1
|
Ai JY, Liu CF, Zhang W, Rao GW. Current status of drugs targeting PDGF/PDGFR. Drug Discov Today 2024; 29:103989. [PMID: 38663580 DOI: 10.1016/j.drudis.2024.103989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 04/30/2024]
Abstract
As an important proangiogenic factor, platelet-derived growth factor (PDGF) and its receptor PDGFR are highly expressed in a variety of tumors, fibrosis, cardiovascular and neurodegenerative diseases. Targeting the PDGF/PDGFR pathway is therefore a promising therapeutic strategy. At present, a variety of PDGF/PDGFR targeted drugs with potential therapeutic effects have been developed, mainly including PDGF agonists, inhibitors targeting PDGFR and proteolysis targeting chimera (PROTACs). This review clarifies the structure, biological function and disease correlation of PDGF and PDGFR, and it discusses the current status of PDGFR-targeted drugs, so as to provide a reference for subsequent research.
Collapse
Affiliation(s)
- Jing-Yan Ai
- College of Pharmaceutical Science, Zhejiang University of Technology, and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Chen-Fu Liu
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Wen Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Guo-Wu Rao
- College of Pharmaceutical Science, Zhejiang University of Technology, and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
2
|
Wang L, Xu L, Han S, Zhu X. Anlotinib Inhibits Cisplatin Resistance in Non-Small-Cell Lung Cancer Cells by Inhibiting MCL-1 Expression via MET/STAT3/Akt Pathway. Can Respir J 2024; 2024:2632014. [PMID: 38468814 PMCID: PMC10927342 DOI: 10.1155/2024/2632014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 10/10/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Background Anlotinib is an effective targeted therapy for advanced non-small-cell lung cancer (NSCLC) and has been found to mediate chemoresistance in many cancers. However, the underlying molecular mechanism of anlotinib mediates cisplatin (DDP) resistance in NSCLC remains unclear. Methods Cell viability was assessed by the cell counting kit 8 assay. Cell proliferation, migration, and invasion were determined using the colony formation assay and transwell assay. The mRNA expression levels of mesenchymal-epithelial transition factor (MET) and myeloid cell leukemia-1 (MCL-1) were measured by quantitative real-time PCR. Protein expression levels of MET, MCL-1, and STAT3/Akt pathway-related markers were examined using western blot analysis. Results Our data showed that anlotinib inhibited the DDP resistance of NSCLC cells by regulating cell proliferation and metastasis. Moreover, MET and MCL-1 expression could be decreased by anlotinib treatment. Silencing of MET suppressed the activity of the STAT3/Akt pathway and MCL-1 expression. Furthermore, MET overexpression reversed the inhibitory effect of anlotinib on the DDP resistance of NSCLC cells, and this effect could be eliminated by MCL-1 knockdown or ACT001 (an inhibitor for STAT3/Akt pathway). Conclusion Our results confirmed that anlotinib inhibited DDP resistance in NSCLC cells, which might decrease MCL-1 expression via mediating the MET/STAT3/Akt pathway.
Collapse
Affiliation(s)
- Lile Wang
- Department of Respiratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Lu Xu
- Department of Respiratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Shuhua Han
- Department of Respiratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Xiaoli Zhu
- Department of Respiratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
- School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
3
|
Yan M, Yang R, Li Q, Wang C, Chen J, Wu Z, Li H, Fan J. Anti-angiogenic and antitumor effects of anlotinib combined with bevacizumab for colorectal cancer. Transl Oncol 2024; 41:101887. [PMID: 38262112 PMCID: PMC10832611 DOI: 10.1016/j.tranon.2024.101887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND The progression and metastasis of tumors are typically accompanied by angiogenesis. Crucially, vascular endothelial growth factor (VEGF) and its receptors (VEGFRs) play a significant role in tumor-associated angiogenesis. In this study, the aim was to investigate the antitumor effect of combining bevacizumab (Bev) with anlotinib (An) on colorectal cancer (CRC). METHODS The CCK-8 assay, EdU assay, and Annexin V staining were conducted to evaluate the proliferation and apoptosis of CRC cells in vitro. The migration capability of CRC cells and HUVECs was assessed using the Transwell assay. Additionally, the tube formation capability of HUVECs was investigated. Furthermore, the antitumor and antiangiogenic effects were evaluated in the BALB/c mice model using immunohistochemistry, TUNEL staining, and 18F-FDG PET/CT imaging. Finally, we analyzed the inhibitory effect of Bev and/or An on related signaling effectors through western blotting. RESULTS The in vivo CRC mice model revealed that the combination of Bev + An significantly suppressed tumor formation and angiogenesis. Bev + An inhibited tumor glucose metabolism and increased the median survival period in tumor-bearing mice. Mechanistically, the expressions of VEGF, VEGFR2, PDGFR, and FGFR, as well as the phosphorylation levels of AKT, were inhibited after Bev+An treatment. In conclusion, the dual vertical targeting of VEGF and VEGFR in the CRC mice model strongly inhibited tumor growth and angiogenesis, with the suppression of the AKT signaling pathway playing a partial role.
Collapse
Affiliation(s)
- Min Yan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province 646000, PR China
| | - Ronghao Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province 646000, PR China
| | - Qi Li
- Department of Oncology, the SanTai County People's Hospital, Santai 621100, PR China
| | - Chenjie Wang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province 646000, PR China
| | - Jiali Chen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province 646000, PR China
| | - Zhenying Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province 646000, PR China
| | - Han Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province 646000, PR China
| | - Juan Fan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province 646000, PR China.
| |
Collapse
|
4
|
Chen Y, Chen S, Chen K, Ji L, Cui S. Magnolol and 5-fluorouracil synergy inhibition of metastasis of cervical cancer cells by targeting PI3K/AKT/mTOR and EMT pathways. CHINESE HERBAL MEDICINES 2024; 16:94-105. [PMID: 38375055 PMCID: PMC10874772 DOI: 10.1016/j.chmed.2023.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/29/2022] [Accepted: 01/16/2023] [Indexed: 02/21/2024] Open
Abstract
Objective This study is designed to investigate the mode of action of the synergistic effect of 5-fluorouracil (5-FU) and magnolol against cervical cancer. Methods Network pharmacological approach was applied to predict the molecular mechanism of 5-FU combined with magnolol against cervical cancer. CCK-8 assay, colony formation assay, immunofluorescence staining, adhesion assay, wound healing mobility assay, cell migration and invasion assay and Western blot analysis were conducted to validate the results of in silico study. Results Phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway was identified as the key pathway in silico study. The experimental results showed that 5-FU combined with magnolol strongly inhibited cervical cancer cell proliferation, induced the morphological change of HeLa cells by down-regulating the expression of α-actinin, tensin-2 and vinculin. Moreover, magnolol enhanced inhibitory effect of 5-FU on the cell adhesion, migration and invasion. The phosphorylation of AKT and PI3K and the expression of mTOR were strongly inhibited by the combination of 5-FU and magnolol. Moreover, the expression of E-cadherin and β-catenin was upregulated and the expression of Snail, Slug and vimentin was down-regulated by the 5-FU together with magnolol. Conclusion Taken together, this study suggests that 5-FU combined with magnolol exerts a synergistic anti-cervical cancer effect by regulating the PI3K/AKT/mTOR and epithelial-mesenchymal transition (EMT) signaling pathways.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225009, China
| | - Shanshan Chen
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225009, China
| | - Kaiting Chen
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225009, China
| | - Lanfang Ji
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225009, China
| | - Shuna Cui
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225009, China
- Department of Gynecology and Obstetrics, Affiliated Hospital of Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Zhao TL, Qi Y, Wang YF, Wang Y, Liang H, Pu YB. 5-methoxytryptophan induced apoptosis and PI3K/Akt/FoxO3a phosphorylation in colorectal cancer. World J Gastroenterol 2023; 29:6148-6160. [PMID: 38186686 PMCID: PMC10768408 DOI: 10.3748/wjg.v29.i47.6148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/04/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a highly prevalent malignancy worldwide, and new therapeutic targets urgently need to be found to prolong patient survival. 5-methoxytryptophan (5-MTP) is a tryptophan metabolite found in animals and humans. However, the effects of 5-MTP on proliferation and apoptosis of CRC cells are currently unknown. AIM To investigate the effects of 5-MTP on the proliferation, migration, invasion, and apoptosis abilities of CRC cells. Additionally, we seek to explore whether 5-MTP has the potential to be utilized as a drug for the treatment of CRC. METHODS In order to evaluate the effect of 5-MTP on CRC cells, a series of experiments were conducted for evaluation. Colony formation assay and Cell Counting Kit 8 assays were used to investigate the impact of 5-MTP on the proliferation of CRC cell lines. Cell cycle assays were employed to examine the effect of 5-MTP on cellular growth. In addition, we investigated the effects of 5-MTP on apoptosis and reactive oxygen species in HCT-116 cells. To obtain a deeper understanding of how 5-MTP affects CRC, we conducted a study to examine its influence on the PI3K/Akt signaling pathway in CRC cells. RESULTS This article showed that 5-MTP promoted apoptosis and cell cycle arrest and inhibited cell proliferation in CRC cells. In many articles, it has been reported that PI3K/Akt/FoxO3a signaling pathway is one of the most important signaling pathways involved in internal regulating cell proliferation and differentiation. Nevertheless, 5-MTP combined with PI3K/Akt/FoxO3a signaling pathway inhibitors significantly promoted apoptosis and cell cycle arrest and inhibited cell proliferation in CRC cells compared with 5-MTP alone in our study. CONCLUSION Therefore, there is strong evidence that 5-MTP can be used as an effective medicine for CRC treatment.
Collapse
Affiliation(s)
- Tian-Lei Zhao
- Department of General Surgery, Naval Medical Center of PLA, Shanghai 200052, China
| | - Yue Qi
- Department of General Surgery, Naval Medical Center of PLA, Shanghai 200052, China
| | - Yi-Fan Wang
- Department of General Surgery, Naval Medical Center of PLA, Shanghai 200052, China
| | - Yi Wang
- Department of General Surgery, Naval Medical Center of PLA, Shanghai 200052, China
| | - Hui Liang
- Department of Gastroenterology, Naval Medical Center of PLA, Shanghai 200052, China
| | - Ya-Bin Pu
- Department of General Surgery, Naval Medical Center of PLA, Shanghai 200052, China
| |
Collapse
|
6
|
Xia Y, Zhang L, Ocansey DKW, Tu Q, Mao F, Sheng X. Role of glycolysis in inflammatory bowel disease and its associated colorectal cancer. Front Endocrinol (Lausanne) 2023; 14:1242991. [PMID: 37881499 PMCID: PMC10595037 DOI: 10.3389/fendo.2023.1242991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023] Open
Abstract
Inflammatory bowel disease (IBD) has been referred to as the "green cancer," and its progression to colorectal cancer (CRC) poses a significant challenge for the medical community. A common factor in their development is glycolysis, a crucial metabolic mechanism of living organisms, which is also involved in other diseases. In IBD, glycolysis affects gastrointestinal components such as the intestinal microbiota, mucosal barrier function, and the immune system, including macrophages, dendritic cells, T cells, and neutrophils, while in CRC, it is linked to various pathways, such as phosphatidylinositol-3-kinase (PI3K)/AKT, AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), and transcription factors such as p53, Hypoxia-inducible factor (HIF), and c-Myc. Thus, a comprehensive study of glycolysis is essential for a better understanding of the pathogenesis and therapeutic targets of both IBD and CRC. This paper reviews the role of glycolysis in diseases, particularly IBD and CRC, via its effects on the intestinal microbiota, immunity, barrier integrity, signaling pathways, transcription factors and some therapeutic strategies targeting glycolytic enzymes.
Collapse
Affiliation(s)
- Yuxuan Xia
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Li Zhang
- Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, Jiangsu, China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Directorate of University Health Services, University of Cape Coast, Cape Coast, Ghana
| | - Qiang Tu
- Clinical Laboratory, Nanjing Jiangning Hospital, Nanjing, Jiangsu, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiumei Sheng
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
7
|
Kang M, Xue F, Xu S, Shi J, Mo Y. Effectiveness and safety of anlotinib with or without S-1 in the treatment of patients with advanced hepatocellular carcinoma in a Chinese population: a prospective, phase 2 study. Radiol Oncol 2023; 57:405-410. [PMID: 37494583 PMCID: PMC10476909 DOI: 10.2478/raon-2023-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/15/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND The aim of the study was to observe the safety and efficacy of anlotinib (ANL) alone or combined with S-1 in the first-line treatment of advanced hepatocellular carcinoma (HCC). PATIENTS AND METHODS Fifty-four patients with untreated advanced HCC who could not be resected were randomly divided into the ANL group (n = 27) and ANL+S-1 group (n = 27). The ANL group was given 10 mg ANL orally once a day for 14 consecutive days, stopped for 1 week, and repeated every 21 days. The ANL+S-1 group was given 10 mg ANL once a day orally and 40 mg S-1 twice a day orally for 14 consecutive days, stopped for 1 week, repeated every 21 days. All patients were treated until the disease progressed or toxicity became unacceptable. For patients who could not tolerate adverse reactions, the ANL dose should be reduced to 8 mg per day. CT or MRI was reviewed every 6 weeks to evaluate the efficacy. RESULTS A total of 44 patients were included in the results analysis, including 22 patients in the ANL group and 22 patients in the ANL+S-1 group. In the ANL group, the objective response rate (ORR) was 4.5% (1/22), the disease control rate (DCR) was 77.3% (17/22), the median progression-free survival (PFS) was 4.2 months (95% CI: 3.6-6.0) and the median overall survival (mOS) was 7.0 months (95% CI: 6.3-9.0). In the ANL+S-1 group, the ORR was 18.2% (4/22), the DCR was 59.1% (13/22), the median PFS was 4.0 months (95% CI: 3.6-5.4) and the mOS was 6.0 months (95% CI: 5.5-7.4). There was no significant difference in ORR (p = 0.345) or DCR (p = 0.195) between the two groups. Adverse reactions were mainly hypertension, anorexia, fatigue, liver transaminase heightened and hand and foot skin reaction. CONCLUSIONS ANL monotherapy was effective in the treatment of advanced HCC, and adverse reactions have been able to tolerated.
Collapse
Affiliation(s)
- Mafei Kang
- Department of Medical Oncology, Affiliated Hospital of Guilin Medical University, Guangxi Guilin, China
| | - Feng Xue
- Department of Medical Oncology, Affiliated Hospital of Guilin Medical University, Guangxi Guilin, China
| | - Shengyuan Xu
- Department of Medical Oncology, Affiliated Hospital of Guilin Medical University, Guangxi Guilin, China
| | - Jieqiong Shi
- Department of Medical Oncology, Affiliated Hospital of Guilin Medical University, Guangxi Guilin, China
| | - Yunyan Mo
- Department of Medical Oncology, Affiliated Hospital of Guilin Medical University, Guangxi Guilin, China
| |
Collapse
|
8
|
Li PJ, Lai SZ, Jin T, Ying HJ, Chen YM, Zhang P, Hang QQ, Deng H, Wang L, Feng JG, Chen XZ, Guo P, Chen M, Tian Y, Chen YY. Radiotherapy opens the blood-brain barrier and synergizes with anlotinib in treating glioblastoma. Radiother Oncol 2023; 183:109633. [PMID: 36963438 DOI: 10.1016/j.radonc.2023.109633] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 02/01/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023]
Abstract
BACKGROUND Glioblastoma (GBM) has a poor prognosis and lacks effective treatment. Anlotinib is a multitargeted receptor tyrosine kinase inhibitor (TKI) that may have anti-tumor activity in the central nervous system (CNS). This study aimed to determine the therapeutic value of radiotherapy combined with anlotinib in GBM via preclinical research. METHODS HPLC-MS/MS was used to assess the concentration of anlotinib in blood and brain samples. Cell proliferation assays, flow cytometry, and colony formation assays were performed in vitro. The potential value of anlotinib or in combination with radiotherapy for GBM treatment was estimated in vivo. Western blotting, immunohistochemistry, and immunofluorescent staining were performed to determine the underlying mechanism. RESULTS Anlotinib effectively inactivated the JAK3/STAT3 pathway to inhibit growth and induce apoptosis in malignant glioma cells (MGCs) independent of MGMT expression. Meanwhile, anlotinib induces MGCs G2/M arrest and sensitizes MGCs to radiation. Radiation down-regulates claudin-5 and weakens the blood-brain barrier (BBB), which contributes to the increased distribution of anlotinib in the CNS by 1.0-2.9 times. Anlotinib restrains tumor growth (PCNA), inhibits tumor microvascular proliferation (CD31), and alleviated intratumor hypoxia (HIF 1α) in vivo. Anlotinib alone or in combination with radiation is effective and safe in vivo evaluation. CONCLUSIONS We discovered that anlotinib, the original small molecule antiangiogenesis TKI, down-regulates JAK3/STAT3 axis with anti-cancer activity alone or in combination with radiation. Anlotinib combined with radiotherapy might be a promising treatment for newly diagnosed GBM in the clinic.
Collapse
Affiliation(s)
- Pei-Jing Li
- Department of Radiation Oncology & Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital & Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China; Department of Radiotherapy & Oncology, Second Affiliated Hospital of Soochow University, Institute of Radiotherapy & Oncology, Soochow University, Suzhou Key Laboratory for Radiation Oncology, Suzhou, China
| | - Shu-Zhen Lai
- Department of Radiation Oncology, Yuebei People's Hospital, Shantou University, Shaoguan, China
| | - Ting Jin
- Department of Radiation Oncology & Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital & Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Hang-Jie Ying
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, Institute of Cancer Research and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
| | - Ya-Mei Chen
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, Institute of Cancer Research and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
| | - Peng Zhang
- Department of Radiation Oncology & Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital & Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Qing-Qing Hang
- Department of Radiation Oncology & Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital & Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Huan Deng
- Department of Radiation Oncology & Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital & Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Lei Wang
- Department of Radiation Oncology & Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital & Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Jian-Guo Feng
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, Institute of Cancer Research and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
| | - Xiao-Zhong Chen
- Department of Radiation Oncology & Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital & Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Peng Guo
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Ming Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China.
| | - Ye Tian
- Department of Radiotherapy & Oncology, Second Affiliated Hospital of Soochow University, Institute of Radiotherapy & Oncology, Soochow University, Suzhou Key Laboratory for Radiation Oncology, Suzhou, China.
| | - Yuan-Yuan Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
9
|
Anlotinib Benefits the αPDL1 Immunotherapy by Activating ROS/JNK/AP-1 Pathway to Upregulate PDL1 Expression in Colorectal Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8965903. [PMID: 36238642 PMCID: PMC9553391 DOI: 10.1155/2022/8965903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/21/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022]
Abstract
Colorectal cancer (CRC) is one of the prevalent malignant tumors. This study is aimed at evaluating the mechanism of anlotinib (anlo) on tumor microenvironment (TME) in CRC, and its effects in combination with immune checkpoint inhibitors (ICIs) therapy. Firstly, MC38 and CT26 cells were both exposed to different gradient concentrations of anlo for 72 h, to investigate the cell viability and synergetic therapy efficacy with ICIs by CCK8. The results showed that anlo could obviously inhibit cell growth and showed no synergistic efficacy therapy in combination with αPDL1 in vitro. Then, we found the upregulation of programmed cell death ligand 1(PDL1) expression both in vitro and in vivo after anlo treatment. In vivo, anlo could enhance the percentage of natural killer (NK) cells and M1 macrophage cells and decrease the percentage of M2 macrophage cells in TME. Moreover, we explored the mechanism and we proved that anlo could activate reactive oxygen species (ROS)/c-Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) signaling pathway to increase the expression levels of PDL1, IFN-α/β/γ, and CXCL2 in two cell lines in vitro. We also proved that anlo had synergistic effects with ICIs in vivo. Finally, it could also increase the mRNA and protein PDL1 expression levels in human cell lines, which was consistent with mouse CRC cell lines. However, there are still a few limitations. On one hand, the ROS/JNK/AP-1 pathway needs to be proved whether it can be activated in human cell lines. On the other hand, the mechanism behind ROS promoting phosphorylation of JNK needs to be explored.
Collapse
|
10
|
Synergistic Antitumor Effects of Anlotinib Combined with Oral 5-Fluorouracil/S-1 via Inhibiting Src/AKT Signaling Pathway in Small-Cell Lung Cancer. Anal Cell Pathol (Amst) 2022; 2022:4484211. [PMID: 35757014 PMCID: PMC9225918 DOI: 10.1155/2022/4484211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/20/2022] [Accepted: 06/01/2022] [Indexed: 12/03/2022] Open
Abstract
Background Small-molecule tyrosine inhibitor anlotinib which developed in China has been approved as a third-line treatment for patients with small-cell lung cancer (SCLC). Our previous clinical study found that anlotinib combined with S-1 has better short-term ORR than the single-agent anlotinib of SCLC and other small-molecule vascular targeted drug therapies in the treatment of SCLC. However, the molecular mechanism of those effect remains unclear. Methods SCLC cell line H446 was treated with either anlotinib, 5-FU alone, or combination. The cellular effects including cell viability, cell apoptosis, cell cycle, cell migration, and invasion were explored to evaluate the cell proliferation level. Western blot was performed to determine the protein levels of the combined action of the two drugs. The xenograft mouse model was established by injection of H446 cells into mouse, and the animals were randomized and assigned for the drug treatments. Body weights and tumor sizes were recorded. WB was conducted using tumor tissues. All data were collected and statistically analyzed using t-test to reveal the underlying molecular mechanism. Results When anlotinib was combined with 5-FU, the IC50 value of cells was significantly reduced. And apoptosis, cell cycle arrest, and cell motility rates were stronger when anlotinib combined with 5-FU than in the anlotinib or 5-FU alone. In H446 cell-derived xenograft mouse model, tumor volumes were significantly decreased in Anlo/5-FU combination group than anlotinib or 5-FU alone group. Western blot showed the decreasing expression of p-Src/p-AKT in the Anlo/5-FU group. Conclusion Our data revealed that the treatment of combination of antitumor angiogenesis agent anlotinib with chemotherapy drug 5-FU may have synergistic cytotoxicity to SCLC in vitro and in vivo. This treatment modality reduced cell proliferation and migration via Src/AKT pathway. This new strategy may be a promising treatment for SCLC but needs to be confirmed in future clinical trials.
Collapse
|
11
|
Azwar S, Seow HF, Abdullah M, Faisal Jabar M, Mohtarrudin N. Recent Updates on Mechanisms of Resistance to 5-Fluorouracil and Reversal Strategies in Colon Cancer Treatment. BIOLOGY 2021; 10:854. [PMID: 34571731 PMCID: PMC8466833 DOI: 10.3390/biology10090854] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023]
Abstract
5-Fluorouracil (5-FU) plus leucovorin (LV) remain as the mainstay standard adjuvant chemotherapy treatment for early stage colon cancer, and the preferred first-line option for metastatic colon cancer patients in combination with oxaliplatin in FOLFOX, or irinotecan in FOLFIRI regimens. Despite treatment success to a certain extent, the incidence of chemotherapy failure attributed to chemotherapy resistance is still reported in many patients. This resistance, which can be defined by tumor tolerance against chemotherapy, either intrinsic or acquired, is primarily driven by the dysregulation of various components in distinct pathways. In recent years, it has been established that the incidence of 5-FU resistance, akin to multidrug resistance, can be attributed to the alterations in drug transport, evasion of apoptosis, changes in the cell cycle and DNA-damage repair machinery, regulation of autophagy, epithelial-to-mesenchymal transition, cancer stem cell involvement, tumor microenvironment interactions, miRNA dysregulations, epigenetic alterations, as well as redox imbalances. Certain resistance mechanisms that are 5-FU-specific have also been ascertained to include the upregulation of thymidylate synthase, dihydropyrimidine dehydrogenase, methylenetetrahydrofolate reductase, and the downregulation of thymidine phosphorylase. Indeed, the successful modulation of these mechanisms have been the game plan of numerous studies that had employed small molecule inhibitors, plant-based small molecules, and non-coding RNA regulators to effectively reverse 5-FU resistance in colon cancer cells. It is hoped that these studies would provide fundamental knowledge to further our understanding prior developing novel drugs in the near future that would synergistically work with 5-FU to potentiate its antitumor effects and improve the patient's overall survival.
Collapse
Affiliation(s)
- Shamin Azwar
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| | - Heng Fong Seow
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| | - Maha Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| | - Mohd Faisal Jabar
- Department of Surgery, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Norhafizah Mohtarrudin
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| |
Collapse
|
12
|
Yang S, Sun J, Xu M, Wang Y, Liu G, Jiang A. The Value of Anlotinib in the Treatment of Intractable Brain Edema: Two Case Reports. Front Oncol 2021; 11:617803. [PMID: 33828975 PMCID: PMC8020902 DOI: 10.3389/fonc.2021.617803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/03/2021] [Indexed: 11/13/2022] Open
Abstract
About 20-30 percent of patients with cancer, such as non-small cell lung cancer, breast cancer, melanoma and renal cell carcinoma, will develop brain metastases (BM). Primary and secondary brain tumors are often accompanied by peritumoral edema. Due to the limited intracranial space, peritumoral edema will further increase the intracranial pressure and aggravate clinical symptoms. Radiotherapy, as a basic component of the treatment of intracranial tumors, induces blood vessel damage and aggravates brain edema. The combination of edema caused by the tumor itself and radiotherapy is collectively referred to as intractable brain edema. Edema can increase intracranial pressure and cause associated neurologic symptoms, which seriously affects the quality of life of patients. Steroids, specifically dexamethasone, have become the gold standard for the management of tumor-associated edema. However, steroids can lead to variety of adverse effects, including moon face, high blood pressure, high blood sugar, increased risk of infection, bone thinning (osteoporosis), and fractures, especially with prolonged use. The investigation of other types of drugs is urgently needed to address this problem.Compared to other anti-angiogenic agents, anlotinib acts on vascular endothelial growth factor receptors (VEGFR1, VEGFR2/KDR, and VEGFR3), fibroblast growth factor receptors (FGFR1, FGFR2, FGFR3 and FGFR4), platelet derived growth factor receptor (PDGFR) and stem cell factor receptor (c-kit) simultaneously. However, according to the literature retrieval, there are no studies on anlotinib for the treatment of intractable brain edema. We describe here two cases of brain edema and review the literature available and hope to discover new agents that are safer and more effective.
Collapse
Affiliation(s)
- Song Yang
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jian Sun
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Mingna Xu
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yuru Wang
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Guihong Liu
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Aijun Jiang
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|