, China
- School of Software, Yunnan University, Kunming, China
| | - Feng Wu
- Engineering Research Center of Cyberspace, Yunnan University, Kunming, China
- School of Software, Yunnan University, Kunming, China
| | - Jie Li
- Engineering Research Center of Cyberspace, Yunnan University, Kunming, China
- School of Software, Yunnan University, Kunming, China
| | - Yunyun Dong
- Engineering Research Center of Cyberspace, Yunnan University, Kunming, China
- School of Software, Yunnan University, Kunming, China
| | - Yunqi Zhang
- Engineering Research Center of Cyberspace, Yunnan University, Kunming, China
- School of Software, Yunnan University, Kunming, China
- Yunnan Key Laboratory of Statistical Modeling and Data Analysis, School of Mathematics and Statistics, Yunnan University, Kunming, China
- *Correspondence: Yunqi Zhang,
| |
Collapse
|
9
|
Ma D, Chen Z, He Z, Huang X. A SNARE Protein Identification Method Based on iLearnPlus to Efficiently Solve the Data Imbalance Problem. Front Genet 2022; 12:818841. [PMID: 35154261 PMCID: PMC8832978 DOI: 10.3389/fgene.2021.818841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Machine learning has been widely used to solve complex problems in engineering applications and scientific fields, and many machine learning-based methods have achieved good results in different fields. SNAREs are key elements of membrane fusion and required for the fusion process of stable intermediates. They are also associated with the formation of some psychiatric disorders. This study processes the original sequence data with the synthetic minority oversampling technique (SMOTE) to solve the problem of data imbalance and produces the most suitable machine learning model with the iLearnPlus platform for the identification of SNARE proteins. Ultimately, a sensitivity of 66.67%, specificity of 93.63%, accuracy of 91.33%, and MCC of 0.528 were obtained in the cross-validation dataset, and a sensitivity of 66.67%, specificity of 93.63%, accuracy of 91.33%, and MCC of 0.528 were obtained in the independent dataset (the adaptive skip dipeptide composition descriptor was used for feature extraction, and LightGBM with proper parameters was used as the classifier). These results demonstrate that this combination can perform well in the classification of SNARE proteins and is superior to other methods.
Collapse
|
10
|
Li H, Shi L, Gao W, Zhang Z, Zhang L, Wang G. dPromoter-XGBoost: Detecting promoters and strength by combining multiple descriptors and feature selection using XGBoost. Methods 2022; 204:215-222. [PMID: 34998983 DOI: 10.1016/j.ymeth.2022.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 01/02/2022] [Indexed: 12/12/2022] Open
Abstract
Promoters play an irreplaceable role in biological processes and genetics, which are responsible for stimulating the transcription and expression of specific genes. Promoter abnormalities have been found in some diseases, and the level of promoter-binding transcription factors can be used as a marker before a disease occurs. Hence, detecting promoters from DNA sequences has important biological significance, particular, distinguishing strong promoters can help to elucidate differences in gene expression and the mechanisms of specific diseases. With the introduction of third-generation sequencing, it is difficult to match the speed of sequencing to the speed of labeling promoters experimentally. Many computing models have been designed to fill this gap and identify unlabeled DNA. However, their feature representation methods are very singular, which cannot reflect the information contained in the original samples. With the aim of avoiding information loss, we propose a computational model based on multiple descriptors and feature selection to jointly express samples. It is worth mentioning that a new feature descriptor called K-mer word vector is defined. The promoter model of multiple feature descriptors dominated by K-mer word vector achieves similar performance to existing methods, the sensitivity of 85.72% can distinguish the promoter more effectively than other methods. Furthermore, the performance of the promoter strength has surpassed published methods, and accuracy of 77.00% greatly improves the ability to distinguish between strong and weak promoters.
Collapse
Affiliation(s)
- Hongfei Li
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China; Yangtze Delta Region Institute, University of Electronic Science and Technology, Quzhou,China
| | - Lei Shi
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wentao Gao
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Zixiao Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Lichao Zhang
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen, China
| | - Guohua Wang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China.
| |
Collapse
|
11
|
Gu X, Guo L, Liao B, Jiang Q. Pseudo-188D: Phage Protein Prediction Based on a Model of Pseudo-188D. Front Genet 2021; 12:796327. [PMID: 34925468 PMCID: PMC8672092 DOI: 10.3389/fgene.2021.796327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Phages have seriously affected the biochemical systems of the world, and not only are phages related to our health, but medical treatments for many cancers and skin infections are related to phages; therefore, this paper sought to identify phage proteins. In this paper, a Pseudo-188D model was established. The digital features of the phage were extracted by PseudoKNC, an appropriate vector was selected by the AdaBoost tool, and features were extracted by 188D. Then, the extracted digital features were combined together, and finally, the viral proteins of the phage were predicted by a stochastic gradient descent algorithm. Our model effect reached 93.4853%. To verify the stability of our model, we randomly selected 80% of the downloaded data to train the model and used the remaining 20% of the data to verify the robustness of our model.
Collapse
Affiliation(s)
- Xiaomei Gu
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China.,Institute of Yangtze River Delta, University of Electronic Science and Technology of China, Haikou, China.,Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou, China.,School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Lina Guo
- Beidahuang Industry Group General Hospital, Harbin, China
| | - Bo Liao
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China.,Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou, China.,School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Qinghua Jiang
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China.,Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou, China.,School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| |
Collapse
|
12
|
Duan T, Kuang Z, Wang J, Ma Z. GBDTLRL2D Predicts LncRNA-Disease Associations Using MetaGraph2Vec and K-Means Based on Heterogeneous Network. Front Cell Dev Biol 2021; 9:753027. [PMID: 34977011 PMCID: PMC8718797 DOI: 10.3389/fcell.2021.753027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022] Open
Abstract
In recent years, the long noncoding RNA (lncRNA) has been shown to be involved in many disease processes. The prediction of the lncRNA-disease association is helpful to clarify the mechanism of disease occurrence and bring some new methods of disease prevention and treatment. The current methods for predicting the potential lncRNA-disease association seldom consider the heterogeneous networks with complex node paths, and these methods have the problem of unbalanced positive and negative samples. To solve this problem, a method based on the Gradient Boosting Decision Tree (GBDT) and logistic regression (LR) to predict the lncRNA-disease association (GBDTLRL2D) is proposed in this paper. MetaGraph2Vec is used for feature learning, and negative sample sets are selected by using K-means clustering. The innovation of the GBDTLRL2D is that the clustering algorithm is used to select a representative negative sample set, and the use of MetaGraph2Vec can better retain the semantic and structural features in heterogeneous networks. The average area under the receiver operating characteristic curve (AUC) values of GBDTLRL2D obtained on the three datasets are 0.98, 0.98, and 0.96 in 10-fold cross-validation.
Collapse
Affiliation(s)
| | - Zhufang Kuang
- School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha, China
| | | | | |
Collapse
|
13
|
Xu H, Zhao B, Zhong W, Teng P, Qiao H. Identification of miRNA Signature Associated With Erectile Dysfunction in Type 2 Diabetes Mellitus by Support Vector Machine-Recursive Feature Elimination. Front Genet 2021; 12:762136. [PMID: 34707644 PMCID: PMC8542849 DOI: 10.3389/fgene.2021.762136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 09/22/2021] [Indexed: 01/10/2023] Open
Abstract
Diabetic mellitus erectile dysfunction (DMED) is one of the most common complications of diabetes mellitus (DM), which seriously affects the self-esteem and quality of life of diabetics. MicroRNAs (miRNAs) are endogenous non-coding RNAs whose expression levels can affect multiple cellular processes. Many pieces of studies have demonstrated that miRNA plays a role in the occurrence and development of DMED. However, the exact mechanism of this process is unclear. Hence, we apply miRNA sequencing from blood samples of 10 DMED patients and 10 DM controls to study the mechanisms of miRNA interactions in DMED patients. Firstly, we found four characteristic miRNAs as signature by the SVM-RFE method (hsa-let-7E-5p, hsa-miR-30 days-5p, hsa-miR-199b-5p, and hsa-miR-342–3p), called DMEDSig-4. Subsequently, we correlated DMEDSig-4 with clinical factors and further verified the ability of these miRNAs to classify samples. Finally, we functionally verified the relationship between DMEDSig-4 and DMED by pathway enrichment analysis of miRNA and its target genes. In brief, our study found four key miRNAs, which may be the key influencing factors of DMED. Meanwhile, the DMEDSig-4 could help in the development of new therapies for DMED.
Collapse
Affiliation(s)
- Haibo Xu
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The First Hospital of Qiqihar, Qiqihar, China
| | - Baoyin Zhao
- The First Hospital of Qiqihar, Qiqihar, China
| | - Wei Zhong
- The First Hospital of Qiqihar, Qiqihar, China
| | - Peng Teng
- The First Hospital of Qiqihar, Qiqihar, China
| | - Hong Qiao
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
14
|
Jiao S, Zou Q, Guo H, Shi L. iTTCA-RF: a random forest predictor for tumor T cell antigens. J Transl Med 2021; 19:449. [PMID: 34706730 PMCID: PMC8554859 DOI: 10.1186/s12967-021-03084-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/16/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Cancer is one of the most serious diseases threatening human health. Cancer immunotherapy represents the most promising treatment strategy due to its high efficacy and selectivity and lower side effects compared with traditional treatment. The identification of tumor T cell antigens is one of the most important tasks for antitumor vaccines development and molecular function investigation. Although several machine learning predictors have been developed to identify tumor T cell antigen, more accurate tumor T cell antigen identification by existing methodology is still challenging. METHODS In this study, we used a non-redundant dataset of 592 tumor T cell antigens (positive samples) and 393 tumor T cell antigens (negative samples). Four types feature encoding methods have been studied to build an efficient predictor, including amino acid composition, global protein sequence descriptors and grouped amino acid and peptide composition. To improve the feature representation ability of the hybrid features, we further employed a two-step feature selection technique to search for the optimal feature subset. The final prediction model was constructed using random forest algorithm. RESULTS Finally, the top 263 informative features were selected to train the random forest classifier for detecting tumor T cell antigen peptides. iTTCA-RF provides satisfactory performance, with balanced accuracy, specificity and sensitivity values of 83.71%, 78.73% and 88.69% over tenfold cross-validation as well as 73.14%, 62.67% and 83.61% over independent tests, respectively. The online prediction server was freely accessible at http://lab.malab.cn/~acy/iTTCA . CONCLUSIONS We have proven that the proposed predictor iTTCA-RF is superior to the other latest models, and will hopefully become an effective and useful tool for identifying tumor T cell antigens presented in the context of major histocompatibility complex class I.
Collapse
Affiliation(s)
- Shihu Jiao
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Quan Zou
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Huannan Guo
- Department of Oncology, General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin, China.
| | - Lei Shi
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
15
|
Chen L, Zhou X, Zeng T, Pan X, Zhang YH, Huang T, Fang Z, Cai YD. Recognizing Pattern and Rule of Mutation Signatures Corresponding to Cancer Types. Front Cell Dev Biol 2021; 9:712931. [PMID: 34513841 PMCID: PMC8427289 DOI: 10.3389/fcell.2021.712931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/02/2021] [Indexed: 11/20/2022] Open
Abstract
Cancer has been generally defined as a cluster of systematic malignant pathogenesis involving abnormal cell growth. Genetic mutations derived from environmental factors and inherited genetics trigger the initiation and progression of cancers. Although several well-known factors affect cancer, mutation features and rules that affect cancers are relatively unknown due to limited related studies. In this study, a computational investigation on mutation profiles of cancer samples in 27 types was given. These profiles were first analyzed by the Monte Carlo Feature Selection (MCFS) method. A feature list was thus obtained. Then, the incremental feature selection (IFS) method adopted such list to extract essential mutation features related to 27 cancer types, find out 207 mutation rules and construct efficient classifiers. The top 37 mutation features corresponding to different cancer types were discussed. All the qualitatively analyzed gene mutation features contribute to the distinction of different types of cancers, and most of such mutation rules are supported by recent literature. Therefore, our computational investigation could identify potential biomarkers and prediction rules for cancers in the mutation signature level.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Sciences, Shanghai University, Shanghai, China.,College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Xianchao Zhou
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China.,Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Zeng
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyong Pan
- Key Laboratory of System Control and Information Processing, Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Ministry of Education of China, Shanghai, China
| | - Yu-Hang Zhang
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Tao Huang
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Zhaoyuan Fang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
16
|
Xu X, Liu S, Yang Z, Zhao X, Deng Y, Zhang G, Pang J, Zhao C, Zhang W. A systematic review of computational methods for predicting long noncoding RNAs. Brief Funct Genomics 2021; 20:162-173. [PMID: 33754153 DOI: 10.1093/bfgp/elab016] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
Accurately and rapidly distinguishing long noncoding RNAs (lncRNAs) from transcripts is prerequisite for exploring their biological functions. In recent years, many computational methods have been developed to predict lncRNAs from transcripts, but there is no systematic review on these computational methods. In this review, we introduce databases and features involved in the development of computational prediction models, and subsequently summarize existing state-of-the-art computational methods, including methods based on binary classifiers, deep learning and ensemble learning. However, a user-friendly way of employing existing state-of-the-art computational methods is in demand. Therefore, we develop a Python package ezLncPred, which provides a pragmatic command line implementation to utilize nine state-of-the-art lncRNA prediction methods. Finally, we discuss challenges of lncRNA prediction and future directions.
Collapse
|
17
|
Lin H. Development and Application of Artificial Intelligence Methods in Biological and Medical Data. Curr Bioinform 2020. [DOI: 10.2174/157489361506200610112345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hao Lin
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
18
|
Zhang S, Qiao H. KD-KLNMF: Identification of lncRNAs subcellular localization with multiple features and nonnegative matrix factorization. Anal Biochem 2020; 610:113995. [PMID: 33080214 DOI: 10.1016/j.ab.2020.113995] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/07/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022]
Abstract
Long non-coding RNAs (lncRNAs) refer to functional RNA molecules with a length more than 200 nucleotides and have minimal or no function to encode proteins. In recent years, more studies show that lncRNAs subcellular localization has valuable clues for their biological functions. So it is count for much to identify lncRNAs subcellular localization. In this paper, a novel statistical model named KD-KLNMF is constructed to predict lncRNAs subcellular localization. Firstly, k-mer and dinucleotide-based spatial autocorrelation are incorporated as the feature vector. Then, Synthetic Minority Over-sampling Technique is used to deal with the imbalance dataset. Next, Kullback-Leibler divergence-based nonnegative matrix factorization is applied to select optimal features. And then we utilize support vector machine as the classifier after comparing with other classifiers. Finally, the jackknife test is performed to evaluate the model. The overall accuracies reach 97.24% and 92.86% on training dataset and independent dataset, respectively. The results are better than the previous methods, which indicate that our model will be a useful and feasible tool to identify lncRNAs subcellular localization. The datasets and source code are freely available at https://github.com/HuijuanQiao/KD-KLNMF.
Collapse
Affiliation(s)
- Shengli Zhang
- School of Mathematics and Statistics, Xidian University, Xi'an, 710071, PR China.
| | - Huijuan Qiao
- School of Mathematics and Statistics, Xidian University, Xi'an, 710071, PR China
| |
Collapse
|