1
|
Carmona RCC, Reis FC, Cilli A, Dias JMM, Machado BC, de Morais DR, Jorge AV, Dias AMN, de Sousa CA, Calou SB, Ferreira GH, Leme L, Timenetsky MDCST, Eduardo MBDP. Beyond Poliomyelitis: A 21-Year Study of Non-Polio Enterovirus Genotyping and Its Relevance in Acute Flaccid Paralysis in São Paulo, Brazil. Viruses 2024; 16:1875. [PMID: 39772185 PMCID: PMC11680237 DOI: 10.3390/v16121875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
In the context of the near-global eradication of wild poliovirus, the significance of non-polio enteroviruses (NPEVs) in causing acute flaccid paralysis (AFP) and their impact on public health has gained increased attention. This research, conducted from 2001 to 2021, examined stool samples from 1597 children under 15 years in São Paulo, Brazil, through the AFP/Poliomyelitis Surveillance Program, detecting NPEVs in 6.9% of cases. Among the 100 NPEV-positive strains analyzed, 90 were genotyped through genomic sequencing of the partial VP1 region, revealing a predominance of EV-B species (58.9%), followed by EV-A (27.8%) and EV-C (13.3%). This study identified 31 unique NPEV types, including EV-A71, CVB2, and E11, as the most prevalent, along with the first documented occurrence of CVA19 in Brazil. These findings emphasize the importance of NPEV genotyping in distinguishing AFP from poliomyelitis, enhancing understanding of these viruses' epidemiology. Moreover, it ensures that AFP cases are correctly classified, contributing to the effective surveillance and eradication efforts for poliomyelitis.
Collapse
Affiliation(s)
- Rita Cássia Compagnoli Carmona
- Núcleo de Doenças Entéricas, Centro de Virologia, Instituto Adolfo Lutz, Secretaria de Estado da Saúde de São Paulo, Sao Paulo 01246-900, Brazil
| | - Fabricio Caldeira Reis
- Núcleo de Doenças Entéricas, Centro de Virologia, Instituto Adolfo Lutz, Secretaria de Estado da Saúde de São Paulo, Sao Paulo 01246-900, Brazil
| | - Audrey Cilli
- Núcleo de Doenças Entéricas, Centro de Virologia, Instituto Adolfo Lutz, Secretaria de Estado da Saúde de São Paulo, Sao Paulo 01246-900, Brazil
| | - Juliana Monti Maifrino Dias
- Divisão de Doenças de Transmissão Hídrica e Alimentar, Centro de Vigilância Epidemiológica “Prof. Alexandre Vranjac”, Secretaria de Estado da Saúde de São Paulo, Sao Paulo 01246-900, Brazil
| | - Bráulio Caetano Machado
- Núcleo de Doenças Entéricas, Centro de Virologia, Instituto Adolfo Lutz, Secretaria de Estado da Saúde de São Paulo, Sao Paulo 01246-900, Brazil
| | - Daniele Rita de Morais
- Núcleo de Doenças Entéricas, Centro de Virologia, Instituto Adolfo Lutz, Secretaria de Estado da Saúde de São Paulo, Sao Paulo 01246-900, Brazil
| | - Adriana Vieira Jorge
- Núcleo de Doenças Entéricas, Centro de Virologia, Instituto Adolfo Lutz, Secretaria de Estado da Saúde de São Paulo, Sao Paulo 01246-900, Brazil
| | - Amanda Meireles Nunes Dias
- Núcleo de Doenças Entéricas, Centro de Virologia, Instituto Adolfo Lutz, Secretaria de Estado da Saúde de São Paulo, Sao Paulo 01246-900, Brazil
| | - Cleusa Aparecida de Sousa
- Núcleo de Doenças Entéricas, Centro de Virologia, Instituto Adolfo Lutz, Secretaria de Estado da Saúde de São Paulo, Sao Paulo 01246-900, Brazil
| | - Sabrina Bonetti Calou
- Núcleo de Doenças Entéricas, Centro de Virologia, Instituto Adolfo Lutz, Secretaria de Estado da Saúde de São Paulo, Sao Paulo 01246-900, Brazil
| | - Gabriel Henriques Ferreira
- Núcleo de Doenças Entéricas, Centro de Virologia, Instituto Adolfo Lutz, Secretaria de Estado da Saúde de São Paulo, Sao Paulo 01246-900, Brazil
| | - Lucas Leme
- Núcleo de Doenças Entéricas, Centro de Virologia, Instituto Adolfo Lutz, Secretaria de Estado da Saúde de São Paulo, Sao Paulo 01246-900, Brazil
| | | | - Maria Bernadete de Paula Eduardo
- Divisão de Doenças de Transmissão Hídrica e Alimentar, Centro de Vigilância Epidemiológica “Prof. Alexandre Vranjac”, Secretaria de Estado da Saúde de São Paulo, Sao Paulo 01246-900, Brazil
| |
Collapse
|
2
|
Kim HG, Hillman PF, Lee YJ, Jeon HE, Lim BK, Nam SJ. Caboxamycin Inhibits Heart Inflammation in a Coxsackievirus B3-Induced Myocarditis Mouse Model. Viruses 2024; 16:677. [PMID: 38793559 PMCID: PMC11125614 DOI: 10.3390/v16050677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Coxsackievirus B3 (CVB3) is a positive single-strand RNA genome virus which belongs to the enterovirus genus in the picornavirus family, like poliovirus. It is one of the most prevalent pathogens that cause myocarditis and pancreatitis in humans. However, a suitable therapeutic medication and vaccination have yet to be discovered. Caboxamycin, a benzoxazole antibiotic isolated from the culture broth of the marine strain Streptomyces sp., SC0774, showed an antiviral effect in CVB3-infected HeLa cells and a CVB3-induced myocarditis mouse model. Caboxamycin substantially decreased CVB3 VP1 production and cleavage of translation factor eIF4G1 from CVB3 infection. Virus-positive and -negative strand RNA was dramatically reduced by caboxamycin treatment. In addition, the cleavage of the pro-apoptotic molecules BAD, BAX, and caspase3 was significantly inhibited by caboxamycin treatment. In animal experiments, the survival rate of mice was improved following caboxamycin treatment. Moreover, caboxamycin treatment significantly decreased myocardial damage and inflammatory cell infiltration. Our study showed that caboxamycin dramatically suppressed cardiac inflammation and mouse death. This result suggests that caboxamycin may be suitable as a potential antiviral drug for CVB3.
Collapse
Affiliation(s)
- Hong-Gi Kim
- Department of Biomedical Science, Jungwon University, Goesan-gun 28024, Chungbuk, Republic of Korea; (H.-G.K.); (H.-E.J.)
| | - Prima F. Hillman
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea;
| | - You-Jeung Lee
- Division of Cardiology, Samsung Medical Center, 50 Irwon Dong, Gangnam-gu, Seoul 06351, Republic of Korea;
| | - Ha-Eun Jeon
- Department of Biomedical Science, Jungwon University, Goesan-gun 28024, Chungbuk, Republic of Korea; (H.-G.K.); (H.-E.J.)
| | - Byung-Kwan Lim
- Department of Biomedical Science, Jungwon University, Goesan-gun 28024, Chungbuk, Republic of Korea; (H.-G.K.); (H.-E.J.)
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea;
| |
Collapse
|
3
|
Galitska G, Jassey A, Wagner MA, Pollack N, Miller K, Jackson WT. Enterovirus D68 capsid formation and stability requires acidic compartments. mBio 2023; 14:e0214123. [PMID: 37819109 PMCID: PMC10653823 DOI: 10.1128/mbio.02141-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE The respiratory picornavirus enterovirus D68 is a causative agent of acute flaccid myelitis, a childhood paralysis disease identified in the last decade. Poliovirus, another picornavirus associated with paralytic disease, is a fecal-oral virus that survives acidic environments when passing from host to host. Here, we follow up on our previous work showing a requirement for acidic intracellular compartments for maturation cleavage of poliovirus particles. Enterovirus D68 requires acidic vesicles for an earlier step, assembly, and maintenance of viral particles themselves. These data have strong implications for the use of acidification blocking treatments to combat enterovirus diseases.
Collapse
Affiliation(s)
- Ganna Galitska
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Alagie Jassey
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Michael A. Wagner
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Noah Pollack
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Katelyn Miller
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - William T. Jackson
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Singh B, Arora S, Sandhu N. Emerging trends and insights in acute flaccid myelitis: a comprehensive review of neurologic manifestations. Infect Dis (Lond) 2023; 55:653-663. [PMID: 37368373 DOI: 10.1080/23744235.2023.2228407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/08/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023] Open
Abstract
Acute Flaccid Myelitis (AFM) is a neurological condition in the anterior portion of the spinal cord and can be characterised as paraplegia (paralysis of the lower limbs), and cranial nerve dysfunction. These lesions are caused by the infection due to Enterovirus 68 (EV-D68); a member of the Enterovirus (EV) family belongs to the Enterovirus species within the Picornavirus family and a Polio-like virus. In many cases, the facial, axial, bulbar, respiratory, and extraocular muscles were affected, hence reducing the overall quality of the patient's life. Moreover, severe pathological conditions demand hospitalisation and can cause mortality in a few cases. The data from previous case studies and literature suggest that the prevalence is high in paediatric patients, but careful clinical assessment and management can decrease the risk of mortality and paraplegia. Moreover, the clinical and laboratory diagnosis can be performed by Magnetic resonance imaging (MRI) of the spinal cord followed by Reverse transcription polymerase chain reaction (rRT-PCR) and VP1 seminested PCR assay of the cerebrospinal fluid (CSF), stool, and serum samples can reveal the disease condition to an extent. The primary measure to control the outbreak is social distancing as advised by public health administrations, but more effective ways are yet to discover. Nonetheless, vaccines in the form of the whole virus, live attenuated, sub-viral particles, and DNA vaccines can be an excellent choice to treat these conditions. The review discusses a variety of topics, such as epidemiology, pathophysiology, diagnosis/clinical features, hospitalisation/mortality, management/treatment, and potential future developments.
Collapse
Affiliation(s)
- Baljinder Singh
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA, Australia
| | - Sanchit Arora
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Navjot Sandhu
- Department of Quality Assurance, ISF College of Pharmacy, Moga, Affiliated to IK Gujral Punjab Technical University, Jalandhar, India
| |
Collapse
|
5
|
Galitska G, Jassey A, Wagner MA, Pollack N, Jackson WT. Enterovirus D68 capsid formation and stability requires acidic compartments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544695. [PMID: 37398138 PMCID: PMC10312662 DOI: 10.1101/2023.06.12.544695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Enterovirus D68 (EV-D68), a picornavirus traditionally associated with respiratory infections, has recently been linked to a polio-like paralytic condition known as acute flaccid myelitis (AFM). EV-D68 is understudied, and much of the field's understanding of this virus is based on studies of poliovirus. For poliovirus, we previously showed that low pH promotes virus capsid maturation, but here we show that, for EV-D68, inhibition of compartment acidification during a specific window of infection causes a defect in capsid formation and maintenance. These phenotypes are accompanied by radical changes in the infected cell, with viral replication organelles clustering in a tight juxtanuclear grouping. Organelle acidification is critical during a narrow window from 3-4hpi, which we have termed the "transition point," separating translation and peak RNA replication from capsid formation, maturation and egress. Our findings highlight that acidification is crucial only when vesicles convert from RNA factories to virion crucibles.
Collapse
Affiliation(s)
- Ganna Galitska
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St, Baltimore, MD 21201, USA
| | - Alagie Jassey
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St, Baltimore, MD 21201, USA
| | - Michael A Wagner
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St, Baltimore, MD 21201, USA
| | - Noah Pollack
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St, Baltimore, MD 21201, USA
| | - William T Jackson
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St, Baltimore, MD 21201, USA
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW The most common infectious etiologies of meningitis and encephalitis are viruses. In this review, we will discuss current epidemiology, prevention, diagnosis, and treatment of the most common causes of viral meningitis and encephalitis worldwide. RECENT FINDINGS Viral meningitis and encephalitis are increasingly diagnosed as molecular diagnostic techniques and serologies have become more readily available worldwide but recent progress in novel antiviral therapies remains limited. Emerging and re-emerging viruses that have caused endemic or worldwide outbreaks or epidemics are arboviruses (e.g., West Nile virus, Japanese encephalitis, Tick borne encephalitis, Dengue, Zika, Toscana), enteroviruses (e.g., Enterovirus 71, Enterovirus D68), Parechoviruses, respiratory viruses [e.g., severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza, metapneumoviruses, measles, mumps], and herpes viruses [e.g., herpes simplex virus (HSV) type 1 (HSV-1), HSV-2, human herpes (HV) 6, varicella zoster virus (VZV)]. Future efforts should concentrate in increasing availability for those viruses with effective vaccination [e.g., Japanese encephalitis, Tick borne encephalitis, varicella zoster viruses, SARS-CoV-2, influenza], prompt initiation of those with encephalitis with treatable viruses (e.g., HSV-1, VZV), increasing the diagnostic yield by using novel techniques such as metagenomic sequencing and avoiding unnecessary antibiotics in those with viral meningitis or encephalitis. SUMMARY We review the current epidemiology, clinical presentation, diagnosis, and treatment of the common causative agents of viral meningitis and encephalitis worldwide.
Collapse
Affiliation(s)
- Vaishnavi Gundamraj
- Wisconsin Institute of Medical Research, University of Wisconsin-Madison, Madison, Wisconsin
| | - Rodrigo Hasbun
- Professor of Medicine, Section of Infectious Diseases, UT Health McGovern Medical School, Houston, Texas, USA
| |
Collapse
|