1
|
González-Hernández A, Villalón CM. The influence of pharmacodynamics and pharmacokinetics on the antimigraine efficacy and safety of novel anti-CGRPergic pharmacotherapies: a narrative review. Expert Opin Drug Metab Toxicol 2025; 21:41-52. [PMID: 39319681 DOI: 10.1080/17425255.2024.2409253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION Migraine is a complex disorder, and its etiology is not yet fully understood. In the last 40 years, calcitonin gene-related peptide (CGRP) has been central to the understanding of migraine pathophysiology, leading to the development of new molecules targeting the CGRPergic system. These new molecules, such as gepants and monoclonal antibodies, are effective, well-tolerated, and safe, and are approved for clinical use. AREAS COVERED By searching multiple electronic scientific databases, this narrative review examined: (i) the role of CGRP in migraine; and (ii) the current knowledge on the effects of CGRPergic antimigraine pharmacotherapies, including a brief analysis of their pharmacodynamic and pharmacokinetic characteristics. EXPERT OPINION Current anti-CGRPergic medications, although effective, have limitations, such as side effects and lack of antimigraine efficacy in some patients. The existence of patients with medication-resistant migraine may be due to the: (i) complex migraine pathophysiology, in which several systems appear to be deregulated before, during, and after a migraine attack; and (ii) pharmacodynamic and pharmacokinetic properties of antimigraine medications. As envisioned here, although seminal studies support the notion that CGRP plays a key role in migraine headache, the dysfunction of CGRPergic transmission does not seem to be relevant in all cases.
Collapse
Affiliation(s)
| | - Carlos M Villalón
- Departamento de Farmacobiología, Cinvestav-Coapa, Ciudad de México, México
| |
Collapse
|
2
|
Blumenfeld AM, Lipton RB, Silberstein S, Tepper SJ, Charleston L, Landy S, Kuruvilla DE, Manack Adams A. Multimodal Migraine Management and the Pursuit of Migraine Freedom: A Narrative Review. Neurol Ther 2023; 12:1533-1551. [PMID: 37542624 PMCID: PMC10444724 DOI: 10.1007/s40120-023-00529-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/21/2023] [Indexed: 08/07/2023] Open
Abstract
Migraine is a neurologic disease with a complex pathophysiology that can be controlled with current treatment options but not cured. Therefore, treatment expectations are highly variable. The concept of migraine freedom was recently introduced and can mean different things, with some, for example, expecting complete freedom from headache and associated symptoms and others accepting the occasional migraine attack if it does not impact functioning. Therefore, migraine management should be optimized so that patients can have the best opportunity to achieve their optimal treatment goals. With migraine freedom as a goal and, given the complex pathophysiology of migraine and the high incidence of comorbidities among individuals with migraine, treatment with a single modality may be insufficient, as it may not achieve migraine freedom in those with more frequent or disabling attacks. In this clinical perspective article, we have identified four key, partially overlapping principles of multimodal migraine treatment: (1) manage common comorbidities; (2) control modifiable risk factors for progression by addressing medication and caffeine overuse; (3) diagnose and treat secondary causes of headache, if present; and (4) individualize acute and preventive treatments to minimize pain, functional disability, and allodynia. There are many barriers to pursuing migraine freedom, and strategies to overcome them should be optimized. Migraine freedom should be an aspirational goal both at the individual attack level and for the disease overall. We believe that a comprehensive and multimodal approach that addresses all barriers people with migraine face could move patients closer to migraine freedom.
Collapse
Affiliation(s)
| | | | | | - Stewart J Tepper
- New England Institute for Neurology and Headache, Stamford, CT, USA
| | - Larry Charleston
- Department of Neurology and Ophthalmology, Michigan State University College of Human Medicine, East Lansing, MI, USA
| | | | | | | |
Collapse
|
3
|
Labastida-Ramírez A, Caronna E, Gollion C, Stanyer E, Dapkute A, Braniste D, Naghshineh H, Meksa L, Chkhitunidze N, Gudadze T, Pozo-Rosich P, Burstein R, Hoffmann J. Mode and site of action of therapies targeting CGRP signaling. J Headache Pain 2023; 24:125. [PMID: 37691118 PMCID: PMC10494408 DOI: 10.1186/s10194-023-01644-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/01/2023] [Indexed: 09/12/2023] Open
Abstract
Targeting CGRP has proved to be efficacious, tolerable, and safe to treat migraine; however, many patients with migraine do not benefit from drugs that antagonize the CGRPergic system. Therefore, this review focuses on summarizing the general pharmacology of the different types of treatments currently available, which target directly or indirectly the CGRP receptor or its ligand. Moreover, the latest evidence regarding the selectivity and site of action of CGRP small molecule antagonists (gepants) and monoclonal antibodies is critically discussed. Finally, the reasons behind non-responders to anti-CGRP drugs and rationale for combining and/or switching between these therapies are addressed.
Collapse
Affiliation(s)
- Alejandro Labastida-Ramírez
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, UK
| | - Edoardo Caronna
- Headache Unit, Neurology Department, Vall d'Hebron Universitary Hospital, Barcelona, Spain
- Headache Research Group, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cédric Gollion
- Department of Neurology, University Hospital of Toulouse, Toulouse, France
| | - Emily Stanyer
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, UK
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, UK
| | | | - Diana Braniste
- Institute of Neurology and Neurosurgery, Diomid Gherman, Chișinău, Moldova
- State University of Medicine and Pharmacy, Nicolae Testemițanu, Moldova
| | - Hoda Naghshineh
- Headache Department, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Science, Tehran, Iran
| | - Liga Meksa
- Headache Unit, Neurology and Neurosurgery Department, Riga East University Hospital Gailezers, Riga, Latvia
| | | | - Tamari Gudadze
- Department of Neurology, Christian Hospital Unna, Unna, Germany
| | - Patricia Pozo-Rosich
- Headache Unit, Neurology Department, Vall d'Hebron Universitary Hospital, Barcelona, Spain
- Headache Research Group, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rami Burstein
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Anesthesia, Harvard Medical School, Boston, MA, USA
- Center for Life Science, Room 649, 3 Blackfan Circle, Boston, MA, 02215, USA
| | - Jan Hoffmann
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, UK.
- NIHR-Wellcome Trust King's Clinical Research Facility/SLaM Biomedical Research Centre, King's College Hospital, London, UK.
| |
Collapse
|
4
|
Biscetti L, Cresta E, Cupini LM, Calabresi P, Sarchielli P. The putative role of neuroinflammation in the complex pathophysiology of migraine: From bench to bedside. Neurobiol Dis 2023; 180:106072. [PMID: 36907522 DOI: 10.1016/j.nbd.2023.106072] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/18/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023] Open
Abstract
The implications of neurogenic inflammation and neuroinflammation in the pathophysiology of migraine have been clearly demonstrated in preclinical migraine models involving several sites relevant in the trigemino-vascular system, including dural vessels and trigeminal endings, the trigeminal ganglion, the trigeminal nucleus caudalis as well as central trigeminal pain processing structures. In this context, a relevant role has been attributed over the years to some sensory and parasympathetic neuropeptides, in particular calcitonin gene neuropeptide, vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Several preclinical and clinical lines of evidence also support the implication of the potent vasodilator and messenger molecule nitric oxide in migraine pathophysiology. All these molecules are involved in vasodilation of the intracranial vasculature, as well as in the peripheral and central sensitization of the trigeminal system. At meningeal level, the engagement of some immune cells of innate immunity, including mast-cells and dendritic cells, and their mediators, has been observed in preclinical migraine models of neurogenic inflammation in response to sensory neuropeptides release due to trigemino-vascular system activation. In the context of neuroinflammatory events implicated in migraine pathogenesis, also activated glial cells in the peripheral and central structures processing trigeminal nociceptive signals seem to play a relevant role. Finally, cortical spreading depression, the pathophysiological substrate of migraine aura, has been reported to be associated with inflammatory mechanisms such as pro-inflammatory cytokine upregulation and intracellular signalling. Reactive astrocytosis consequent to cortical spreading depression is linked to an upregulation of these inflammatory markers. The present review summarizes current findings on the roles of immune cells and inflammatory responses in the pathophysiology of migraine and their possible exploitation in the view of innovative disease-modifying strategies.
Collapse
Affiliation(s)
- Leonardo Biscetti
- Istituto Nazionale di Ricovero e Cura dell'Anziano a carattere scientifico, IRCCS-INRCA, Ancona, Italy.
| | - Elena Cresta
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Paolo Calabresi
- Department of Neuroscience, Università Cattolica Sacro Cuore, Rome, Italy; Neurologia, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Paola Sarchielli
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
5
|
The Anti-CGRP Antibody Fremanezumab Lowers CGRP Release from Rat Dura Mater and Meningeal Blood Flow. Cells 2022; 11:cells11111768. [PMID: 35681463 PMCID: PMC9179471 DOI: 10.3390/cells11111768] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022] Open
Abstract
Monoclonal antibodies directed against the neuropeptide calcitonin gene-related peptide (CGRP) belong to a new generation of therapeutics that are effective in the prevention of migraine. CGRP, a potent vasodilator, is strongly implicated in the pathophysiology of migraine, but its role remains to be fully elucidated. The hemisected rat head preparation and laser Doppler flowmetry were used to examine the effects on CGRP release from the dura mater and meningeal blood flow of the subcutaneously injected anti-CGRP monoclonal antibody fremanezumab at 30 mg/kg, when compared to an isotype control antibody. Some rats were administered glycerol trinitrate (GTN) intraperitoneally to produce a migraine-like sensitized state. When compared to the control antibody, the fremanezumab injection was followed by reduced basal and capsaicin-evoked CGRP release from day 3 up to 30 days. The difference was enhanced after 4 h of GTN application. The samples from the female rats showed a higher CGRP release compared to that of the males. The increases in meningeal blood flow induced by acrolein (100 µM) and capsaicin (100 nM) were reduced 13–20 days after the fremanezumab injection, and the direct vasoconstrictor effect of high capsaicin (10 µM) was intensified. In conclusion, fremanezumab lowers the CGRP release and lasts up to four weeks, thereby lowering the CGRP-dependent meningeal blood flow. The antibody may not only prevent the released CGRP from binding but may also influence the CGRP release stimulated by noxious agents relevant for the generation of migraine pain.
Collapse
|
6
|
de Tommaso M, La Rocca M, Quitadamo SG, Ricci K, Tancredi G, Clemente L, Gentile E, Ammendola E, Delussi M. Central effects of galcanezumab in migraine: a pilot study on Steady State Visual Evoked Potentials and occipital hemodynamic response in migraine patients. J Headache Pain 2022; 23:52. [PMID: 35484504 PMCID: PMC9052688 DOI: 10.1186/s10194-022-01421-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The discovery of the prominent action of Calcitonin Gene Related Peptide -CGRP- on trigeminal afferents and meningeal vessels, opened a new era in migraine treatment. However, how the block of nociceptive afferents could act on central mechanisms of migraine is still not clear. In this pilot study we aimed to test the effect of 3 months Galcanezumab (CGA) therapy on occipital visual reactivity in migraine patients, using the Steady State Visual Evoked Potentials-SSVEPs and Functional Near Infrared Spectroscopy -fNIRS. METHOD Thirteen migraine patients underwent clinical and neurophysiological examination in basal condition (T0), 1 h after GCA injection (T1) and after 3 months of GCA treatment (T2). Ten healthy volunteers were also evaluated. RESULTS At T2, there was a reduction of headache frequency and disability. At T2, the EEG power significantly diminished as compared to T0 and T1 at occipital sites, and the topographical analysis confirmed a restoration of SSVEPs within normal values. The Oxyhemoglobin levels in occipital cortex, which were basically increased during visual stimulation in migraine patients, reverted to normal values at T2. CONCLUSIONS The present pilot study indicates that Galcanezumab could act on cortical targets located beyond the pain network, restoring the abnormal occipital reactivity. This effect could indicate the possible disease modifying properties of CGRP related monoclonal antibodies.
Collapse
Affiliation(s)
- Marina de Tommaso
- Applied Neurophysiology and Pain Unit, Bari Aldo Moro UniversityPoliclinico General Hospital, Piazza Giulio Cesare 11, 70124, Bari, Italy.
| | - Marianna La Rocca
- Dipartimento Interateneo di Fisica 'M. Merlin', Università degli Studi di Bari 'A. Moro', Bari, Italy.,Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Silvia Giovanna Quitadamo
- Applied Neurophysiology and Pain Unit, Bari Aldo Moro UniversityPoliclinico General Hospital, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Katia Ricci
- Applied Neurophysiology and Pain Unit, Bari Aldo Moro UniversityPoliclinico General Hospital, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Giusy Tancredi
- Applied Neurophysiology and Pain Unit, Bari Aldo Moro UniversityPoliclinico General Hospital, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Livio Clemente
- Applied Neurophysiology and Pain Unit, Bari Aldo Moro UniversityPoliclinico General Hospital, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Eleonora Gentile
- Applied Neurophysiology and Pain Unit, Bari Aldo Moro UniversityPoliclinico General Hospital, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Elena Ammendola
- Applied Neurophysiology and Pain Unit, Bari Aldo Moro UniversityPoliclinico General Hospital, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Marianna Delussi
- Applied Neurophysiology and Pain Unit, Bari Aldo Moro UniversityPoliclinico General Hospital, Piazza Giulio Cesare 11, 70124, Bari, Italy
| |
Collapse
|
7
|
Sokolov AY, Osipchuk AV, Skiba IB, Amelin AV. The Role of Pituitary Adenylate Cyclase-Activating Polypeptide and Vasoactive Intestinal Peptide in Migraine Pathogenesis. NEUROCHEM J+ 2022. [DOI: 10.1134/s1819712422010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
González-Hernández A, Marichal-Cancino BA, Villalón CM. The impact of CGRPergic monoclonal antibodies on prophylactic antimigraine therapy and potential adverse events. Expert Opin Drug Metab Toxicol 2021; 17:1223-1235. [PMID: 34535065 DOI: 10.1080/17425255.2021.1982892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Migraine is a prevalent medical condition and the second most disabling neurological disorder. Regarding its pathophysiology, calcitonin gene-related peptide (CGRP) plays a key role, and, consequently, specific antimigraine pharmacotherapy has been designed to target this system. Hence, apart from the gepants, the recently developed monoclonal antibodies (mAbs) are a novel approach to treat this disorder. In this review we consider the current knowledge on the mechanisms of action, specificity, safety, and efficacy of the above mAbs as prophylactic antimigraine agents, and examine the possible adverse events that these agents may trigger. Antimigraine mAbs act as direct scavengers of CGRP (galcanezumab, fremanezumab, and eptinezumab) or against the CGRP receptor (erenumab). Due to their long half-lives, these molecules have revolutionized the prophylactic treatment of this neurovascular disorder. Moreover, because of their physicochemical properties, these agents are hepato-friendly and do not cross the blood-brain barrier (highlighting the relevance of peripheral mechanisms in migraine). Nevertheless, apart from potential cardiovascular side effects, the interaction with AMY1 receptors and immunogenicity induced by autoantibodies against mAbs could be a concern for the safety of long-term treatment with these molecules.
Collapse
Affiliation(s)
- Abimael González-Hernández
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Bruno A Marichal-Cancino
- Departamento de Fisiología y Farmacología, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, Aguascalientes, México
| | - Carlos M Villalón
- Departamento de Farmacobiología, Cinvestav‑Coapa, Ciudad de México, México
| |
Collapse
|
9
|
Marichal-Cancino BA, González-Hernández A, Guerrero-Alba R, Medina-Santillán R, Villalón CM. A critical review of the neurovascular nature of migraine and the main mechanisms of action of prophylactic antimigraine medications. Expert Rev Neurother 2021; 21:1035-1050. [PMID: 34388955 DOI: 10.1080/14737175.2021.1968835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Migraine involves neurovascular, functional, and anatomical alterations. Migraineurs experience an intense unilateral and pulsatile headache frequently accompanied with vomiting, nausea, photophobia, etc. Although there is no ideal preventive medication, frequency in migraine days may be partially decreased by some prophylactics, including antihypertensives, antidepressants, antiepileptics, and CGRPergic inhibitors. However, the mechanisms of action involved in antimigraine prophylaxis remain elusive. AREAS COVERED This review recaps some of the main neurovascular phenomena related to migraine and currently available preventive medications. Moreover, it discusses the major mechanisms of action of the recommended prophylactic medications. EXPERT OPINION In the last three years, migraine prophylaxis has evolved from nonspecific to specific antimigraine treatments. Overall, nonspecific treatments mainly involve neural actions, whereas specific pharmacotherapy (represented by CGRP receptor antagonists and CGRPergic monoclonal antibodies) is predominantly mediated by neurovascular mechanisms that may include, among others: (i) reduction in the cortical spreading depression (CSD)-associated events; (ii) inhibition of pain sensitization; (iii) blockade of neurogenic inflammation; and/or (iv) increase in cranial vascular tone. Accordingly, the novel antimigraine prophylaxis promises to be more effective, devoid of significant adverse effects (unlike nonspecific treatments), and more beneficial for the quality of life of migraineurs.
Collapse
Affiliation(s)
- Bruno A Marichal-Cancino
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Ags, México
| | | | - Raquel Guerrero-Alba
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Ags, México
| | - Roberto Medina-Santillán
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina IPN, Ciudad de México C.P, México
| | - Carlos M Villalón
- Departamento de Farmacobiología, Cinvestav-Coapa, Ciudad de México, México
| |
Collapse
|
10
|
González-Hernández A, Condés-Lara M, García-Boll E, Villalón CM. An outlook on the trigeminovascular mechanisms of action and side effects concerns of some potential neuropeptidergic antimigraine therapies. Expert Opin Drug Metab Toxicol 2021; 17:179-199. [DOI: 10.1080/17425255.2021.1856366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Miguel Condés-Lara
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Enrique García-Boll
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Carlos M. Villalón
- Departamento de Farmacobiología, Cinvestav-Coapa, Ciudad de México, México
| |
Collapse
|
11
|
Szkutnik-Fiedler D. Pharmacokinetics, Pharmacodynamics and Drug-Drug Interactions of New Anti-Migraine Drugs-Lasmiditan, Gepants, and Calcitonin-Gene-Related Peptide (CGRP) Receptor Monoclonal Antibodies. Pharmaceutics 2020; 12:pharmaceutics12121180. [PMID: 33287305 PMCID: PMC7761673 DOI: 10.3390/pharmaceutics12121180] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 02/08/2023] Open
Abstract
In the last few years, there have been significant advances in migraine management and prevention. Lasmiditan, ubrogepant, rimegepant and monoclonal antibodies (erenumab, fremanezumab, galcanezumab, and eptinezumab) are new drugs that were launched on the US pharmaceutical market; some of them also in Europe. This publication reviews the available worldwide references on the safety of these anti-migraine drugs with a focus on the possible drug–drug (DDI) or drug–food interactions. As is known, bioavailability of a drug and, hence, its pharmacological efficacy depend on its pharmacokinetics and pharmacodynamics, which may be altered by drug interactions. This paper discusses the interactions of gepants and lasmiditan with, i.a., serotonergic drugs, CYP3A4 inhibitors, and inducers or breast cancer resistant protein (BCRP) and P-glycoprotein (P-gp) inhibitors. In the case of monoclonal antibodies, the issue of pharmacodynamic interactions related to the modulation of the immune system functions was addressed. It also focuses on the effect of monoclonal antibodies on expression of class Fc gamma receptors (FcγR).
Collapse
Affiliation(s)
- Danuta Szkutnik-Fiedler
- Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, Św. Marii Magdaleny 14 St., 61-861 Poznań, Poland
| |
Collapse
|