1
|
Kincses A, Szemerédi N, Benito-Lama M, Dózsai D, Csonka Á, Domínguez-Álvarez E, Spengler G. Selenocompounds as Potent Efflux Pump Inhibitors on Gram-positive Bacteria. ChemMedChem 2024:e202400691. [PMID: 39565046 DOI: 10.1002/cmdc.202400691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/03/2024] [Indexed: 11/21/2024]
Abstract
In recent years, selenocompounds have gained increasing attention as potential anticancer and antibacterial agents. Several selenoderivatives have been confirmed to act as MDR efflux pump inhibitors, based on their in vitro results against the bacterial AcrAB-TolC system and the cancer MDR efflux pump P-glycoprotein. Efflux pumps can contribute directly or indirectly to the virulence of bacteria, as they can reduce the intracellular concentration of antibacterial substances by expelling them out of the cell. The present work aims to study the antibacterial and efflux pump inhibiting properties of four families of selenoesters, namely aspirin-selenoesters, phenone-selenoesters, hydroxy-selenoesters, and benzyl-selenoesters. The real-time ethidium bromide accumulation assay confirmed that these derivatives inhibited the efflux systems of methicillin-resistant Staphylococcus aureus (MRSA) without exerting any antibacterial effect. The relative expression of efflux pump gene of NorA transporter was also monitored in the presence of the most potent derivatives on reference S. aureus, finding that these derivatives could change the expression of the tested efflux pump gene. Regarding the anti-biofilm activity, aspirin-selenoesters, benzyl-selenoesters, and hydroxy-selenoesters could efficiently inhibit the biofilm production of the MRSA strain. It can be concluded that selenocompounds could act as efflux pump inhibitors, thus reducing the virulence of biofilm-producing bacteria.
Collapse
Affiliation(s)
- Annamária Kincses
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis street 6, 6725, Szeged, Hungary
- Institute of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Eötvös street 6, 6720, Szeged, Hungary
| | - Nikoletta Szemerédi
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis street 6, 6725, Szeged, Hungary
| | - Miguel Benito-Lama
- Instituto de Química Orgánica General (IQOG), Consejo Superior de Organizaciones Científicas (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Dávid Dózsai
- Department of Traumatology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis street 6, 6725, Szeged, Hungary
| | - Ákos Csonka
- Department of Traumatology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis street 6, 6725, Szeged, Hungary
| | - Enrique Domínguez-Álvarez
- Instituto de Química Orgánica General (IQOG), Consejo Superior de Organizaciones Científicas (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Gabriella Spengler
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis street 6, 6725, Szeged, Hungary
| |
Collapse
|
2
|
Chu W, Liu P, Zhang Z, Wu D, Li W, Chen W, Li Z, Wang W, Yang Y. Preparation, characterization and cytotoxic activity of selenium nanoparticles stabilized with a heteropolysaccharide isolated from Sanghuangporus vaninii residue. Carbohydr Polym 2024; 343:122468. [PMID: 39174129 DOI: 10.1016/j.carbpol.2024.122468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 08/24/2024]
Abstract
Selenium nanoparticles (SeNPs) possess unique features with excellent bioavailability and bioactivity, but the poor stability limits its application. A combination of polysaccharides and SeNPs is an effective strategy to overcome the limitation. Herein, a heteropolysaccharide (SVL-3) with an average molecular weight of 2.428 × 104 Da was purified from the fruiting body residue of Sanghuangporus vaninii after soaking in sorghum wine, which was composed of fucose, galactose, glucose, fructose and 3-O-methyl-galactose. The main chain of SVL-3 was composed of →6)-α-3-MeO-Galp-(1→, →4)-α-D-Galp-(1→, →2,6)-β-D-Glcp-(1 → and →3)-α-D-Glcp-(1→, and the branched chain was composed of →4)-α-D-Xylp-(1 → and α-L-Fucp-(1→. For enhancing bioactivity of SVL-3 and stability of SeNPs, SVL-3-functionalized SeNPs (SVL-3-SeNPs) was prepared, which contained 45.31 % polysaccharide and 48.49 % selenium. SVL-3-SeNPs maintained an emphatic stability over 28 days at 4 °C and pH 6-8, and exhibited a higher cytotoxic effect on MCF-7 cells than SVL-3 and SeNPs. The inhibitory effect of SVL-3-SeNPs on the cancer cells may be associated with the mechanisms by inducing S-phase arrest, triggering apoptosis and elevating the protein levels of Cytochrome c, Caspases and cleaved caspases 3 and 9. These results indicated that SeNPs modified by S. vaninii polysaccharides can be utilized as a potential material for targeted antitumor drugs.
Collapse
Affiliation(s)
- Wenqi Chu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China; Shanghai Institute of Biological products CO., LTD, Shanghai 200050, China
| | - Peng Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Wen Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Zhengpeng Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Weike Wang
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China.
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China.
| |
Collapse
|
3
|
Nagarajan SB, Jayaraman A, Ramakrishnan S. Theranostic scope of monometallic selenium and titanium dioxide nanoparticles in biomedicine: A review. HEALTH CARE SCIENCE 2024; 3:215-231. [PMID: 39220427 PMCID: PMC11362656 DOI: 10.1002/hcs2.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024]
Abstract
The nanoparticles (NPs) of metals and metal oxides constitute significant components of technology in terms of monometallic NPs (MNPs). Over the last decade, the most fascinating and in-depth uses of NPs have been found in the biomedical field, which has demonstrated the therapeutic potential of these particles. Significant strides have been made in the application of nanotechnology across various industries, including biomedical sciences. In biomedicine, two of the most important applications of NPs are in the diagnosis and treatment of disease. Given their ability to deliver specific drugs, these next-generation NPs provide safe and effective pharmacotherapies for a wide range of disorders. Selenium nanoparticles (SeNPs) and titanium dioxide (TiO2) NPs offer potential treatments for various applications, including hair care and cancer treatment. SeNPs help with abiotic stress, plant disease, and growth, while TiO2 NPs enhance bio-imaging and drug delivery. This comprehensive review focuses on MNPs like Se (metal-based) and TiO2 (metal-oxide based). It covers their synthesis methods, nanoscale physicochemical properties, and the definition of specific industrial applications in various fields of applied nanotechnology, including biomedicine.
Collapse
Affiliation(s)
- Shwetha B. Nagarajan
- Nims Institute of Allied Medical Science and TechnologyNIMS UniversityJaipurRajasthanIndia
| | - Anuradha Jayaraman
- Nims Institute of Allied Medical Science and TechnologyNIMS UniversityJaipurRajasthanIndia
| | - Sanjeevi Ramakrishnan
- Nims Institute of Allied Medical Science and TechnologyNIMS UniversityJaipurRajasthanIndia
| |
Collapse
|
4
|
Umapathy S, Pan I, Issac PK, Kumar MSK, Giri J, Guru A, Arockiaraj J. Selenium Nanoparticles as Neuroprotective Agents: Insights into Molecular Mechanisms for Parkinson's Disease Treatment. Mol Neurobiol 2024:10.1007/s12035-024-04253-x. [PMID: 38837103 DOI: 10.1007/s12035-024-04253-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
Oxidative stress and the accumulation of misfolded proteins in the brain are the main causes of Parkinson's disease (PD). Several nanoparticles have been used as therapeutics for PD. Despite their therapeutic potential, these nanoparticles induce multiple stresses upon entry. Selenium (Se), an essential nutrient in the human body, helps in DNA formation, stress control, and cell protection from damage and infections. It can also regulate thyroid hormone metabolism, reduce brain damage, boost immunity, and promote reproductive health. Selenium nanoparticles (Se-NPs), a bioactive substance, have been employed as treatments in several disciplines, particularly as antioxidants. Se-NP, whether functionalized or not, can protect mitochondria by enhancing levels of reactive oxygen species (ROS) scavenging enzymes in the brain. They can also promote dopamine synthesis. By inhibiting the aggregation of tau, α-synuclein, and/or Aβ, they can reduce the cellular toxicities. The ability of the blood-brain barrier to absorb Se-NPs which maintain a healthy microenvironment is essential for brain homeostasis. This review focuses on stress-induced neurodegeneration and its critical control using Se-NP. Due to its ability to inhibit cellular stress and the pathophysiologies of PD, Se-NP is a promising neuroprotector with its anti-inflammatory, non-toxic, and antimicrobial properties.
Collapse
Affiliation(s)
- Suganiya Umapathy
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Tamil Nadu, 602105, India
| | - Ieshita Pan
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Tamil Nadu, 602105, India.
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Tamil Nadu, 602105, India
| | - Meenakshi Sundaram Kishore Kumar
- Biomedical Research Unit and Laboratory Animal Centre (BRULAC), Department of Anatomy, Saveetha Dental College, Chennai, Tamil Nadu, 600077, India
| | - Jayant Giri
- Department of Mechanical Engineering, Yeshwantrao Chavan College of Engineering, Nagpur, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
| |
Collapse
|
5
|
Chen Y, Zhu F, Chen J, Liu X, Li R, Wang Z, Cheong KL, Zhong S. Selenium nanoparticles stabilized by Sargassum fusiforme polysaccharides: Synthesis, characterization and bioactivity. Int J Biol Macromol 2024; 269:132073. [PMID: 38705328 DOI: 10.1016/j.ijbiomac.2024.132073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/10/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Selenium nanoparticles (SeNPs) are a potential tumor therapeutic drug and have attracted widespread attention due to their high bioavailability and significant anticancer activity. However, the poor water solubility and degradability of selenium nanoparticles severely limit their application. In this study, spherical selenium nanoparticles with a particle size of approximately 50 nm were prepared by using Sargassum fusiforme polysaccharide (SFPS) as a modifier and Tween-80 as a stabilizer. The results of in vitro experiments showed that Sargassum fusiforme polysaccharide-Tween-80-Selenium nanoparticles (SFPS-Tw-SeNPs) had a significant inhibitory effect on A549 cells, with an IC50 value of 6.14 μg/mL, and showed antitumor cell migration and invasion ability against A549 cells in scratch assays and cell migration and invasion assays (transwell assays). Western blot experiments showed that SFPS-Tw-SeNPs could inhibit the expression of tumor migration- and invasion-related proteins. These results suggest that SFPS-Tw-SeNPs may be potential tumor therapeutic agents, especially for the treatment of human lung cancer.
Collapse
Affiliation(s)
- Yanzhe Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China; Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, China
| | - Feifei Zhu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China; Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, China
| | - Jianping Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China; Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, China.
| | - Xiaofei Liu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China; Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, China
| | - Rui Li
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China; Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, China
| | - Zhuo Wang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China; Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, China
| | - Kit-Leong Cheong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China; Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, China
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China; Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, China
| |
Collapse
|
6
|
Adam-Dima EI, Balas M, Anastasescu M, Purdel C, Margină D. Synthesis of homogeneous spherical selenium nanoparticles through a chemical method for cancer therapy applications. Toxicol In Vitro 2024; 95:105765. [PMID: 38103703 DOI: 10.1016/j.tiv.2023.105765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Oxidative stress is associated with pathologies affecting various organs or metabolic pathways. Thus, targeting oxidative stress might represent a valid therapeutic option. Selenium nanoparticles (SeNPs) are reported to exert antioxidant effects by many mechanisms. Our purpose was to assess in vitro on normal (MRC-5) and cancer (PANC-1) cell lines the potential of SeNPs for inducing cytotoxicity and redox modulation. They were synthesized through a chemogenic method and characterized through advanced microscopy techniques. SeNPs were spherical, with 100 nm average diameters and low dimension variability. Cancer and normal cells were exposed for 24 h to different concentrations of SeNPs ranging from 1 to 25 μg/mL. According to the LDH and MTT assay results, SeNPs treatment caused a more pronounced decrease in cancer cell viability compared to normal cells, suggesting a possible therapeutic benefit on tumors, thus supporting the hypothesis of therapeutic use of SeNPs with the benefit of cell type selectivity. Neither an elevation nor an inhibition of intracellular ROS production was detected in MRC-5 cells exposed to concentrations between 1 and 25 μg/mL SeNPs. The results of this study suggest that SeNPs could represent potential candidate for treatment of cancer, especially pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- E I Adam-Dima
- Department of Toxicology, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania.
| | - M Balas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - M Anastasescu
- "Ilie Murgulescu" Institute of Physical-Chemistry, Romanian Academy, Splaiul Independentei no. 202, 060021 Bucharest, Romania
| | - C Purdel
- Department of Toxicology, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania.
| | - D Margină
- Department of Biochemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania.
| |
Collapse
|
7
|
Khaled AM, Othman MS, Obeidat ST, Aleid GM, Aboelnaga SM, Fehaid A, Hathout HMR, Bakkar AA, Moneim AEA, El-Garawani IM, Morsi DS. Green-Synthesized Silver and Selenium Nanoparticles Using Berberine: A Comparative Assessment of In Vitro Anticancer Potential on Human Hepatocellular Carcinoma Cell Line (HepG2). Cells 2024; 13:287. [PMID: 38334679 PMCID: PMC10854975 DOI: 10.3390/cells13030287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
A well-known natural ingredient found in several medicinal plants, berberine (Ber), has been shown to have anticancer properties against a range of malignancies. The limited solubility and bioavailability of berberine can be addressed using Ber-loaded nanoparticles. In this study, we compared the in vitro cytotoxic effects of both Ber-loaded silver nanoparticles (Ber-AgNPs) and Ber-loaded selenium nanoparticles (Ber-SeNPs) in the human liver cancer cell line (HepG2) and mouse normal liver cells (BNL). The IC50 values in HepG2 for berberine, Ber-AgNPs, Ber-SeNPs, and cisplatin were 26.69, 1.16, 0.04, and 0.33 µg/mL, respectively. Our results show that Ber and its Ag and Se nanoparticles exerted a good antitumor effect against HepG2 cells by inducing apoptosis via upregulating p53, Bax, cytosolic cytochrome C levels, and caspase-3 activity, and the down-regulation of Bcl-2 levels. Similarly, incubation with Ber and both Ber-NPs (Ag and Se) led to a significant dose-dependent elevation in inflammatory markers' (TNF-α, NF-κB, and COX-2) levels compared to the control group. In addition, it led to the arrest of the G1 cell cycle by depleting the expression of cyclin D1 and CDK-2 mRNA. Furthermore, Ber and both Ber-NPs (Ag and Se) caused a significant dose-dependent increase in LDH activity in HepG2 cells. Furthermore, our findings offer evidence that Ber and its nanoparticles intensified oxidative stress in HepG2 cells. Furthermore, the migration rate of cells subjected to berberine and its nanoforms was notably decreased compared to that of control cells. It can be inferred that Ber nanoparticles exhibited superior anticancer efficacy against HepG2 compared to unprocessed Ber, perhaps due to their improved solubility and bioavailability. Furthermore, Ber-SeNPs exhibited greater efficacy than Ber-AgNPs, possibly as a result of the inherent anticancer characteristics of selenium.
Collapse
Affiliation(s)
- Azza M. Khaled
- Biochemistry Department, College of Medicine, University of Ha’il, Hail P.O. Box 2440, Saudi Arabia; (A.M.K.); (M.S.O.); (G.M.A.)
| | - Mohamed S. Othman
- Biochemistry Department, College of Medicine, University of Ha’il, Hail P.O. Box 2440, Saudi Arabia; (A.M.K.); (M.S.O.); (G.M.A.)
| | - Sofian T. Obeidat
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha’il, Hail P.O. Box 2440, Saudi Arabia; (S.T.O.); (S.M.A.)
| | - Ghada M. Aleid
- Biochemistry Department, College of Medicine, University of Ha’il, Hail P.O. Box 2440, Saudi Arabia; (A.M.K.); (M.S.O.); (G.M.A.)
| | - Shimaa M. Aboelnaga
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha’il, Hail P.O. Box 2440, Saudi Arabia; (S.T.O.); (S.M.A.)
| | - Alaa Fehaid
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Mansoura University, El Mansoura 35516, Egypt;
| | - Heba M. R. Hathout
- Natural Resources Department, Faculty of African Postgraduate Studies, Cairo University, Giza 12613, Egypt;
| | - Ashraf A. Bakkar
- Faculty of Biotechnology, October University for Modern Science and Arts (MSA), Giza 12566, Egypt;
| | - Ahmed E. Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Ain Helwan, Cairo 11795, Egypt
| | - Islam M. El-Garawani
- Zoology Department, Faculty of Science, Menoufia University, Shibin El Kom 32511, Egypt; (I.M.E.-G.); (D.S.M.)
| | - Dalia S. Morsi
- Zoology Department, Faculty of Science, Menoufia University, Shibin El Kom 32511, Egypt; (I.M.E.-G.); (D.S.M.)
| |
Collapse
|
8
|
Martínez-Esquivias F, Perez-Larios A, Guzmán-Flores JM. Effect of Administration of Selenium Nanoparticles Synthesized Using Onion Extract on Biochemical and Inflammatory Parameters in Mice Fed with High-Fructose Diet: In Vivo and In Silico Analysis. Biol Trace Elem Res 2024; 202:558-568. [PMID: 37119340 DOI: 10.1007/s12011-023-03685-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
Fructose consumption has increased globally and has been linked to obesity, insulin resistance, and diabetes. Selenium nanoparticles (SeNPs) can regulate glucose and lipid concentrations and have immunoregulatory properties. Four study groups (n = 7/group) of eight-week-old male mice (Balb/c) were formed for this investigation. One group received a standard diet (C), another standard diet plus SeNPs (C + SeNPs), a high fructose diet (F), and a group with a high fructose diet plus SeNPs (F + SeNPs). Weight, glucose, triglycerides, and cholesterol were evaluated. In the end, mice were sacrificed, blood samples were obtained to assess cytokine profile, and liver, kidney, and pancreas were removed for histological examination. The study was complemented with an in silico analysis where the CTD, STITCH, ToppGene Suite, ShinyGO 0.76.3 databases, and Cytoscape software were implemented. The results of in vivo analysis showed that SeNPs regulated biochemical parameters and showed anti-inflammatory effects by decreasing the concentrations of TNF-alpha, IL-1beta, and IFN-gamma and increasing IL-10. No damage was observed in the studied organs. In addition, SeNPs regulate oxidative stress, preserve cell organelles, and regulate metabolic pathways to avoid the adverse effects of fructose consumption, according to bioinformatics analysis. In conclusion, SeNPs protect against the undesirable effects of a diet rich in fructose.
Collapse
Affiliation(s)
- Fernando Martínez-Esquivias
- Instituto de Investigación en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Av. Rafael Casillas Aceves 1200, Tepatitlán de Morelos, 47600, Jalisco, México
| | - Alejandro Perez-Larios
- Laboratorio de Materiales, Centro Universitario de Los Altos, Universidad de Guadalajara, Agua y Energía, Tepatitlán de Morelos, Jalisco, México
| | - Juan Manuel Guzmán-Flores
- Instituto de Investigación en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Av. Rafael Casillas Aceves 1200, Tepatitlán de Morelos, 47600, Jalisco, México.
| |
Collapse
|
9
|
Arafa FM, Mogahed NMFH, Eltarahony MM, Diab RG. Biogenic selenium nanoparticles: trace element with promising anti-toxoplasma effect. Pathog Glob Health 2023; 117:639-654. [PMID: 36871204 PMCID: PMC10498805 DOI: 10.1080/20477724.2023.2186079] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Toxoplasmosis is an opportunistic infection caused by the coccidian Toxoplasma gondii which represents a food and water contaminant. The available chemotherapeutic agents for toxoplasmosis are limited and the choice is difficult when considering the side effects. Selenium is an essential trace element. It is naturally found in dietary sources, especially seafood, and cereals. Selenium and selenocompounds showed anti-parasitic effects through antioxidant, immunomodulatory, and anti-inflammatory mechanisms. The present study evaluated the potential efficacy of environmentally benign selenium nanoparticles (SeNPs) against acute toxoplasmosis in a mouse model. SeNPs were fabricated by nanobiofactory Streptomyces fulvissimus and characterized by different analytical techniques including, UV-spectrophotometry, transmission electron microscopy, EDX, and XRD. Swiss albino mice were infected with Toxoplasma RH strain in a dose of 3500 tachyzoites in 100 μl saline to induce acute toxoplasmosis. Mice were divided into five groups. Group I: non-infected, non-treated, group II: infected, non-treated, group III: non-infected, treated with SeNPs, group IV: infected, treated with co-trimoxazole (sulfamethoxazole/trimethoprim) and group V: infected, treated with SeNPs. There was a significant increase in survival time in the SeNPs-treated group and minimum parasite count was observed compared to untreated mice in hepatic and splenic impression smears. Scanning electron microscopy showed tachyzoites deformity with multiple depressions and protrusions, while transmission electron microscopy showed excessive vacuolization and lysis of the cytoplasm, especially in the area around the nucleus and the apical complex, together with irregular cell boundary and poorly demarcated cell organelles. The present study demonstrated that the biologically synthesized SeNPs can be a potential natural anti-Toxoplasma agent in vivo.
Collapse
Affiliation(s)
- Fadwa M. Arafa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nermine M. F. H. Mogahed
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Marwa M. Eltarahony
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Universities and Research centers District, Alexandria, Egypt
| | - Radwa G. Diab
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
10
|
Golara A, Kozłowski M, Guzik P, Kwiatkowski S, Cymbaluk-Płoska A. The Role of Selenium and Manganese in the Formation, Diagnosis and Treatment of Cervical, Endometrial and Ovarian Cancer. Int J Mol Sci 2023; 24:10887. [PMID: 37446063 DOI: 10.3390/ijms241310887] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Selenium (Se) and manganese (Mn) are essential micronutrients that are important elements of cell metabolism. They are involved in the composition of enzyme systems and regulate enzyme activity. Disturbances in the homeostasis of these micronutrients affect the development of many diseases and carcinogenesis, which can be linked to increased levels of oxidative stress and impaired antioxidant properties of many enzymes. Selenium has a very important function in maintaining immune-endocrine, metabolic and cellular homeostasis. Manganese, on the other hand, is important in development, digestion, reproduction, antioxidant defense, energy production, immune response and regulation of neuronal activity. We review the role of selenium and manganese and their effects on tumor growth, metastasis potential and remodeling of the microenvironment. We also describe their role as potential biomarkers in the diagnosis and the potential for the use of Se- and Mn-containing compounds in composition for the treatment of cancer of the reproductive organs.
Collapse
Affiliation(s)
- Anna Golara
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Mateusz Kozłowski
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Paweł Guzik
- Clinical Department of Gynecology and Obstetrics, City Hospital, 35-241 Rzeszów, Poland
| | - Sebastian Kwiatkowski
- Department of Obstetrics and Gynecology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Aneta Cymbaluk-Płoska
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
11
|
Rohira H, Arora A, Kaur P, Chugh A. Peptide cargo administration: current state and applications. Appl Microbiol Biotechnol 2023; 107:3153-3181. [PMID: 37052636 PMCID: PMC10099029 DOI: 10.1007/s00253-023-12512-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023]
Abstract
Effective delivery of drug molecules to the target site is a challenging task. In the last decade, several innovations in the drug delivery system (DDS) have tremendously improved the therapeutic efficacy of drug molecules. Among various DDS, cell-penetrating peptides (CPPs) based DDS have gathered notable attention owing to their safety, efficacy, selectivity, specificity, and ease of synthesis. CPPs are emerging as an efficient and effective pharmaceutical nanocarriers-based platforms for successful management of various important human health disorders. Failure of several current chemotherapeutic strategies is attributed to low solubility, reduced bioavailability, and off-target delivery of several anti-cancer drugs. Similarly, development of therapeutics for vision-threatening disorders is challenged by the anatomical as well as physiological complexity of the eye. Such therapeutic challenges in cancer and ocular disease management can be overcome by developing cell-penetrating peptide (CPP) based peptide drug conjugates (PDCs). CPPs can be used to deliver various types of cargo molecules including nucleic acids, small molecules, and peptides/proteinaceous agents. In this review, we have briefly introduced CPPs and the linker strategies employed for the development of PDCs. Furthermore, recent studies employing CPP-based PDCs for cancer and ocular disease management have been discussed in detail highlighting their significance over conventional DDS. Later sections of the review are focused on the current status of clinical trials and future implications of CPP-based PDCs in vaccine development. KEY POINTS: • Cell-penetrating peptides (CPPs) can deliver a variety of cargo macromolecules via covalent and non-covalent conjugation. • CPP-based peptide drug conjugates (PDCs) can overcome drawbacks of conventional drug delivery methods such as biocompatibility, solubility, stability, and specificity. • Various PDCs are in clinical trial phase for cancer and ocular therapeutics.
Collapse
Affiliation(s)
- Harsha Rohira
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India
- Genohelex Care Pvt. Ltd, ASPIRE BioNEST, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Aditi Arora
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Prasanjeet Kaur
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Archana Chugh
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
12
|
Varlamova EG, Khabatova VV, Gudkov SV, Turovsky EA. Ca 2+-Dependent Effects of the Selenium-Sorafenib Nanocomplex on Glioblastoma Cells and Astrocytes of the Cerebral Cortex: Anticancer Agent and Cytoprotector. Int J Mol Sci 2023; 24:ijms24032411. [PMID: 36768736 PMCID: PMC9917080 DOI: 10.3390/ijms24032411] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Despite the fact that sorafenib is recommended for the treatment of oncological diseases of the liver, kidneys, and thyroid gland, and recently it has been used for combination therapy of brain cancer of various genesis, there are still significant problems for its widespread and effective use. Among these problems, the presence of the blood-brain barrier of the brain and the need to use high doses of sorafenib, the existence of mechanisms for the redistribution of sorafenib and its release in the brain tissue, as well as the high resistance of gliomas and glioblastomas to therapy should be considered the main ones. Therefore, there is a need to create new methods for delivering sorafenib to brain tumors, enhancing the therapeutic potential of sorafenib and reducing the cytotoxic effects of active compounds on the healthy environment of tumors, and ideally, increasing the survival of healthy cells during therapy. Using vitality tests, fluorescence microscopy, and molecular biology methods, we showed that the selenium-sorafenib (SeSo) nanocomplex, at relatively low concentrations, is able to bypass the mechanisms of glioblastoma cell chemoresistance and to induce apoptosis through Ca2+-dependent induction of endoplasmic reticulum stress, changes in the expression of selenoproteins and selenium-containing proteins, as well as key kinases-regulators of oncogenicity and cell death. Selenium nanoparticles (SeNPs) also have a high anticancer efficacy in glioblastomas, but are less selective, since SeSo in cortical astrocytes causes a more pronounced activation of the cytoprotective pathways.
Collapse
Affiliation(s)
- Elena G. Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| | - Venera V. Khabatova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilove st., 119991 Moscow, Russia
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilove st., 119991 Moscow, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
- Correspondence:
| |
Collapse
|
13
|
Mohamed SS, Ibrahim GS, Ghoneim MAM, Hassan AI. Evaluating the role of polysaccharide extracted from Pleurotus columbinus on cisplatin-induced oxidative renal injury. Sci Rep 2023; 13:835. [PMID: 36646729 PMCID: PMC9842759 DOI: 10.1038/s41598-022-27081-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/26/2022] [Indexed: 01/18/2023] Open
Abstract
This research aimed to examine the antioxidant polysaccharide activity (PsPc-3) derived from Pleurotus columbinus (P. columbinus) on oxidative renal injury (ORI) induced by cisplatin (CP). The principal components of crude polysaccharide were assessed. We studied the preventive impact of polysaccharide on cisplatin-induced renal damage in this study. For 21 days, we employed the CP-induced ORI rat model and divided the rats into four groups: control, CP alone, polysaccharide post CP (100 mg/kg) orally, and CP + polysaccharide (pre and post). The chemical characterization of the polysaccharide fraction PsPc-3 stated that protein was not present. PsPc-3 contained 7.2% uronic acid as assessed as 0% sulfate. PsPc-3 hydrolysate structured of Galacturonic:Glucose:Xylose and their molar proportions were 1:4:5, respectively. The average molecular weight (Mw) and molecular mass (Mn) per molecule of PsPc-3 were 5.49 × 104 g/mol and Mn of 4.95 × 104 g/mol respectively. DPPH radical scavenging activity was demonstrated by the polysaccharide of 65.21-95.51% at 10 mg/ml with IC50 less than 10 mg/ml. CP increased serum urea to 92.0 mg/dl and creatinine up to 1.0 mg/dl, with a concurrent decrease in the levels of total protein to 4.0 mg/dl. Besides, Also, CP-induced ORI raised levels of malondialdehyde (MDA), alkaline phosphatase (ALP), and renal hormones (renin and aldosterone), with a decline in antioxidants compared to control rats. In addition, in the presence of CP, interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-alpha) levels increased. PsPc-3 decreased these changes dramatically. PsPc-3 improves pathological renal damage caused by CP and decreases tubular apoptosis measured by DNA ladder formation and cleaved caspase- 3. These findings showed that PsPc-3 isolated from P. columbinus protects and inhibits tubular apoptosis in cisplatin-induced ORI. Furthermore, PsPc-3 has no influence on the anticancer efficacy of CP in rats. Thus, PsPc-3 derived from P. columbinus might provide a novel therapy method for cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Sahar S Mohamed
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Ghada S Ibrahim
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Mona A M Ghoneim
- Department of Radioisotopes, Nuclear Research Centre, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Amal I Hassan
- Department of Radioisotopes, Nuclear Research Centre, Egyptian Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|
14
|
A Randomized, Double-Blind, Placebo-Controlled Investigation of Selenium Supplementation in Women at Elevated Risk for Breast Cancer: Lessons for Re-Emergent Interest in Selenium and Cancer. Biomedicines 2022; 11:biomedicines11010049. [PMID: 36672557 PMCID: PMC9855926 DOI: 10.3390/biomedicines11010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/05/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Damage to cellular macromolecules such as DNA and lipid, induced via reactive oxygen species, and indicators of cell proliferation potential such as insulin-like growth factor (IGF) metabolic status are intermediate biomarkers of breast cancer risk. Based on reports that selenium status can affect these markers, a randomized, placebo-controlled, double-blind experiment was conducted to investigate the potential of selenium supplementation to modulate breast cancer risk. Using a placebo tablet or a tablet containing 200 μg selenium provided as high-selenium yeast daily for one year, concentrations of the biomarkers in blood or urine were assessed at baseline and after 6 and 12 months of intervention. The selenium intervention used in this study is presumed to mediate its effect via the induction of glutathione peroxidase activity and the consequential impact of the active form of this protein on oxidative damage. We found no evidence to support this hypothesis or to indicate that systemic IGF metabolic status was affected. Critical knowledge gaps must be addressed for the resurgence of interest in selenium and cancer to garner clinical relevance. Those knowledge gaps include the identification of a specific, high-affinity selenium metabolite and the cellular target(s) to which it binds, and the demonstration that the cellular determinant that the selenium metabolite binds plays a critical role in the initiation, promotion, or progression of a specific type of cancer.
Collapse
|
15
|
Martínez-Esquivias F, Guzmán-Flores JM, Perez-Larios A. Antimicrobial activity of green synthesized Se nanoparticles using ginger and onion extract: a laboratory and in silico analysis. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2022.2088432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Fernando Martínez-Esquivias
- Instituto de Investigación en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Mexico
| | - Juan Manuel Guzmán-Flores
- Instituto de Investigación en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Mexico
| | - Alejandro Perez-Larios
- Laboratorio de Investigación en Materiales, Agua y Energía, Departamento de Ingenierías, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Mexico
| |
Collapse
|
16
|
Himiniuc LM, Toma BF, Popovici R, Grigore AM, Hamod A, Volovat C, Volovat S, Nica I, Vasincu D, Agop M, Tirnovanu M, Ochiuz L, Negura A, Grigore M. Update on the Use of Nanocarriers and Drug Delivery Systems and Future Directions in Cervical Cancer. J Immunol Res 2022; 2022:1636908. [PMID: 35571568 PMCID: PMC9095399 DOI: 10.1155/2022/1636908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 03/19/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022] Open
Abstract
Cervical cancer represents a major health problem among females due to its increased mortality rate. The conventional therapies are very aggressive and unsatisfactory when it comes to survival rate, especially in terminal stages, which requires the development of new treatment alternatives. With the use of nanotechnology, various chemotherapeutic drugs can be transported via nanocarriers directly to cervical cancerous cells, thus skipping the hepatic first-pass effect and decreasing the rate of chemotherapy side effects. This review comprises various drug delivery systems that were applied in cervical cancer, such as lipid-based nanocarriers, polymeric and dendrimeric nanoparticles, carbon-based nanoparticles, metallic nanoparticles, inorganic nanoparticles, micellar nanocarriers, and protein and polysaccharide nanoparticles. Nanoparticles have a great therapeutic potential by increasing the pharmacological activity, drug solubility, and bioavailability. Through their mechanisms, they highly increase the toxicity in the targeted cervical tumor cells or tissues by linking to specific ligands. In addition, a nondifferentiable model is proposed through holographic implementation in the dynamics of drug delivery dynamics. As any hologram functions as a deep learning process, the artificial intelligence can be proposed as a new analyzing method in cervical cancer.
Collapse
Affiliation(s)
| | - Bogdan Florin Toma
- ”Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Razvan Popovici
- Department of Obstetrics and Gynecology, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Ana Maria Grigore
- ”Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | | | - Constantin Volovat
- Center of Oncology Euroclinic, 700110 Iasi, Romania
- “Grigore T. Popa” University of Medicine and Pharmacy, Department of Medical Oncology Radiotherapy, 700115 Iași, Romania
| | - Simona Volovat
- Center of Oncology Euroclinic, 700110 Iasi, Romania
- “Grigore T. Popa” University of Medicine and Pharmacy, Department of Medical Oncology Radiotherapy, 700115 Iași, Romania
| | - Irina Nica
- Department of Odontology, Periodontics and Fixed Restoration, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Decebal Vasincu
- Department of Dental and Oro-Maxillo-Facial Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Maricel Agop
- Department of Physics, “Gheorghe Asachi” Technical University of Iasi, Iasi 700050, Romania
- Romanian Scientists Academy, Bucharest 050094, Romania
| | - Mihaela Tirnovanu
- Department of Obstetrics and Gynecology, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Lacramioara Ochiuz
- Department of Pharmaceutical and Biotechnological Drug Industry, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Anca Negura
- Oncogenetics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Biology Department, “Alexandru Ioan Cuza” University, 700506 Iaşi, Romania
| | - Mihaela Grigore
- Department of Obstetrics and Gynecology, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| |
Collapse
|
17
|
Necroptosis and Prostate Cancer: Molecular Mechanisms and Therapeutic Potential. Cells 2022; 11:cells11071221. [PMID: 35406784 PMCID: PMC8997385 DOI: 10.3390/cells11071221] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/16/2022] Open
Abstract
Necroptosis is a programmed form of necrosis characterized by mitochondrial alterations and plasma membrane permeabilization resulting in the release of cytoplasmic content into extracellular space, and leading to inflammatory reactions. Besides its critical role in viral defense mechanisms and inflammatory diseases, necroptosis plays pivotal functions in the drug response of tumors, including prostate cancer. Necroptosis is mainly governed by kinase enzymes, including RIP1, RIP3, and MLKL, and conversely to apoptosis, is a caspase-independent mechanism of cell death. Numerous compounds induce necroptosis in prostate cancer models, including (i) compounds of natural origin, (ii) synthetic and semisynthetic small molecules, and (iii) selenium and selenium-based nanoparticles. Here, we overview the molecular mechanisms underlying necroptosis and discuss the possible implications of drugs inducing necroptosis for prostate cancer therapy.
Collapse
|
18
|
Bartz RH, Silva KB, Peglow TJ, Barcellos AM, Jacob RG, Lenardão EJ, Perin G. Radical cyclization of alkynyl aryl ketones for the synthesis of 3-seleno-substituted thiochromones and chromones. Org Biomol Chem 2022; 20:8952-8961. [DOI: 10.1039/d2ob01762h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Herein we present an alternative and transition-metal-free procedure to access 3-organoselanylthiochromones and 3-organoselanylchromones from the cyclization reaction between alkynyl aryl ketones and diorganyl diselenides promoted by Oxone®.
Collapse
Affiliation(s)
- Ricardo H. Bartz
- LASOL-CCQFA, Universidade Federal de Pelotas – UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Krigor B. Silva
- LASOL-CCQFA, Universidade Federal de Pelotas – UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Thiago J. Peglow
- LASOL-CCQFA, Universidade Federal de Pelotas – UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Angelita M. Barcellos
- LASOL-CCQFA, Universidade Federal de Pelotas – UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Raquel G. Jacob
- LASOL-CCQFA, Universidade Federal de Pelotas – UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Eder J. Lenardão
- LASOL-CCQFA, Universidade Federal de Pelotas – UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Gelson Perin
- LASOL-CCQFA, Universidade Federal de Pelotas – UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| |
Collapse
|