1
|
Zhou X, Cao H, Liao T, Hua W, Zhao R, Wang D, Deng H, Yang Y, Liu S, Ni G. Mechanosensitive lncRNA H19 promotes chondrocyte autophagy, but not pyroptosis, by targeting miR-148a in post-traumatic osteoarthritis. Noncoding RNA Res 2025; 10:163-176. [PMID: 39399379 PMCID: PMC11470567 DOI: 10.1016/j.ncrna.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 10/15/2024] Open
Abstract
Objective Investigating whether mechanosensitive lncRNA H19 can directly target miR-148a to alleviate cartilage damage in post-traumatic osteoarthritis (PTOA). Methods Thirty-two female rats were randomly divided into four groups: Sham-operated group (Sham group, n = 8), treadmill running group (R group, n = 8), anterior cruciate ligament transection (ACLT) group (ACLT group, n = 8), and ACLT + treadmill running group (ACLT + R group, n = 8). Histological evaluation was performed to observe the pathological changes in the cartilage of the rat knee. Micro-CT was performed to detect the bone morphological changes in the subchondral bone. RT-qPCR and Western-Blot were performed to detect changes in mRNA and protein levels of metabolic and inflammatory factors as well as changes in the expression of lncRNA H19 and miR-148a in cartilage. The Flexcell 5000™ Tension System was used to further validate that lncRNA H19 has mechanosensitivity in vitro. Finally, cell transfection techniques were used to knock down the expression of lncRNA H19 in chondrocytes to validate the regulatory role of lncRNA H19/miR-148a in cartilage metabolism. Results ACLT combined with treadmill running aggravated the abnormal hyperplasia of subchondral bone in the lateral tibial plateau of the rat knee joint, disturbed the balance of cartilage metabolism, induced cartilage inflammatory response and chondrocyte pyroptosis, which eventually led to cartilage damage and PTOA. Importantly, we found that the expression of lncRNA H19 was significantly downregulated in the cartilage of the ACLT + R group. Bioinformatics analysis revealed that miR-148a may be a direct target of lncRNA H19. Subsequently, we focused on the mechanosensitive of lncRNA H19. Subsequently, moderate-intensity mechanical tension stress reversed the expression of lncRNA H19 and autophagy-related factors in inflammatory chondrocytes, while miR-148a showed an opposite expression trend, demonstrating that mechanosensitive lncRNA H19 may be involved in regulating the chondrocyte inflammatory response by targeting miR-148a and activating autophagy. Cell transfection experiments revealed that lncRNA H19 knockdown upregulated miR-148a expression and significantly inhibited the autophagy level of chondrocytes without significant alteration of chondrocyte pyroptosis, which in turn exacerbated the inflammatory response of chondrocytes. Conclusions Mechanosensitive lncRNA H19 can promote chondrocyte autophagy rather than pyroptosis by targeting miR-148a, thus alleviating cartilage damage in PTOA. LncRNA H19 may be a potential therapeutic target for PTOA.
Collapse
Affiliation(s)
- Xuchang Zhou
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| | - Hong Cao
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| | - Tao Liao
- Department of Rehabilitation Medicine, Chengdu Second People's Hospital, Chengdu, 610000, China
| | - Weizhong Hua
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Ruobing Zhao
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Dongxue Wang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Huili Deng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Yajing Yang
- Department of Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan, 430070, China
| | - ShengYao Liu
- Department of Spinal Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Guoxin Ni
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| |
Collapse
|
2
|
Aol L, Zhou X, Hao H, Nie J, Zhang W, Yao D, Su L, Xue W. LncRNAs modulating tooth development and alveolar resorption: Systematic review. Heliyon 2024; 10:e39895. [PMID: 39524731 PMCID: PMC11550122 DOI: 10.1016/j.heliyon.2024.e39895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/30/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Tooth development is an intricate process that encompasses cellular activities, molecular signaling pathways, and gene expression patterns. Disruptions in any of the processes can lead to structural anomalies, impairments in function, and increased vulnerability to oral disorders. Alveolar resorption, which refers to the pathological loss of alveolar bone around teeth, poses a substantial clinical problem in periodontal disorders such as periodontitis. Long non-coding RNAs (LncRNAs) have been implicated in the regulation of these physiological and pathological processes, and they exert their impact on gene expression through both transcriptional and post-transcriptional mechanisms. However, they also interact with certain microRNAs (mi-RNAs), thereby modulating the expression of downstream genes that are involved in tooth development. An exemplar is lncRNA ZFAS1, which has been demonstrated to regulate gene expression and impact these physiological and pathological processes. As a result, lncRNAs contribute to these processes by interacting with chromatin regulators, RNA enhancers, mi-RNAs, and their modulating signaling pathways involved in tooth development and alveolar resorption. Taken together, this review explores and gives a systematic account of the recent research findings that enhance our understanding of the molecular mechanisms that drive these processes and their potential consequences for the remodeling of teeth and bones in the oral cavity.
Collapse
Affiliation(s)
- Lilliane Aol
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xinhong Zhou
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hong Hao
- Affiliated Hospital of Huazhong University of Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jiaqi Nie
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wanjun Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Dunjie Yao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Li Su
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wanlin Xue
- Affiliated Hospital of Huazhong University of Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
3
|
Qi XL, Luo GQ, Tuersun A, Chen M, Wu GB, Zheng L, Li HJ, Lou XL, Luo M. Construction of an endoplasmic reticulum stress and cuproptosis -related lncRNAs signature in chemosensitivity in hepatocellular carcinoma by comprehensive bioinformatics analysis. Heliyon 2024; 10:e38342. [PMID: 39398070 PMCID: PMC11471205 DOI: 10.1016/j.heliyon.2024.e38342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
Endoplasmic reticulum stress (ERS) and cuproptosis have remarkable effects on hepatocellular carcinoma (HCC) leading to a poor prognosis. The current study aimed to explore credible signature for predicting the prognosis of HCC based on ERS and cuproptosis-related lncRNAs. In our study, clinical and transcriptomic profiles of HCC patients were obtained from the Cancer Genome Atlas (TCGA) database. An ERS and cuproptosis-related lncRNA prognostic signature, including NRAV, SNHG3, LINC00839 and AC004687.1, was determined by correlation tests, Cox regression analysis, least absolute shrinkage, and selection operator (LASSO) methods. Survival and predictive value were evaluated using Kaplan-Meier and receiver operating characteristic (ROC) curves, while calibration and nomograms curves were developed. Besides the enrichment analyses for ERS and cuproptosis-related lncRNAs, mutational status and immune status were assessed with TMB and ESTIMATE. Additionally, consensus cluster analysis was employed to compare cancer subtype differences, while drug sensitivity and immunologic efficacy were evaluated for further exploration. qRT-PCR and CCK-8 were utilized to verify the alteration of the prognostic lncRNAs expression and proliferation in vitro. High-risk groups exhibited poorer prognosis. The signature exhibited robust predictive value as an independent prognostic indicator and showed significant correlation with clinicopathological features. In the enriched analysis, biological membrane pathways were enriched. Low-risk patients had lower TMB and higher immune status. A cluster analysis revealed that cluster 2 had the best clinical immunological efficacy and most active immune function. In brief, our constructed signature with ERS and cuproptosis-related lncRNAs was associated survival outcomes of HCC, and can be used to predict the clinical classification and curative effect.
Collapse
Affiliation(s)
- Xiao-Liang Qi
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gu-Qing Luo
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Abudukadier Tuersun
- Department of General Surgery, Kashgar Prefecture Second People's Hospital of Xinjiang Uygur Autonomous Regions, Kashgar, Xinjiang, China
| | - Min Chen
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang-Bo Wu
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Zheng
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-Jie Li
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Lou Lou
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng Luo
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Silva WJ, Cruz A, Duque G. MicroRNAs and their Modulatory Effect on the Hallmarks of Osteosarcopenia. Curr Osteoporos Rep 2024; 22:458-470. [PMID: 39162945 DOI: 10.1007/s11914-024-00880-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
PURPOSE OF THE REVIEW Osteosarcopenia is a geriatric syndrome associated with disability and mortality. This review summarizes the key microRNAs that regulate the hallmarks of sarcopenia and osteoporosis. Our objective was to identify components similarly regulated in the pathology and have therapeutic potential by influencing crucial cellular processes in both bone and skeletal muscle. RECENT FINDINGS The simultaneous decline in bone and muscle in osteosarcopenia involves a complex crosstalk between these tissues. Recent studies have uncovered several key mechanisms underlying this condition, including the disruption of cellular signaling pathways that regulate bone remodeling and muscle function and regeneration. Accordingly, emerging evidence reveals that dysregulation of microRNAs plays a significant role in the development of each of these hallmarks of osteosarcopenia. Although the recent recognition of osteosarcopenia as a single diagnosis of bone and muscle deterioration has provided new insights into the mechanisms of these underlying age-related diseases, several knowledge gaps have emerged, and a deeper understanding of the role of common microRNAs is still required. In this study, we summarize current evidence on the roles of microRNAs in the pathogenesis of osteosarcopenia and identify potential microRNA targets for treating this condition. Among these, microRNAs-29b and -128 are upregulated in the disease and exert adverse effects by inhibiting IGF-1 and SIRT1, making them potential targets for developing inhibitors of their activity. MicroRNA-21 is closely associated with the occurrence of muscle and bone loss. Conversely, microRNA-199b is downregulated in the disease, and its reduced activity may be related to increased myostatin and GSK3β activity, presenting it as a target for developing analogues that restore its function. Finally, microRNA-672 stands out for its ability to protect skeletal muscle and bone when expressed in the disease, highlighting its potential as a possible therapy for osteosarcopenia.
Collapse
Affiliation(s)
- William J Silva
- Department of Research and Development, Mirscience Therapeutics, São Paulo, Brazil
| | - André Cruz
- Department of Research and Development, Mirscience Therapeutics, São Paulo, Brazil
| | - Gustavo Duque
- Bone, Muscle & Geroscience Group. Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
- Dr. Joseph Kaufmann Chair in Geriatric Medicine, Department of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
5
|
Xuan P, Wang W, Cui H, Wang S, Nakaguchi T, Zhang T. Mask-Guided Target Node Feature Learning and Dynamic Detailed Feature Enhancement for lncRNA-Disease Association Prediction. J Chem Inf Model 2024; 64:6662-6675. [PMID: 39112431 DOI: 10.1021/acs.jcim.4c00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Identifying new relevant long noncoding RNAs (lncRNAs) for various human diseases can facilitate the exploration of the causes and progression of these diseases. Recently, several graph inference methods have been proposed to predict disease-related lncRNAs by exploiting the topological structure and node attributes within graphs. However, these methods did not prioritize the target lncRNA and disease nodes over auxiliary nodes like miRNA nodes, potentially limiting their ability to fully utilize the features of the target nodes. We propose a new method, mask-guided target node feature learning and dynamic detailed feature enhancement for lncRNA-disease association prediction (MDLD), to enhance node feature learning for improved lncRNA-disease association prediction. First, we designed a heterogeneous graph masked transformer autoencoder to guide feature learning, focusing more on the features of target lncRNA (disease) nodes. The target nodes were increasingly masked as training progressed, which helps develop a more robust prediction model. Second, we developed a graph convolutional network with dynamic residuals (GCNDR) to learn and integrate the heterogeneous topology and features of all lncRNA, disease, and miRNA nodes. GCNDR employs an interlayer residual strategy and a residual evolution strategy to mitigate oversmoothing caused by multilayer graph convolution. The interlayer residual strategy estimates the importance of node features learned in the previous GCN encoding layer for nodes in the current encoding layer. Additionally, since there are dependencies in the importance of features of individual lncRNA (disease, miRNA) nodes across multiple encoding layers, a gated recurrent unit-based strategy is proposed to encode these dependencies. Finally, we designed a perspective-level attention mechanism to obtain more informative features of lncRNA and disease node pairs from the perspectives of mask-enhanced and dynamic-enhanced node features. Cross-validation experimental results demonstrated that MDLD outperformed 10 other state-of-the-art prediction methods. Ablation experiments and case studies on candidate lncRNAs for three diseases further proved the technical contributions of MDLD and its capability to discover disease-related lncRNAs.
Collapse
Affiliation(s)
- Ping Xuan
- Department of Computer Science and Technology, Shantou University, Shantou 515063, China
- School of Mathematical Science, Heilongjiang University, Harbin 150080, China
| | - Wei Wang
- Department of Computer Science and Technology, Shantou University, Shantou 515063, China
| | - Hui Cui
- Department of Computer Science and Information Technology, La Trobe University, Melbourne 3083, Australia
| | - Shuai Wang
- School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Toshiya Nakaguchi
- Center for Frontier Medical Engineering, Chiba University, Chiba 2638522, Japan
| | - Tiangang Zhang
- School of Mathematical Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
6
|
Khalilollah S, Kalantari Soltanieh S, Obaid Saleh R, Ali Alzahrani A, Ghaleb Maabreh H, Mazin Al-Hamdani M, Dehghani-Ghorbi M, Shafiei Khonachaei M, Akhavan-Sigari R. LncRNAs involvement in pathogenesis of immune-related disease via regulation of T regulatory cells, an updated review. Cytokine 2024; 179:156585. [PMID: 38579428 DOI: 10.1016/j.cyto.2024.156585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 03/03/2024] [Accepted: 03/20/2024] [Indexed: 04/07/2024]
Abstract
The pathophysiology of several illnesses, including cancer and autoimmune diseasesdepends on human regulatory T cells (Tregs), and abnormalities in these cells may function as triggers for these conditions. Cancer and autoimmune, and gynecological diseases are associated with the differentiation of the proinflammatory T cell subset TH17 and its balance with the production of Treg. Recently, long non-coding RNAs (lncRNAs) have become important regulatory molecules in a wide range of illnesses. During epigenetic regulation, they can control the expression of important genes at several levels by affecting transcription, post-transcriptional actions, translation, and protein modification. They might connect with different molecules, such as proteins, DNA and RNA, and their structural composition is intricate. Because lncRNAs regulatebiological processes, including cell division, death, and growth, they are linked to severaldiseases. A notable instance of this is the lncRNA NEAT1, which has been the subject of several investigations to ascertain its function in immune cell development. In the context of immune cell development, several additional lncRNAs have been connected to Treg cell differentiation. In this work, we summarize current findings about the diverse functions of lncRNAs in Treg cell differentiation and control of the Th17/Treg homeostasis in autoimmune disorders, cancers, as well as several gynecological diseases where Tregs are key players.
Collapse
Affiliation(s)
- Shayan Khalilollah
- Department of Neurosurgery, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | | | - Raed Obaid Saleh
- Department of Pathological Analysis, College of Applied Science, University of Fallujah, Al-Anbar, Iraq.
| | | | - Hatem Ghaleb Maabreh
- Department of Dermatovenerology, Foreign Languages, RUDN University (Peoples' Friendship University of Russia named after Patrice Lumumba), Moscow, Russia.
| | | | - Mahmoud Dehghani-Ghorbi
- Hematology-Oncology Department, Imam Hossein Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center, Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Poland.
| |
Collapse
|
7
|
Ma M, Chen M, Wu X, Sooranna SR, Liu Q, Shi D, Wang J, Li H. A newly identified lncRNA lnc000100 regulates proliferation and differentiation of cattle skeletal muscle cells. Epigenetics 2023; 18:2270864. [PMID: 37910666 PMCID: PMC10768731 DOI: 10.1080/15592294.2023.2270864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 09/01/2023] [Indexed: 11/03/2023] Open
Abstract
Cattle skeletal muscle development is a complex and highly coordinated biological process mediated by a series of myogenic regulators, which plays a critical role in beef yield and quality. Long non-coding RNAs (lncRNAs) have been shown to regulate skeletal muscle development. However, the molecular mechanism by which lncRNAs regulate skeletal muscle development is largely unknown. We performed transcriptome analysis of muscle tissues of adult and embryo Angus cattle to investigate the mechanism by which lncRNA regulates skeletal muscle development between adult and embryo cattle. A total of 37,115 candidate lncRNAs were detected, and a total of 1,998 lncRNAs were differentially expressed between the muscle tissue libraries of adult and embryo cattle, including 1,229 up-regulated lncRNAs and 769 down-regulated lncRNAs (adult cattle were the control group). We verified the expression of 7 differentially expressed lncRNAs by quantitative real-time PCR (RT-qPCR), and analysed the tissue expression profile of lnc000100, which is down-regulated in the longest dorsal muscle during foetal life and which is highly specifically expressed in muscle tissue. We found that the interference of lnc000100 significantly inhibited cell proliferation and promoted cell differentiation. Lnc000100 was located in the nucleus by RNA-FISH. Our research provides certain resources for the analysis of lncRNA regulating cattle skeletal muscle development, and may also provide new insights for improving beef production and breed selection.
Collapse
Affiliation(s)
- Mengke Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Mengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Suren R. Sooranna
- Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Qingyou Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Jian Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
8
|
Li P, Ma X, Gu X. LncRNA MAFG-AS1 is involved in human cancer progression. Eur J Med Res 2023; 28:497. [PMID: 37941063 PMCID: PMC10631199 DOI: 10.1186/s40001-023-01486-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) refer to a type of non-protein-coding transcript of more than 200 nucleotides. LncRNAs play fundamental roles in disease development and progression, and lncRNAs are dysregulated in many pathophysiological processes. Thus, lncRNAs may have potential value in clinical applications. The lncRNA, MAF BZIP Transcription Factor G (MAFG)-AS1, is dysregulated in several cancer, including breast cancer, lung cancer, liver cancer, bladder cancer, colorectal cancer, gastric cancer, esophagus cancer, prostate cancer, pancreatic cancer, ovarian cancer, and glioma. Altered MAFG-AS1 levels are also associated with diverse clinical characteristics and patient outcomes. Mechanistically, MAFG-AS1 mediates a variety of cellular processes via the regulation of target gene expression. Therefore, the diagnostic, prognostic, and therapeutic aspects of MAFG-AS1 have been widely explored. In this review, we discuss the expression, major roles, and molecular mechanisms of MAFG-AS1, the relationship between MAFG-AS1 and clinical features of diseases, and the clinical applications of MAFG-AS1.
Collapse
Affiliation(s)
- Penghui Li
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Xiao Ma
- Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China.
| |
Collapse
|
9
|
An F, Wang X, Wang C, Liu Y, Sun B, Zhang J, Gao P, Yan C. Research progress on the role of lncRNA-miRNA networks in regulating adipogenic and osteogenic differentiation of bone marrow mesenchymal stem cells in osteoporosis. Front Endocrinol (Lausanne) 2023; 14:1210627. [PMID: 37645421 PMCID: PMC10461560 DOI: 10.3389/fendo.2023.1210627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/26/2023] [Indexed: 08/31/2023] Open
Abstract
Osteoporosis (OP) is characterized by a decrease in osteoblasts and an increase in adipocytes in the bone marrow compartment, alongside abnormal bone/fat differentiation, which ultimately results in imbalanced bone homeostasis. Bone marrow mesenchymal stem cells (BMSCs) can differentiate into osteoblasts and adipocytes to maintain bone homeostasis. Several studies have shown that lncRNAs are competitive endogenous RNAs that form a lncRNA-miRNA network by targeting miRNA for the regulation of bone/fat differentiation in BMSCs; this mechanism is closely related to the corresponding treatment of OP and is important in the development of novel OP-targeted therapies. However, by reviewing the current literature, it became clear that there are limited summaries discussing the effects of the lncRNA-miRNA network on osteogenic/adipogenic differentiation in BMSCs. Therefore, this article provides a review of the current literature to explore the impact of the lncRNA-miRNA network on the osteogenic/adipogenic differentiation of BMSCs, with the aim of providing a new theoretical basis for the treatment of OP.
Collapse
Affiliation(s)
- Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xiaxia Wang
- School of Tradional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Chunmei Wang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Ying Liu
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Bai Sun
- School of Tradional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jie Zhang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Peng Gao
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Chunlu Yan
- School of Tradional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
10
|
Zhu J, Huang F, Hu Y, Qiao W, Guan Y, Zhang ZJ, Liu S, Liu Y. Non-Coding RNAs Regulate Spinal Cord Injury-Related Neuropathic Pain via Neuroinflammation. J Inflamm Res 2023; 16:2477-2489. [PMID: 37334347 PMCID: PMC10276590 DOI: 10.2147/jir.s413264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023] Open
Abstract
Secondary chronic neuropathic pain (NP) in addition to sensory, motor, or autonomic dysfunction can significantly reduce quality of life after spinal cord injury (SCI). The mechanisms of SCI-related NP have been studied in clinical trials and with the use of experimental models. However, in developing new treatment strategies for SCI patients, NP poses new challenges. The inflammatory response following SCI promotes the development of NP. Previous studies suggest that reducing neuroinflammation following SCI can improve NP-related behaviors. Intensive studies of the roles of non-coding RNAs in SCI have discovered that ncRNAs bind target mRNA, act between activated glia, neuronal cells, or other immunocytes, regulate gene expression, inhibit inflammation, and influence the prognosis of NP.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, JiangSu Province, 226001, People’s Republic of China
| | - Fei Huang
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, JiangSu Province, 226001, People’s Republic of China
- Department of Rehabilitation Medicine, Nantong Health College of Jiangsu Province, Nantong, JiangSu Province, 226010, People’s Republic of China
| | - Yonglin Hu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, JiangSu Province, 226001, People’s Republic of China
- Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong, JiangSu Province, 226001, People’s Republic of China
| | - Wei Qiao
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, JiangSu Province, 226001, People’s Republic of China
| | - Yingchao Guan
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, JiangSu Province, 226001, People’s Republic of China
| | - Zhi-Jun Zhang
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, JiangSu Province, 226001, People’s Republic of China
| | - Su Liu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, JiangSu Province, 226001, People’s Republic of China
| | - Ying Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, JiangSu Province, 226001, People’s Republic of China
| |
Collapse
|
11
|
Cao Y, Li J, Qiu S, Ni S, Duan Y. LncRNA XIST facilitates hypertrophy of ligamentum flavum by activating VEGFA-mediated autophagy through sponging miR-302b-3p. Biol Direct 2023; 18:25. [PMID: 37226251 DOI: 10.1186/s13062-023-00383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/19/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Increasing evidences have shown that long non-coding RNAs (lncRNAs) display crucial regulatory roles in the occurrence and development of numerous diseases. However, the function and underlying mechanisms of lncRNAs in hypertrophy of ligamentum flavum (HLF) have not been report. METHODS The integrated analysis of lncRNAs sequencing, bioinformatics analysis and real-time quantitative PCR were used to identify the key lncRNAs involved in HLF progression. Gain- and loss-function experiments were used to explore the functions of lncRNA X inactive specific transcript (XIST) in HLF. Mechanistically, bioinformatics binding site analysis, RNA pull-down, dual-luciferase reporter assay, and rescue experiments were utilized to investigate the mechanism by which XIST acts as a molecular sponge of miR-302b-3p to regulate VEGFA-mediated autophagy. RESULTS We identified that XIST was outstandingly upregulated in HLF tissues and cells. Moreover, the up-regulation of XIST strongly correlated with the thinness and fibrosis degree of LF in LSCS patients. Functionally, knockdown of XIST drastically inhibited proliferation, anti-apoptosis, fibrosis and autophagy of HLF cells in vitro and suppressed hypertrophy and fibrosis of LF tissues in vivo. Intestinally, we uncovered that overexpression of XIST significantly promoted proliferation, anti-apoptosis and fibrosis ability of HLF cells by activating autophagy. Mechanistic studies illustrated that XIST directly medullated the VEGFA-mediated autophagy through sponging miR-302b-3p, thereby enhancing the development and progression of HLF. CONCLUSION Our findings highlighted that the XIST/miR-302b-3p/VEGFA-mediated autophagy axis is involved in development and progression of HLF. At the same time, this study will complement the blank of lncRNA expression profiles in HLF, which laid the foundation for further exploration of the relationship between lncRNAs and HLF in the future.
Collapse
Affiliation(s)
- Yanlin Cao
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jianjun Li
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Sujun Qiu
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Songjia Ni
- Department of Orthopaedic Trauma, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Duan
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
12
|
Li W, Li L, Cui R, Chen X, Hu H, Qiu Y. Bone marrow mesenchymal stem cells derived exosomal Lnc TUG1 promotes bone fracture recovery via miR-22-5p/Anxa8 axis. Hum Cell 2023; 36:1041-1053. [PMID: 36952210 PMCID: PMC10110643 DOI: 10.1007/s13577-023-00881-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/12/2023] [Indexed: 03/24/2023]
Abstract
Bone fracture healing is a complex physiologic process that involves changes in the expression of several thousand genes. Long noncoding RNAs (lncRNAs) may have critical biological roles in this process. The objectives of the present study were to determine whether BMSC-derived exosomal lncTUG1 can enhance osteogenic differentiation and thereby promoting bone fracture recovery and to investigate its potential mechanisms of action. Bone marrow mesenchymal stromal cells were isolated from mice and cultured for the following experiments. After adipogenic and osteogenic differentiation induction, Oil Red O, alizarin red S, and alkaline phosphatase staining solutions were applied to confirm the formation of lipid droplets and calcium nodules. Western blotting analyses, real-time reverse transcription PCR assays, luciferase reporter were performed to confirm relative RNA and protein expressions and luciferase activities of transfected cells. RNA pull-down and RNA immunoprecipitation assays were also carried to verify the interaction between lncTUG1 and miR-22-5p. Additionally, a mouse model of closed femoral fractures was generated to evaluate the in vivo effect of increased lncTUG1 on fracture healing. BMSC-derived exosomal lncTUG1 enhanced the activity of osteoblasts. Overexpression of miR-22-5p reversed the osteopromoting effect of increased lncTUG1. The knockdown of Anxa8 reversed the osteogenic effect of miR-22-5p inhibitors, indicating an interaction between Anxa8 and miR-22-5p. Upregulation of lncTUG1 could promote the fracture recovery in vivo. In conclusion, the present study highlights the functional importance of BMSC-derived exosomal lncTUG1 in the process of bone fracture recovery.
Collapse
Affiliation(s)
- Wei Li
- Department of Clinical Laboratory, China Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Lihong Li
- Department of Clinical Laboratory, China Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Rui Cui
- Department of Clinical Laboratory, China Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Xiaoqing Chen
- Department of Clinical Laboratory, China Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Haifeng Hu
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwuweiseven Road, Huaiyin District, Jinan, 250014, Shandong Province, China.
| | - Yuyu Qiu
- Shandong First Medical University (Shandong Academy of Medical Sciences), No.6699, Qingdao Road, Huaiyin District, Jinan, 271016, Shandong Province, China.
| |
Collapse
|
13
|
An F, Meng X, Yuan L, Niu Y, Deng J, Li Z, Liu Y, Xia R, Liu S, Yan C. Network regulatory mechanism of ncRNA on the Wnt signaling pathway in osteoporosis. Cell Div 2023; 18:3. [PMID: 36879309 PMCID: PMC9990358 DOI: 10.1186/s13008-023-00086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/24/2023] [Indexed: 03/08/2023] Open
Abstract
Non-coding RNA (ncRNA) is a type of non-protein-coding RNA molecule transcribed from the genome which performs broad regulation of a variety of biological functions in human cells. The Wnt signaling pathway is highly conserved in multicellular organisms, playing an important role in their growth and development. Increasing evidence suggests that ncRNA can regulate cell biological function, enhance bone metabolism, and maintain normal bone homeostasis by interacting with the Wnt pathway. Studies have also demonstrated that the association of ncRNA with the Wnt pathway may be a potential biomarker for the diagnosis, evaluation of prognosis, and treatment of osteoporosis. The interaction of ncRNA with Wnt also performs an important regulatory role in the occurrence and development of osteoporosis. Targeted therapy of the ncRNA/Wnt axis may ultimately be the preferred choice for the treatment of osteoporosis in the future. The current article reviews the mechanism of the ncRNA/Wnt axis in osteoporosis and reveals the relationship between ncRNA and Wnt, thereby exploring novel molecular targets for the treatment of osteoporosis and providing theoretical scientific guidance for its clinical treatment.
Collapse
Affiliation(s)
- Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Xiangrui Meng
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Lingqing Yuan
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Yanqiang Niu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Jie Deng
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Zhaohui Li
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Yongqi Liu
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China.
| | - Ruoliu Xia
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Shiqing Liu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Chunlu Yan
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
14
|
Xie GB, Chen RB, Lin ZY, Gu GS, Yu JR, Liu ZG, Cui J, Lin LQ, Chen LC. Predicting lncRNA-disease associations based on combining selective similarity matrix fusion and bidirectional linear neighborhood label propagation. Brief Bioinform 2023; 24:6966536. [PMID: 36592062 DOI: 10.1093/bib/bbac595] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 01/03/2023] Open
Abstract
Recent studies have revealed that long noncoding RNAs (lncRNAs) are closely linked to several human diseases, providing new opportunities for their use in detection and therapy. Many graph propagation and similarity fusion approaches can be used for predicting potential lncRNA-disease associations. However, existing similarity fusion approaches suffer from noise and self-similarity loss in the fusion process. To address these problems, a new prediction approach, termed SSMF-BLNP, based on organically combining selective similarity matrix fusion (SSMF) and bidirectional linear neighborhood label propagation (BLNP), is proposed in this paper to predict lncRNA-disease associations. In SSMF, self-similarity networks of lncRNAs and diseases are obtained by selective preprocessing and nonlinear iterative fusion. The fusion process assigns weights to each initial similarity network and introduces a unit matrix that can reduce noise and compensate for the loss of self-similarity. In BLNP, the initial lncRNA-disease associations are employed in both lncRNA and disease directions as label information for linear neighborhood label propagation. The propagation was then performed on the self-similarity network obtained from SSMF to derive the scoring matrix for predicting the relationships between lncRNAs and diseases. Experimental results showed that SSMF-BLNP performed better than seven other state of-the-art approaches. Furthermore, a case study demonstrated up to 100% and 80% accuracy in 10 lncRNAs associated with hepatocellular carcinoma and 10 lncRNAs associated with renal cell carcinoma, respectively. The source code and datasets used in this paper are available at: https://github.com/RuiBingo/SSMF-BLNP.
Collapse
Affiliation(s)
- Guo-Bo Xie
- School of Computer, Guangdong University of Technology, Guangzhou, 510000, China
| | - Rui-Bin Chen
- School of Computer, Guangdong University of Technology, Guangzhou, 510000, China
| | - Zhi-Yi Lin
- School of Computer, Guangdong University of Technology, Guangzhou, 510000, China
| | - Guo-Sheng Gu
- School of Computer, Guangdong University of Technology, Guangzhou, 510000, China
| | - Jun-Rui Yu
- School of Computer, Guangdong University of Technology, Guangzhou, 510000, China
| | - Zhen-Guo Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Ji Cui
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Lie-Qing Lin
- Center of Campus Network & Modern Educational Technology, Guangdong University of Technology, Guangzhou, 510000, China
| | - Lang-Cheng Chen
- Center of Campus Network & Modern Educational Technology, Guangdong University of Technology, Guangzhou, 510000, China
| |
Collapse
|
15
|
Liu Y, Yang J, Ke RS, Wu L, Hong Z, Guo P, Feng L, Li Z. LINC02875 Upregulation Contributed to Poor Prognosis for the Hepatocellular Carcinoma and Progression for the Cancerous Cells. Horm Metab Res 2022; 54:760-767. [PMID: 36055279 DOI: 10.1055/a-1913-8223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The prognostic implications and physiological effect of LINC02875 are unknown in hepatocellular carcinoma (HCC). We sought to examine the prognostic value of LINC02875 in HCC and assessed its role in HCC cellular function. LINC02875 expression was evaluated by RT-qPCR in HCC specimens and cell lines. LINC02875 expression was subjected to assess the correlation with clinical parameters by Chi-squared test and overall survival by Kaplan - Meier curve and Cox regression analysis. The effects of LINC02875 on the biological characteristics of HCC cells were studied by MTS and Transwell assay. LINC02875 was high-expressed in HCC, and this was associated with unfavorable clinical features and poor prognosis of HCC, especially HBV-related HCC. Knockdown of LINC02875 inhibited the proliferation, migration, and invasion of HCC cells. miR-485-5p was a downstream microRNA of LINC02875. LINC02875 affects the prognosis of HCC patients, especially HBV-related ones. LINC02875 represents a suitable therapeutic target for HCC.
Collapse
Affiliation(s)
- Yujian Liu
- Department of Hepatobiliary Pancreatic Vascular Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jingrui Yang
- Department of Hepatobiliary Pancreatic Vascular Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Rui-Sheng Ke
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Lupeng Wu
- Department of Hepatobiliary Pancreatic Vascular Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Zaifa Hong
- Department of Hepatobiliary Pancreatic Vascular Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Ping Guo
- Department of Hepatobiliary Pancreatic Vascular Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Liuxing Feng
- Department of Hepatobiliary Pancreatic Vascular Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Zhimin Li
- Department of Hepatobiliary Pancreatic Vascular Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
16
|
Zhao H, Li L, Zhao N, Lu A, Lu C, He X. The effect of long non-coding RNAs in joint destruction of rheumatoid arthritis. Front Cell Dev Biol 2022; 10:1011371. [PMID: 36263019 PMCID: PMC9574091 DOI: 10.3389/fcell.2022.1011371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease accompanied with joint destruction. Serious joint destruction will eventually lead to disability and the decline of life quality in RA patients. At present, the therapeutic effect of drugs to alleviate joint destruction in RA is limited. Recently, accumulating evidences have shown that long non-coding RNAs (lncRNAs) play an important role in the pathogenesis of joint diseases. Therefore, this paper reviews the expression change and the action mechanism of lncRNAs in joint destruction of RA in recent years. A more comprehensive understanding of the role of lncRNAs in joint destruction will help the treatment of RA.
Collapse
Affiliation(s)
- Hanxiao Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ning Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Shanghai GuangHua Hospital of Integrated Traditional Chinese and Western Medicine, Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China
- *Correspondence: Aiping Lu, ; Cheng Lu, ; Xiaojuan He,
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Aiping Lu, ; Cheng Lu, ; Xiaojuan He,
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Aiping Lu, ; Cheng Lu, ; Xiaojuan He,
| |
Collapse
|
17
|
Huang H, Wang X, Liao H, Ma L, Jiang C, Yao S, Liu H, Cao Z. Expression profile analysis of long noncoding
RNA
and messenger
RNA
during mouse cementoblast mineralization. J Periodontal Res 2022; 57:1159-1168. [DOI: 10.1111/jre.13053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Hantao Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST KLOS) and Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School and Hospital of Stomatology Wuhan University Wuhan China
| | - Xiaoxuan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST KLOS) and Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School and Hospital of Stomatology Wuhan University Wuhan China
- Department of Periodontology, School and Hospital of Stomatology Wuhan University Wuhan China
| | - Haiqing Liao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST KLOS) and Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School and Hospital of Stomatology Wuhan University Wuhan China
- Department of Periodontics and Oral Medicine, College of Stomatology Guangxi Medical University Nanning China
| | - Li Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST KLOS) and Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School and Hospital of Stomatology Wuhan University Wuhan China
- Department of Periodontology, School and Hospital of Stomatology Wuhan University Wuhan China
| | - Chenxi Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST KLOS) and Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School and Hospital of Stomatology Wuhan University Wuhan China
| | - Siqi Yao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST KLOS) and Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School and Hospital of Stomatology Wuhan University Wuhan China
| | - Huan Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST KLOS) and Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School and Hospital of Stomatology Wuhan University Wuhan China
- Department of Periodontology, School and Hospital of Stomatology Wuhan University Wuhan China
| | - Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST KLOS) and Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School and Hospital of Stomatology Wuhan University Wuhan China
- Department of Periodontology, School and Hospital of Stomatology Wuhan University Wuhan China
| |
Collapse
|
18
|
Liu W, Li G, Li J, Chen W. Long noncoding RNA TRG-AS1 protects against glucocorticoid-induced osteoporosis in a rat model by regulating miR-802-mediated CAB39/AMPK/SIRT-1/NF-κB axis. Hum Cell 2022; 35:1424-1439. [PMID: 35794445 DOI: 10.1007/s13577-022-00741-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/16/2022] [Indexed: 11/04/2022]
Abstract
The long-term treatment of glucocorticoids is a common cause of osteoporosis (OP). This study concentrated on inquiring into the regulatory role and potential mechanisms of TRG-AS1 on dexamethasone (Dex)-induced OP in rats. We adopted Dex to treat rat osteoblasts and rats to simulate in-vitro and in-vivo OP models, respectively. Gain-of-function assays of TRG-AS1, miR-802 and CAB39 were constructed in rat osteoblasts to make certain the influence of TRG-AS1, miR-802 and CAB39 on differentiation, proliferation and apoptosis of rat osteoblasts. TRG-AS1 and CAB39 were down-regulated in the Dex-induced OP model in rats, in contrast to miR-802. Overexpression of TRG-AS1 restrained Dex-induced inhibition of osteogenic differentiation, promoted CAB39/AMPK/SIRT-1 and inhibited NF-κB, while overexpression of miR-802 bridled the inhibitory effect of TRG-AS1 on OP. miR-802 was targeted by TRG-AS1, and inhibited CAB39. Inhibition of either AMPK or SIRT-1 abated the osteogenic differentiation-promoting effect of CAB39. Animal experiments displayed that overexpressing TRG-AS1 alleviated Dex-induced OP in rats. In conclusion, up-regulation of TRG-AS1 protected against glucocorticoid-induced OP in rats by modulating the miR-802-mediated CAB39/AMPK/SIRT-1/NF-κB axis.
Collapse
Affiliation(s)
- Wen Liu
- Department of Endocrinology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China
| | - Guojuan Li
- Department of Endocrinology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China
| | - Jing Li
- Department of Endocrinology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China
| | - Wei Chen
- Department of Orthopedic, The First Affiliated Hospital, Hengyang Medical School, University of South China, No. 69 Chuanshan Road, Hengyang, 421001, Hunan, China.
| |
Collapse
|
19
|
Li X, Zhou D, Yang D, Fu Y, Tao X, Hu X, Dai Y, Yue H. Isoquercitrin Attenuates Osteogenic Injury in MC3T3 Osteoblastic Cells and the Zebrafish Model via the Keap1-Nrf2-ARE Pathway. Molecules 2022; 27:molecules27113459. [PMID: 35684398 PMCID: PMC9182080 DOI: 10.3390/molecules27113459] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022] Open
Abstract
Isoquercitrin (IQ) widely exists in natural products, with a variety of pharmacological activities. In this study, the anti-apoptotic and antioxidative activities of IQ were evaluated. IQ showed protective activity against 2, 2′-azobis [2-methylpropionamidine] dihydrochloride (AAPH)-induced cell damage, as well as a marked reduction in reactive oxygen species (ROS). The evidence of IQ regulating Keap1-Nrf2-ARE and the mitochondrial-mediated Caspase 3 pathway were found in the MC3T3 osteoblastic cell line. Furthermore, IQ significantly decreased ROS production, apoptosis, and lipid peroxidation in AAPH-treated 72 h post-fertilization (hpf) zebrafish, as observed via DCFH-DA, acridine orange (AO), and a 1,3-bis(diphenylphosphino) propane (DPPP) probe, respectively. In AAPH-treated 9 day post-fertilization (dpf) zebrafish, IQ strongly promoted osteogenic development, with increased concentrations by calcein staining, compared with the untreated group. In a molecular docking assay, among all signal proteins, Keap1 showed the strongest affinity with IQ at −8.6 kcal/mol, which might be the reason why IQ regulated the Keap1-Nrf2-ARE pathway in vitro and in vivo. These results indicated that IQ promotes bone development and repairs bone injury, which is valuable for the prevention and treatment of bone diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yulin Dai
- Correspondence: (Y.D.); (H.Y.); Tel.: +86-431-8676-3986 (H.Y.); Fax: +86-431-8676-3986 (H.Y.)
| | - Hao Yue
- Correspondence: (Y.D.); (H.Y.); Tel.: +86-431-8676-3986 (H.Y.); Fax: +86-431-8676-3986 (H.Y.)
| |
Collapse
|
20
|
Chen X, Gao K, Xiang Z, Zhang Y, Peng X. Identification and Validation of an Endoplasmic Reticulum Stress-Related lncRNA Signature for Colon Adenocarcinoma Patients. Int J Gen Med 2022; 15:4303-4319. [PMID: 35480990 PMCID: PMC9037931 DOI: 10.2147/ijgm.s358775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Methods Results Conclusion
Collapse
Affiliation(s)
- Xueru Chen
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People’s Republic of China
| | - Kai Gao
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Zijin Xiang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People’s Republic of China
| | - Yujun Zhang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People’s Republic of China
| | - Xiangdong Peng
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People’s Republic of China
- Correspondence: Xiangdong Peng, Department of Pharmacy, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan Province, 410013, People’s Republic of China, Email
| |
Collapse
|
21
|
Zheng X, Gan S, Su C, Zheng Z, Liao Y, Shao J, Zhu Z, Chen W. Screening and preliminary identification of long non-coding RNAs critical for osteogenic differentiation of human umbilical cord mesenchymal stem cells. Bioengineered 2022; 13:6880-6894. [PMID: 35249446 PMCID: PMC8973756 DOI: 10.1080/21655979.2022.2044274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Human umbilical cord mesenchymal stem cells (hUCMSCs) are attractive therapeutic cells for tissue engineering to treat bone defects. However, how the cells can differentiate into bone remains unclear. Long non-coding RNAs (lncRNAs) are non-coding RNAs that participate in many biological processes, including stem cell differentiation. In this study, we investigated the profiles and functions of lncRNAs in the osteogenic differentiation of hUCMSCs. We identified 343 lncRNAs differentially expressed during osteogenic differentiation, of which 115 were upregulated and 228 were downregulated. We further analyzed these lncRNAs using bioinformatic analyses, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. GO and KEGG pathway analysis showed that ‘intracellular part’ and ‘Phosphatidylinositol signaling system’ were the most correlated molecular function and pathway, respectively. We selected the top 10 upregulated lncRNAs to construct six competing endogenous RNA networks. We validated the impact of the lncRNA H19 on osteogenic differentiation by overexpressing it in hUCMSCs. Overall, our results pave the way to detailed studies of the molecular mechanisms of hUCMSC osteogenic differentiation, and they provide a new theoretical basis to guide the therapeutic application of hUCMSCs.
Collapse
Affiliation(s)
- Xiao Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Pediatric Dentistry, Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, Guangdong, China
| | - Shuaiqi Gan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Cheng Su
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yihan Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jingjing Shao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhimin Zhu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
22
|
Wang W, Li T, Feng S. Knockdown of long non-coding RNA HOTAIR promotes bone marrow mesenchymal stem cell differentiation by sponging microRNA miR-378g that inhibits nicotinamide N-methyltransferase. Bioengineered 2021; 12:12482-12497. [PMID: 34895051 PMCID: PMC8810179 DOI: 10.1080/21655979.2021.2006863] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
Osteoporosis (OP) is associated with a serious social and economic burden. Recent studies have shown that the differential expression of long non-coding RNAs (lncRNAs) is closely related to OP. However, the specific molecular mechanism of HOX transcript antisense intergenic RNA (HOTAIR) remains to be elucidated.The expression of HOTAIR and miR-378g in OP patients was detected using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Bone marrow mesenchymal stem cells (BMSCs) were isolated and cultured, and osteogenic differentiation was induced. Alkaline phosphatase (ALP) and Runt-related transcription factor 2 (RUNX2) were detected by qRT-PCR, ELISA, and Western blotting. Calcium deposition was measured using Alizarin red s (ARS) staining. Molecular interactions between HOTAIR, miR-378g, and nicotinamide N-methyltransferase (NNMT) were detected using a dual-luciferase reporter assay.HOTAIR expression was upregulated and miR-378g level was downregulated in OP patients. HOTAIR expression decreased during the osteogenic differentiation of BMSCs. Silencing HOTAIR or NNMT reduced ALP and RUNX2 levels and promoted calcium deposition. The overexpression of HOTAIR or interference with miR-378g inhibited the osteogenic differentiation of BMSCs. HOTAIR negatively regulates miR-378g by targeting NNMT.HOTAIR is an miR-378g sponge that targets NNMT, inhibits the osteogenic differentiation of BMSCs, and provides a valuable target for the treatment of OP.
Collapse
Affiliation(s)
- Wei Wang
- Department of Orthopedics, WuHan HanKou Hospital, Wuhan, Hubei, China
| | - Tao Li
- Department of Orthopedics, WuHan HanKou Hospital, Wuhan, Hubei, China
| | - Shibo Feng
- Department of Orthopedics, WuHan HanKou Hospital, Wuhan, Hubei, China
| |
Collapse
|
23
|
Lanzillotti C, De Mattei M, Mazziotta C, Taraballi F, Rotondo JC, Tognon M, Martini F. Long Non-coding RNAs and MicroRNAs Interplay in Osteogenic Differentiation of Mesenchymal Stem Cells. Front Cell Dev Biol 2021; 9:646032. [PMID: 33898434 PMCID: PMC8063120 DOI: 10.3389/fcell.2021.646032] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/11/2021] [Indexed: 12/23/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have gained great attention as epigenetic regulators of gene expression in many tissues. Increasing evidence indicates that lncRNAs, together with microRNAs (miRNAs), play a pivotal role in osteogenesis. While miRNA action mechanism relies mainly on miRNA-mRNA interaction, resulting in suppressed expression, lncRNAs affect mRNA functionality through different activities, including interaction with miRNAs. Recent advances in RNA sequencing technology have improved knowledge into the molecular pathways regulated by the interaction of lncRNAs and miRNAs. This review reports on the recent knowledge of lncRNAs and miRNAs roles as key regulators of osteogenic differentiation. Specifically, we described herein the recent discoveries on lncRNA-miRNA crosstalk during the osteogenic differentiation of mesenchymal stem cells (MSCs) derived from bone marrow (BM), as well as from different other anatomical regions. The deep understanding of the connection between miRNAs and lncRNAs during the osteogenic differentiation will strongly improve knowledge into the molecular mechanisms of bone growth and development, ultimately leading to discover innovative diagnostic and therapeutic tools for osteogenic disorders and bone diseases.
Collapse
Affiliation(s)
- Carmen Lanzillotti
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Monica De Mattei
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Chiara Mazziotta
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, United States.,Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - John Charles Rotondo
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| |
Collapse
|
24
|
Zheng Z, Xie B, Cai W, Yang C, Du X. Identification of a long non-coding RNA (LncMSEN2) from pearl oyster and its potential roles in exoskeleton formation and LPS stimulation. FISH & SHELLFISH IMMUNOLOGY 2020; 103:403-408. [PMID: 32446968 DOI: 10.1016/j.fsi.2020.05.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/07/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
Long non-coding RNAs (lncRNAs) play regulatory roles in various biological processes, including exoskeleton formation and immune response. The exoskeleton-based mantle-shell defense system is an important defense mechanism in shellfish. In this study, we found a novel lncRNA, herein formally named, LncMSEN2, from the pearl oyster Pinctada fucuta martensii, and its sequence was validated via polymerase chain reaction (PCR). LncMSEN2 was highly expressed in mantle tissues, especially in the central region (P < 0.05), and was also expressed in the pearl sac as detected by quantitative real-time PCR. In situ hybridization experiments revealed that LncMSEN2 had a strong positive signal in the inner and outer epidermal cells of the mantle pallial and central regions. RNA interference experiments showed that interference of LncMSEN2 expression with dsRNA in mantle tissues led to an abnormal crystal structure of the nacre. In addition, LncMSEN2 expression significantly increased 6 h after lipopolysaccharide stimulation in mantle tissues (P < 0.05). These results indicated that LncMSEN2 may be a novel regulator of the mantle-shell defense system of pearl oyster.
Collapse
Affiliation(s)
- Zhe Zheng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Bingyi Xie
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Weiyu Cai
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Chuangye Yang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China.
| | - Xiaodong Du
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China.
| |
Collapse
|
25
|
Sikora M, Marycz K, Smieszek A. Small and Long Non-coding RNAs as Functional Regulators of Bone Homeostasis, Acting Alone or Cooperatively. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:792-803. [PMID: 32791451 PMCID: PMC7419272 DOI: 10.1016/j.omtn.2020.07.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/15/2020] [Accepted: 07/10/2020] [Indexed: 12/16/2022]
Abstract
Emerging knowledge indicates that non-coding RNAs, including microRNAs (miRNAs) and long-noncoding RNAs (lncRNAs), have a pivotal role in bone development and the pathogenesis of bone-related disorders. Most recently, miRNAs have started to be regarded as potential biomarkers or targets for various sets of diseases, while lncRNAs have gained attention as a new layer of gene expression control acting through versatile interactions, also with miRNAs. The rapid development of RNA sequencing techniques based on next-generation sequencing (NGS) gives us better insight into molecular pathways regulated by the miRNA-lncRNA network. In this review, we summarize the current knowledge related to the function of miRNAs and lncRNAs as regulators of genes that are crucial for proper bone metabolism and homeostasis. We have characterized important non-coding RNAs and their expression signatures, in relationship to bone. Analysis of the biological function of miRNAs and lncRNAs, as well as their network, will pave the way for a better understanding of the pathogenesis of various bone disorders. We also think that this knowledge may lead to the development of innovative diagnostic tools and therapeutic approaches for bone-related disorders.
Collapse
Affiliation(s)
- Mateusz Sikora
- Department of Experimental Biology, Faculty of Biology and Animal Science, University of Environmental and Life Sciences Wroclaw, Norwida 27B Street, 50-375 Wroclaw, Poland
| | - Krzysztof Marycz
- International Institute of Translational Medicine, Jesionowa 11 Street, 55-124 Malin, Poland; Collegium Medicum, Institute of Medical Science, Cardinal Stefan Wyszynski University (UKSW), Wóycickiego 1/3, 01-938 Warsaw, Poland
| | - Agnieszka Smieszek
- Department of Experimental Biology, Faculty of Biology and Animal Science, University of Environmental and Life Sciences Wroclaw, Norwida 27B Street, 50-375 Wroclaw, Poland.
| |
Collapse
|
26
|
Chen K, Fang H, Xu N. LncRNA LOXL1-AS1 is transcriptionally activated by JUND and contributes to osteoarthritis progression via targeting the miR-423-5p/KDM5C axis. Life Sci 2020; 258:118095. [PMID: 32679142 DOI: 10.1016/j.lfs.2020.118095] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 06/22/2020] [Accepted: 07/09/2020] [Indexed: 12/25/2022]
Abstract
AIMS This study focused on investigating the potential role of long non-coding RNA (lncRNA) lysyl oxidase like 1 antisense RNA 1 (LOXL1-AS1) in the progression of osteoarthritis (OA). MATERIALS AND METHODS qRT-PCR assay was applied to detect gene expression, while western blot was performed to measure levels of apoptosis-related proteins. CCK-8, colony formation and TUNEL assays were conducted to explore the functional role of LOXL1-AS1 in OA. ChIP assay was utilized to assess the affinity between JunD proto-oncogene, AP-1 transcription factor subunit (JUND) and LOXL1-AS1 promoter. Mechanism experiments were implemented to investigate the underlying molecular mechanism of LOXL1-AS1. KEY FINDINGS LOXL1-AS1 was up-regulated in OA cartilage tissues. Silencing LOXL1-AS1 hampered proliferation and inflammation, yet promoting apoptosis in chondrocytes. LOXL1-AS1 was transcriptionally activated by JUND1. LOXL1-AS1 sequestered miR-423-5p and abolished miR-423-5p-mediated repression on lysine demethylase 5C (KDM5C), thus promoted the development of OA. SIGNIFICANCE LncRNA LOXL1-AS1 is transcriptionally activated by JUND and facilitates the proliferation and inflammation of chondrocytes via elevating miR-423-5p-mediated KDM5C in OA, which may provide potential therapeutic target for OA.
Collapse
Affiliation(s)
- Keng Chen
- Department of Orthopaedics, Shanghai Eighth People's Hospital, 14th Floor, Building2, No.8 Caobao Road, Xuhui District, Shanghai 200235, China.
| | - Hao Fang
- Department of Orthopaedics, Shanghai Eighth People's Hospital, 14th Floor, Building2, No.8 Caobao Road, Xuhui District, Shanghai 200235, China
| | - Ning Xu
- Department of Orthopaedics, Shanghai Eighth People's Hospital, 14th Floor, Building2, No.8 Caobao Road, Xuhui District, Shanghai 200235, China
| |
Collapse
|
27
|
Yang F, Chen X, Li X, Chen J, Tang Y, Cai Y, Wang Y, Chen Z, Li L, Li R, Deng Z. Long Intergenic Non-Protein Coding RNA 1089 Suppresses Cell Proliferation and Metastasis in Gastric Cancer by Regulating miRNA-27a-3p/Epithelial-Mesenchymal Transition (EMT) Axis. Cancer Manag Res 2020; 12:5587-5596. [PMID: 32753971 PMCID: PMC7358073 DOI: 10.2147/cmar.s254064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
Aim To explore the expression and biological function of long intergenic non-protein coding RNA 1089 (LINC01089) in gastric cancer (GC) progression and its underlying mechanism. Methods LINC01089 and microRNA-27a-3p (miR-27a-3p) expressions were detected with the quantitative real-time polymerase chain reaction (RT-qPCR). Cell proliferation, migration and invasion were evaluated by Cell Counting Kit-8 (CCK-8) and Transwell assay. Epithelial-mesenchymal transition (EMT)-related proteins were also measured by Western blot. The relationship between LINC01089 and miR-27a-3p was revealed by a bioinformatics analysis and dual-luciferase reporter assay. Results LINC01089 was significantly down-regulated in GC tissues, as well as GC cell lines. GC patients with lower LINC01089 expression were more likely to have poor outcomes. Overexpression of LINC01089 significantly suppressed GC cells growth, migration and invasion and forbade the EMT process. LINC01089 was directly targeted at miR-27a-3p. The transfection of miR-27a-3p mimics reversed the inhibitory effects on proliferative and metastatic abilities of GC cells with LINC01089 overexpression. Conclusion LINC01089 inhibits cell proliferation and metastasis in GC by targeting miR-27a-3p/EMT axis, which should be considered as a promising therapeutic target.
Collapse
Affiliation(s)
- Feng Yang
- Department of General Surgery, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan 523059, People's Republic of China
| | - Xiaoting Chen
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, People's Republic of China
| | - Xiyao Li
- Department of General Surgery, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Jianhua Chen
- Department of General Surgery, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan 523059, People's Republic of China
| | - Yuxin Tang
- Department of General Surgery, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan 523059, People's Republic of China
| | - Yongchang Cai
- Department of General Surgery, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan 523059, People's Republic of China
| | - Yijun Wang
- Department of General Surgery, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan 523059, People's Republic of China
| | - Zhiliang Chen
- Department of General Surgery, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan 523059, People's Republic of China
| | - Libo Li
- Department of General Surgery, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan 523059, People's Republic of China
| | - Ruiping Li
- Department of General Surgery, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan 523059, People's Republic of China
| | - Zhenwei Deng
- Department of General Surgery, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan 523059, People's Republic of China
| |
Collapse
|
28
|
Li D, Tian Y, Yin C, Huai Y, Zhao Y, Su P, Wang X, Pei J, Zhang K, Yang C, Dang K, Jiang S, Miao Z, Li M, Hao Q, Zhang G, Qian A. Silencing of lncRNA AK045490 Promotes Osteoblast Differentiation and Bone Formation via β-Catenin/TCF1/Runx2 Signaling Axis. Int J Mol Sci 2019; 20:ijms20246229. [PMID: 31835596 PMCID: PMC6941011 DOI: 10.3390/ijms20246229] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
Osteoporosis, a disease characterized by both loss of bone mass and structural deterioration of bone, is the most common reason for a broken bone among the elderly. It is known that the attenuated differentiation ability of osteogenic cells has been regarded as one of the greatest contributors to age-related bone formation reduction. However, the effects of current therapies are still unsatisfactory. In this study we identify a novel long noncoding RNA AK045490 which is correlated with osteogenic differentiation and enriched in skeletal tissues of mice. In vitro analysis of bone-derived mesenchymal stem cells (BMSCs) showed that AK045490 inhibited osteoblast differentiation. In vivo inhibition of AK045490 by its small interfering RNA rescued bone formation in ovariectomized osteoporosis mice model. Mechanistically, AK045490 inhibited the nuclear translocation of β-catenin and downregulated the expression of TCF1, LEF1, and Runx2. The results suggest that Lnc-AK045490 suppresses β-catenin/TCF1/Runx2 signaling and inhibits osteoblast differentiation and bone formation, providing a novel mechanism of osteogenic differentiation and a potential drug target for osteoporosis.
Collapse
Affiliation(s)
- Dijie Li
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (D.L.); (Y.T.); (C.Y.); (Y.H.); (Y.Z.); (P.S.); (X.W.); (J.P.); (K.Z.); (C.Y.); (K.D.); (Z.M.)
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, SAR, China
| | - Ye Tian
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (D.L.); (Y.T.); (C.Y.); (Y.H.); (Y.Z.); (P.S.); (X.W.); (J.P.); (K.Z.); (C.Y.); (K.D.); (Z.M.)
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Chong Yin
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (D.L.); (Y.T.); (C.Y.); (Y.H.); (Y.Z.); (P.S.); (X.W.); (J.P.); (K.Z.); (C.Y.); (K.D.); (Z.M.)
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Ying Huai
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (D.L.); (Y.T.); (C.Y.); (Y.H.); (Y.Z.); (P.S.); (X.W.); (J.P.); (K.Z.); (C.Y.); (K.D.); (Z.M.)
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yipu Zhao
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (D.L.); (Y.T.); (C.Y.); (Y.H.); (Y.Z.); (P.S.); (X.W.); (J.P.); (K.Z.); (C.Y.); (K.D.); (Z.M.)
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Peihong Su
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (D.L.); (Y.T.); (C.Y.); (Y.H.); (Y.Z.); (P.S.); (X.W.); (J.P.); (K.Z.); (C.Y.); (K.D.); (Z.M.)
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Xue Wang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (D.L.); (Y.T.); (C.Y.); (Y.H.); (Y.Z.); (P.S.); (X.W.); (J.P.); (K.Z.); (C.Y.); (K.D.); (Z.M.)
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Jiawei Pei
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (D.L.); (Y.T.); (C.Y.); (Y.H.); (Y.Z.); (P.S.); (X.W.); (J.P.); (K.Z.); (C.Y.); (K.D.); (Z.M.)
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Kewen Zhang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (D.L.); (Y.T.); (C.Y.); (Y.H.); (Y.Z.); (P.S.); (X.W.); (J.P.); (K.Z.); (C.Y.); (K.D.); (Z.M.)
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Chaofei Yang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (D.L.); (Y.T.); (C.Y.); (Y.H.); (Y.Z.); (P.S.); (X.W.); (J.P.); (K.Z.); (C.Y.); (K.D.); (Z.M.)
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Kai Dang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (D.L.); (Y.T.); (C.Y.); (Y.H.); (Y.Z.); (P.S.); (X.W.); (J.P.); (K.Z.); (C.Y.); (K.D.); (Z.M.)
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Shanfeng Jiang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (D.L.); (Y.T.); (C.Y.); (Y.H.); (Y.Z.); (P.S.); (X.W.); (J.P.); (K.Z.); (C.Y.); (K.D.); (Z.M.)
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zhiping Miao
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (D.L.); (Y.T.); (C.Y.); (Y.H.); (Y.Z.); (P.S.); (X.W.); (J.P.); (K.Z.); (C.Y.); (K.D.); (Z.M.)
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Meng Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi’an 710032, China; (M.L.); (Q.H.)
| | - Qiang Hao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi’an 710032, China; (M.L.); (Q.H.)
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, SAR, China
- Correspondence: (G.Z.); (A.Q.); Tel.: +86-29-88491840 (G.Z. & A.Q.)
| | - Airong Qian
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (D.L.); (Y.T.); (C.Y.); (Y.H.); (Y.Z.); (P.S.); (X.W.); (J.P.); (K.Z.); (C.Y.); (K.D.); (Z.M.)
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Correspondence: (G.Z.); (A.Q.); Tel.: +86-29-88491840 (G.Z. & A.Q.)
| |
Collapse
|