1
|
Garling A, Goursat C, Seguy C, Martin P, Goman A, Nougayrède JP, Oswald É, Auvray F, Branchu P. Development of intimin-enriched outer membrane vesicles (OMVs) as a vaccine to control intestinal carriage of Enterohemorrhagic Escherichia coli. Vaccine 2025; 52:126899. [PMID: 39985970 DOI: 10.1016/j.vaccine.2025.126899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/07/2025] [Accepted: 02/14/2025] [Indexed: 02/24/2025]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) are foodborne pathogens causing severe human infections including hemorrhagic colitis and hemolytic uremic syndrome, particularly in children. Ruminants are the main reservoir of EHEC which colonize their intestinal tract through a mechanism involving the bacterial adhesin intimin. Vaccination of cattle has shown efficacy in reducing EHEC O157:H7 shedding in feces. However, most of these vaccines rely on purified proteins and/or adjuvants, making them expensive and not used by breeders. This study introduced the development of a new type of vaccine based on Outer Membrane Vesicles (OMVs) carrying the C-terminal domain of intimin (Int280). A vaccine which combines OMVs carrying luminal Int280 and OMVs displaying surface-exposed Int280 was produced using two addressing systems based on PelB peptide signal and Lpp-OmpA hybrid protein, respectively. Dot blot experiments on OMVs combined with FAS assay with bacteria confirmed the correct localization of the fusion proteins and the functionality of Lpp-OmpA-Int280, respectively. As a proof of concept, the efficiency of the mixed vaccine was tested in a mouse model using the pathogen Citrobacter rodentium which shares a similar intimin-based adhesion mechanism with EHEC. Intraperitoneal vaccination of mice, at two-week intervals with 1 μg of the mixture of OMV-Int280, elicited a strong anti-intimin IgG response. Interestingly, we observed a shortened C. rodentium fecal shedding duration in immunized mice compared to the control unvaccinated group, with significant reduction of C. rodentium colonization from day 14 (q < 0.0001) to day 18 (q = 0.0068). This OMV-Int280 vaccine therefore represents a promising candidate for the control of EHEC intestinal carriage and fecal shedding in ruminants.
Collapse
Affiliation(s)
- Asja Garling
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Cécile Goursat
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Carine Seguy
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Patricia Martin
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Audrey Goman
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | | | - Éric Oswald
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France; CHU de Toulouse, Hôpital Purpan, Toulouse, France
| | - Frédéric Auvray
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Priscilla Branchu
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France.
| |
Collapse
|
2
|
Lokireddy SR, Kunchala SR, Vadde R. Advancements in Escherichia coli secretion systems for enhanced recombinant protein production. World J Microbiol Biotechnol 2025; 41:90. [PMID: 40025370 DOI: 10.1007/s11274-025-04302-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Escherichia coli is inarguably one of the most studied microorganisms across the spectrum of microbiology. It is very widely used in recombinant protein production owing to its rapid growth, ease of genetic manipulation, and relatively high protein yields. Despite all of its advantages, its inability to efficiently secrete proteins naturally remains a drawback leading to protein aggregation as inclusion bodies in the cytoplasm and consequent low overall protein yield. Therefore, many approaches to mitigate this weakness and enhance extracellular secretion to increase protein yield have been devised. This review explores the natural and engineered secretion systems in E. coli, highlighting their potential for enhanced protein secretion for non-glycosylated proteins. Natural one-step (e.g., Type I and III Secretion Systems) and two-step systems (e.g., Sec and Tat pathways) are detailed alongside recent advancements in genetic engineering, mutagenesis, and synthetic biology approaches aimed at improving protein yield, folding, and secretion efficiency. Emerging technologies, such as the ESETEC® and BacSec® platforms, promise scalable and cost-effective solutions for higher protein production. Challenges, including limited cellular capabilities and protein aggregation, are addressed through innovative strategies like cell wall modification, co-expression of chaperones, and medium optimization. This review emphasizes E. coli's adaptability to industrial applications, and the promising future of recombinant protein technologies.
Collapse
Affiliation(s)
- Sudarsana Reddy Lokireddy
- Oncosmis Biotech Private Limited, Plot No 3, Genpact Rd, IDA Uppal, Hyderabad, TG, 500 007, India
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, 516 005, India
| | - Sridhar Rao Kunchala
- Oncosmis Biotech Private Limited, Plot No 3, Genpact Rd, IDA Uppal, Hyderabad, TG, 500 007, India.
| | - Ramakrishna Vadde
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, 516 005, India.
| |
Collapse
|
3
|
Eom TY, Gang Y, Lee Y, Kang YH, Jo E, Marasinghe SD, Park HS, Park GH, Oh C. Comparative Secretory Efficiency of Two Chitosanase Signal Peptides from Bacillus subtilis in Escherichia coli. J Microbiol 2024; 62:1155-1164. [PMID: 39585609 DOI: 10.1007/s12275-024-00186-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 11/26/2024]
Abstract
The production of recombinant proteins in Escherichia coli is often challenged by cytoplasmic expression due to proteolytic degradation and inclusion body formation. Extracellular expression can overcome these problems by simplifying downstream processing and improving protein yields. This study aims to compare the efficiency of two Bacillus subtilis chitosanase signal peptides in mediating extracellular secretion in E. coli. We identified a naturally occurring mutant signal peptide (mCsn2-SP) from B. subtilis CH2 chitosanase (CH2CSN), which is characterized by a deletion of six amino acids in the N-region relative to the signal peptide (Csn1-SP) from B. subtilis CH1 chitosanase (CH1CSN). The CH1CSN and CH2CSN genes were cloned into the pET-11a vector and protein secretion was evaluated in E. coli BL21(DE3) host cells. Expression was induced with 0.1 mM and 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) at 30 °C for one and three days. CH2CSN showed higher secretion levels compared to CH1CSN under all experimental conditions, especially with 0.1 mM IPTG induction for 3 days, which resulted in a 2.37-fold increase in secretion. Furthermore, it was demonstrated that mCsn2-SP is capable of secreting human Cu,Zn-superoxide dismutase (hSOD) in E. coli BL21(DE3) and successfully translocating it to the periplasmic region. This study represents the inaugural investigation into the utilisation of a naturally modified signal peptide, thereby corroborating the assertion that signal peptide deletion variants can influence protein secretion efficiency. Furthermore, the findings substantiate the proposition that such variants can serve as a viable alternative for the secretion of heterologous proteins in E. coli.
Collapse
Affiliation(s)
- Tae-Yang Eom
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology, Jeju, 62632, Republic of Korea
- Department of Marine Technology and Convergence Engineering, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Yehui Gang
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology, Jeju, 62632, Republic of Korea
- Department of Marine Technology and Convergence Engineering, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Youngdeuk Lee
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology, Jeju, 62632, Republic of Korea
| | - Yoon-Hyeok Kang
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology, Jeju, 62632, Republic of Korea
- Department of Marine Technology and Convergence Engineering, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Eunyoung Jo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology, Jeju, 62632, Republic of Korea
| | - Svini Dileepa Marasinghe
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology, Jeju, 62632, Republic of Korea
- Department of Marine Technology and Convergence Engineering, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Heung Sik Park
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology, Jeju, 62632, Republic of Korea
- Department of Marine Technology and Convergence Engineering, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Gun-Hoo Park
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology, Jeju, 62632, Republic of Korea.
- Department of Marine Technology and Convergence Engineering, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Chulhong Oh
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology, Jeju, 62632, Republic of Korea.
- Department of Marine Technology and Convergence Engineering, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
4
|
Mertes V, Saragliadis A, Mascherin E, Tysvær EB, Roos N, Linke D, Winther-Larsen HC. Recombinant expression of Yersinia ruckeri outer membrane proteins in Escherichia coli extracellular vesicles. Protein Expr Purif 2024; 215:106409. [PMID: 38040272 DOI: 10.1016/j.pep.2023.106409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/11/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
The secretion of extracellular vesicles (EVs) is a common process in Gram-negative bacteria and can be exploited for biotechnological applications. EVs pose a self-adjuvanting, non-replicative vaccine platform, where membrane and antigens are presented to the host immune system in a non-infectious fashion. The secreted quantity of EVs varies between Gram-negative bacterial species and is comparatively high in the model bacterium E. coli. The outer membrane proteins OmpA and OmpF of the fish pathogen Y. ruckeri have been proposed as vaccine candidates to prevent enteric redmouth disease in aquaculture. In this work, Y.ruckeri OmpA or OmpF were expressed in E. coli and recombinant EVs were isolated. To avoid competition between endogenous E. coli OmpA or OmpF, Y. ruckeri OmpA and OmpF were expressed in E. coli strains lacking ompA, ompF, and in a quadruple knockout strain where the four major outer membrane protein genes ompA, ompC, ompF and lamB were removed. Y.ruckeri OmpA and OmpF were successfully expressed in EVs derived from the E. coli mutants as verified by SDS-PAGE, heat modifiability and proteomic analysis using mass-spectrometry. Transmission electron microscopy revealed the presence of EVs in all E. coli strains, and increased EV concentrations were detected when expressing Y. ruckeri OmpA or OmpF in recombinant EVs compared to empty vector controls as verified by nanoparticle tracking analysis. These results show that E. coli can be utilized as a vector for production of EVs expressing outer membrane antigens from Y. ruckeri.
Collapse
Affiliation(s)
- Verena Mertes
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Athanasios Saragliadis
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Norway
| | - Elisa Mascherin
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Italy
| | - Ellen-Beate Tysvær
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, Norway
| | - Norbert Roos
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, Norway
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Norway
| | - Hanne C Winther-Larsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway.
| |
Collapse
|
5
|
Hahn J, Ding S, Im J, Harimoto T, Leong KW, Danino T. Bacterial therapies at the interface of synthetic biology and nanomedicine. NATURE REVIEWS BIOENGINEERING 2024; 2:120-135. [PMID: 38962719 PMCID: PMC11218715 DOI: 10.1038/s44222-023-00119-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/08/2023] [Indexed: 07/05/2024]
Abstract
Bacteria are emerging as living drugs to treat a broad range of disease indications. However, the inherent advantages of these replicating and immunostimulatory therapies also carry the potential for toxicity. Advances in synthetic biology and the integration of nanomedicine can address this challenge through the engineering of controllable systems that regulate spatial and temporal activation for improved safety and efficacy. Here, we review recent progress in nanobiotechnology-driven engineering of bacteria-based therapies, highlighting limitations and opportunities that will facilitate clinical translation.
Collapse
Affiliation(s)
- Jaeseung Hahn
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Suwan Ding
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jongwon Im
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Tetsuhiro Harimoto
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
| | - Tal Danino
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Data Science Institute, Columbia University, New York, NY, USA
| |
Collapse
|
6
|
Hashemzaei M, Ghoshoon MB, Jamshidi M, Moradbeygi F, Hashemzehi A. A Review on Romiplostim Mechanism of Action and the Expressive Approach in E. coli. Recent Pat Biotechnol 2024; 18:95-109. [PMID: 38282441 DOI: 10.2174/1872208317666230503094451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/10/2023] [Accepted: 02/24/2023] [Indexed: 01/30/2024]
Abstract
Immune thrombocytopenic purpura (ITP) is an autoimmune disorder determined by immune-mediated platelet demolition and reduction of platelet production. Romiplostim is a new thrombopoiesis motivating peptibody that binds and stimulates the human thrombopoietin receptor the patent of which was registered in 2008. It is used to treat thrombocytopenia in patients with chronic immune thrombocytopenic purpura. Romiplostim is a 60 kDa peptibody designed to inhibit cross-reacting immune responses. It consists of four high-affinity TPO-receptor binding domains for the Mpl receptor and one human IgG1 Fc domain. Escherichia coli is a good host for the fabrication of recombinant proteins such as romiplostim. The expression of a gene intended in E. coli is dependent on many factors such as a protein's inherent ability to fold, mRNA's secondary structure, its solubility, its toxicity preferential codon use, and its need for post-translational modification (PTM). This review focuses on the structure, function, mechanism of action, and expressive approach to romiplostim in E. coli.
Collapse
Affiliation(s)
- Masoud Hashemzaei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mehrnaz Jamshidi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Moradbeygi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Hashemzehi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
di Leandro L, Colasante M, Pitari G, Ippoliti R. Hosts and Heterologous Expression Strategies of Recombinant Toxins for Therapeutic Purposes. Toxins (Basel) 2023; 15:699. [PMID: 38133203 PMCID: PMC10748335 DOI: 10.3390/toxins15120699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
The production of therapeutic recombinant toxins requires careful host cell selection. Bacteria, yeast, and mammalian cells are common choices, but no universal solution exists. Achieving the delicate balance in toxin production is crucial due to potential self-intoxication. Recombinant toxins from various sources find applications in antimicrobials, biotechnology, cancer drugs, and vaccines. "Toxin-based therapy" targets diseased cells using three strategies. Targeted cancer therapy, like antibody-toxin conjugates, fusion toxins, or "suicide gene therapy", can selectively eliminate cancer cells, leaving healthy cells unharmed. Notable toxins from various biological sources may be used as full-length toxins, as plant (saporin) or animal (melittin) toxins, or as isolated domains that are typical of bacterial toxins, including Pseudomonas Exotoxin A (PE) and diphtheria toxin (DT). This paper outlines toxin expression methods and system advantages and disadvantages, emphasizing host cell selection's critical role.
Collapse
Affiliation(s)
| | | | | | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.d.L.); (M.C.); (G.P.)
| |
Collapse
|
8
|
Mahboobi M, Salmanian AH, Sedighian H, Bambai B. Molecular Modeling and Optimization of Type II E.coli l-Asparginase Activity by in silico Design and in vitro Site-directed Mutagenesis. Protein J 2023; 42:664-674. [PMID: 37634213 DOI: 10.1007/s10930-023-10149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2023] [Indexed: 08/29/2023]
Abstract
INTRODUCTION L-asparaginase (also known as L-ASNase) is a crucial therapeutic enzyme that is widely used in treatment of ALL (acute lymphoblastic leukemia) as a chemotherapeutic drug. Besides, this enzyme is used in the food industry as a food processing reagent to reduce the content of acrylamide in addition to the clinical industry. The improvement of activity and kinetic parameters of the L-ASNase enzyme may lead to higher efficiency resulting in practical achievement. In order to achieve this goal, we chosen glycine residue in position 88 as a potential mutation with advantageous outcomes. METHOD In this study, firstly to find the appropriate mutation on glycine 88, various in silico analyses, such as MD simulation and molecular docking, were carried out. Then, the rational design was adopted as the best strategy for molecular modifications of the enzyme to improve its enzymatic properties. RESULT Our in silico findings show that the four mutations G88Q, G88L, G88K, and G88A may be able to increase L-ASNase's asparaginase activity. The catalytic efficiency of each enzyme (kcat/Km) is the most important feature for comparing the catalytic activity of the mutants with the wild type form. The laboratory experiments showed that the kcat/Km for the G88Q mutant is 36.32% higher than the Escherichia coli K12 ASNase II (wild type), which suggests that L-ASNase activity is improved at lower concentration of L-ASN. Kinetic characterization of the mutants L-ASNase activity confirmed the high turnover rate (kcat) with ASN as substrate relative to the wild type enzyme. CONCLUSION In silico analyses and laboratory experiments demonstrated that the G88Q mutation rather than other mutation (G88L, G88K, and G88A) could improve the kinetics of L-ASNase.
Collapse
Affiliation(s)
- Mahdieh Mahboobi
- Department of Systems Biotechnology, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrake- Pajoohesh Blvd., 15th Km, Tehran-Karaj Highway, P.O. Box 14965-161, Tehran, Iran
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali-Hatef Salmanian
- Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrake- Pajoohesh Blvd., 15th Km, Tehran-Karaj Highway, P.O. Box 14965-161, Tehran, Iran.
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Bijan Bambai
- Department of Systems Biotechnology, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrake- Pajoohesh Blvd., 15th Km, Tehran-Karaj Highway, P.O. Box 14965-161, Tehran, Iran.
| |
Collapse
|
9
|
Osgerby A, Overton TW. Approaches for high-throughput quantification of periplasmic recombinant proteins. N Biotechnol 2023; 77:149-160. [PMID: 37708933 DOI: 10.1016/j.nbt.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
The Gram-negative periplasm is a convenient location for the accumulation of many recombinant proteins including biopharmaceutical products. It is the site of disulphide bond formation, required by some proteins (such as antibody fragments) for correct folding and function. It also permits simpler protein release and downstream processing than cytoplasmic accumulation. As such, targeting of recombinant proteins to the E. coli periplasm is a key strategy in biologic manufacture. However, expression and translocation of each recombinant protein requires optimisation including selection of the best signal peptide and growth and production conditions. Traditional methods require separation and analysis of protein compositions of periplasmic and cytoplasmic fractions, a time- and labour-intensive method that is difficult to parallelise. Therefore, approaches for high throughput quantification of periplasmic protein accumulation offer advantages in rapid process development.
Collapse
Affiliation(s)
- Alexander Osgerby
- School of Chemical Engineering and Institute of Microbiology and Infection, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Tim W Overton
- School of Chemical Engineering and Institute of Microbiology and Infection, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
10
|
Kormanová Ľ, Levarski Z, Minich A, Varga V, Levarská L, Struhárňanská E, Turňa J, Stuchlík S. Novel expression system based on enhanced permeability of Vibrio natriegens cells induced by D,D- carboxypeptidase overexpression. World J Microbiol Biotechnol 2023; 39:277. [PMID: 37568013 PMCID: PMC10421817 DOI: 10.1007/s11274-023-03723-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/06/2023] [Indexed: 08/13/2023]
Abstract
Vibrio natriegens is a fast-growing, non-pathogenic marine bacterium with promising features for biotechnological applications such as high-level recombinant protein production or fast DNA propagation. A remarkable short generation time (< 10 min), robust proteosynthetic activity and versatile metabolism with abilities to utilise wide range of substrates contribute to its establishment as a future industrial platform for fermentation processes operating with high productivity.D,D-carboxypeptidases are membrane-associated enzymes involved in peptidoglycan biosynthesis and cell wall formation. This study investigates the impact of overexpressed D,D-carboxypeptidases on membrane integrity and the increased leakage of intracellular proteins into the growth medium in V. natriegens. Our findings confirm that co-expression of these enzymes can enhance membrane permeability, thereby facilitating the transport of target proteins into the extracellular environment, without the need for secretion signals, tags, or additional permeabilization methods. Using only a single step IMAC chromatography, we were able to purify AfKatG, MDBP or Taq polymerase in total yields of 117.9 ± 56.0 mg/L, 36.5 ± 12.9 mg/L and 26.5 ± 6.0 mg/L directly from growth medium, respectively. These results demonstrate the feasibility of our V. natriegens based system as a broadly applicable extracellular tag-less recombinant protein producer.
Collapse
Affiliation(s)
- Ľubica Kormanová
- Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Bratislava, 811 04 Slovak Republic
| | - Zdenko Levarski
- Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Bratislava, 811 04 Slovak Republic
- Science Park, Comenius University in Bratislava, Ilkovičova 8, Bratislava, 811 04 Slovak Republic
| | - Andrej Minich
- Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Bratislava, 811 04 Slovak Republic
| | - Viktor Varga
- Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Bratislava, 811 04 Slovak Republic
| | - Lenka Levarská
- Science Park, Comenius University in Bratislava, Ilkovičova 8, Bratislava, 811 04 Slovak Republic
| | - Eva Struhárňanská
- Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Bratislava, 811 04 Slovak Republic
| | - Ján Turňa
- Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Bratislava, 811 04 Slovak Republic
| | - Stanislav Stuchlík
- Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Bratislava, 811 04 Slovak Republic
| |
Collapse
|
11
|
Tresnak DT, Hackel BJ. Deep Antimicrobial Activity and Stability Analysis Inform Lysin Sequence-Function Mapping. ACS Synth Biol 2023; 12:249-264. [PMID: 36599162 PMCID: PMC10822705 DOI: 10.1021/acssynbio.2c00509] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Antibiotic-resistant infectious disease is a critical challenge to human health. Antimicrobial proteins offer a compelling solution if engineered for potency, selectivity, and physiological stability. Lysins, which lyse cells via degradation of cell wall peptidoglycans, have significant potential to fill this role. Yet, the functional complexity of antimicrobial activity has hindered high-throughput characterization for discovery and design. To dramatically expand knowledge of the sequence-function landscape of lysins, we developed a depletion-based assay for library-scale measurement of lysin inhibitory activity. We coupled this platform with a high-throughput proteolytic stability assay to assess the activity and stability of ∼5 × 104 lysin catalytic domain variants, resulting in the discovery of a variant with increased activity (70 ± 20%) and stability (7.2 ± 0.4 °C increased midpoint of thermal denaturation). Ridge regression of the resulting data set demonstrated that libraries with a higher average Hamming distance better informed pairwise models and that coupling activity and stability assays enabled better prediction of catalytically active lysins. The best models achieved Pearson's correlation coefficients of 0.87 ± 0.01 and 0.61 ± 0.04 for predicting catalytic domain stability and activity, respectively. Our work provides an efficient strategy for constructing protein sequence-function landscapes, drastically increases screening throughput for engineering lysins, and yields promising lysins for further development.
Collapse
Affiliation(s)
- Daniel T Tresnak
- Department of Chemical Engineering and Materials Science, University of Minnesota─Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota55455, United States
| | - Benjamin J Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota─Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota55455, United States
| |
Collapse
|
12
|
Naderi M, Ghaderi R, Khezri J, Karkhane A, Bambai B. Crucial role of non-hydrophobic residues in H-region signal peptide on secretory production of l-asparaginase II in Escherichia coli. Biochem Biophys Res Commun 2022; 636:105-111. [DOI: 10.1016/j.bbrc.2022.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 11/02/2022]
|
13
|
Hashemzaei M, Nezafat N, Ghoshoon MB, Negahdaripour M. In-silico selection of appropriate signal peptides for romiplostim secretory production in Escherichia coli. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.101146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
14
|
Marzhoseyni Z, Shayestehpour M, Salimian M, Esmaeili D, Saffari M, Fathizadeh H. Designing a novel fusion protein from Streptococcus agalactiae with apoptosis induction effects on cervical cancer cells. Microb Pathog 2022; 169:105670. [PMID: 35809755 DOI: 10.1016/j.micpath.2022.105670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 11/15/2022]
Abstract
Cervical cancer remains life-threatening cancer in women around the world. Due to the limitations of conventional treatment approaches, there is an urgent need to develop novel and more efficient strategies against cervical cancer. Therefore, the researchers attend to the alternative anti-cancer compounds like bacterial products. Rib and α are known as surface proteins of Streptococcus agalactiae with immunologic effects. In the present study, we designed a new anti-cancer fusion protein (Rib-α) originating from S. agalactiae with in silico methods, and then, the recombinant gene was cloned in the pET-22 (+) expression vector. The recombinant protein was expressed in E. coli BL21. To purify the expressed protein, we applied the Ni-NTA column. The molecular mechanism by which Rib-α is cytotoxic to cancer cells has been discussed based on MTT, flow cytometry, and real-time PCR methods. The engineered fusion protein suppressed the proliferation of the cancer cells at 180 μg/ml. Cytotoxic assessment and morphological changes, augmentation of apoptotic-related genes, upregulation of caspase-3 mRNA, and flow cytometric analysis confirmed that apoptosis might be the principal mechanism of cell death. According to our findings, Rib-α fusion protein motivated the intrinsic apoptosis pathway. Therefore, it can be an exciting candidate to discover a new class of antineoplastic agents.
Collapse
Affiliation(s)
- Zeynab Marzhoseyni
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Shayestehpour
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Morteza Salimian
- Anatomical Science Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| | - Davoud Esmaeili
- Department of Microbiology and Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mahmood Saffari
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hadis Fathizadeh
- Student Research Committee, Sirjan School of Medical Sciences, Sirjan, Iran; Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| |
Collapse
|
15
|
Optimization and characterization of immobilized E. coli for engineered thermostable xylanase excretion and cell viability. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
16
|
Maleki M, Hajihassan Z. De Novo Designing a Novel Signal Peptide for Secretion of Neurturin to the Periplasmic Space of Escherichia coli. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821100057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Bertelsen AB, Hackney CM, Bayer CN, Kjelgaard LD, Rennig M, Christensen B, Sørensen ES, Safavi‐Hemami H, Wulff T, Ellgaard L, Nørholm MHH. DisCoTune: versatile auxiliary plasmids for the production of disulphide-containing proteins and peptides in the E. coli T7 system. Microb Biotechnol 2021; 14:2566-2580. [PMID: 34405535 PMCID: PMC8601162 DOI: 10.1111/1751-7915.13895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/15/2021] [Accepted: 07/04/2021] [Indexed: 11/28/2022] Open
Abstract
Secreted proteins and peptides hold large potential both as therapeutics and as enzyme catalysts in biotechnology. The high stability of many secreted proteins helps maintain functional integrity in changing chemical environments and is a contributing factor to their commercial potential. Disulphide bonds constitute an important post-translational modification that stabilizes many of these proteins and thus preserves the active state under chemically stressful conditions. Despite their importance, the discovery and applications within this group of proteins and peptides are limited by the availability of synthetic biology tools and heterologous production systems that allow for efficient formation of disulphide bonds. Here, we refine the design of two DisCoTune (Disulphide bond formation in E. coli with tunable expression) plasmids that enable the formation of disulphides in the highly popular Escherichia coli T7 protein production system. We show that this new system promotes significantly higher yield and activity of an industrial protease and a conotoxin, which belongs to a group of disulphide-rich venom peptides from cone snails with strong potential as research tools and pharmacological agents.
Collapse
Affiliation(s)
- Andreas B. Bertelsen
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens Lyngby2800Denmark
| | - Celeste Menuet Hackney
- Department of BiologyLinderstrøm‐Lang Centre for Protein ScienceUniversity of CopenhagenCopenhagen N.2200Denmark
| | - Carolyn N. Bayer
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens Lyngby2800Denmark
| | - Lau D. Kjelgaard
- Department of BiologyLinderstrøm‐Lang Centre for Protein ScienceUniversity of CopenhagenCopenhagen N.2200Denmark
| | - Maja Rennig
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens Lyngby2800Denmark
| | - Brian Christensen
- Department of Molecular Biology and GeneticsAarhus UniversityAarhus C8000Denmark
| | | | - Helena Safavi‐Hemami
- Department of BiologyLinderstrøm‐Lang Centre for Protein ScienceUniversity of CopenhagenCopenhagen N.2200Denmark
- Department of Biomedical SciencesUniversity of CopenhagenCopenhagen N2200Denmark
- Department of Biochemistry and School of Biological SciencesUniversity of UtahSalt Lake CityUT84112USA
| | - Tune Wulff
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens Lyngby2800Denmark
| | - Lars Ellgaard
- Department of BiologyLinderstrøm‐Lang Centre for Protein ScienceUniversity of CopenhagenCopenhagen N.2200Denmark
| | - Morten H. H. Nørholm
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens Lyngby2800Denmark
| |
Collapse
|
18
|
Rigi G, Rostami A, Ghomi H, Ahmadian G, Mirbagheri VS, Jeiranikhameneh M, Vahed M, Rahimi S. Optimization of expression, purification and secretion of functional recombinant human growth hormone in Escherichia coli using modified staphylococcal protein a signal peptide. BMC Biotechnol 2021; 21:51. [PMID: 34399745 PMCID: PMC8369807 DOI: 10.1186/s12896-021-00701-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/10/2021] [Indexed: 11/10/2022] Open
Abstract
Background Human Growth Hormone (hGH) is a glycoprotein released from the pituitary gland. Due to the wide range of effects in humans, any disruption in hGH secretion could have serious consequences. This highlights the clinical importance of hGH production in the treatment of different diseases associated with a deficiency of this hormone. The production of recombinant mature hormone in suitable hosts and secretion of this therapeutic protein into the extracellular space can be considered as one of the best cost-effective approaches not only to obtain the active form of the protein but also endotoxin-free preparation. Since the natural growth hormone signal peptide is of eukaryotic origin and is not detectable by any of the Escherichia coli secretory systems, including Sec and Tat, and is therefore unable to secrete hGH in the prokaryotic systems, designing a new and efficient signal peptide is essential to direct hGh to the extracellular space. Results In this study, using a combination of the bioinformatics design and molecular genetics, the protein A signal peptide from Staphylococcus aureus was modified, redesigned and then fused to the mature hGH coding region. The recombinant hGH was then expressed in E. coli and successfully secreted to the medium through the Sec pathway. Secretion of the hGH into the medium was verified using SDS-PAGE and western blot analysis. Recombinant hGH was then expressed in E. coli and successfully secreted into cell culture medium via the Sec pathway. The secretion of hGH into the extracellular medium was confirmed by SDS-PAGE and Western blot analysis. Furthermore, the addition of glycine was shown to improve hGH secretion onto the culture medium. Equations for determining the optimal conditions were also determined. Functional hGH analysis using an ELISA-based method confirmed that the ratio of the active form of secreted hGH to the inactive form in the periplasm is higher than this ratio in the cytoplasm. Conclusions Since the native signal protein peptide of S. aureus protein A was not able to deliver hGH to the extracellular space, it was modified using bioinformatics tools and fused to the n-terminal region of hGh to show that the redesigned signal peptide was functional. Supplementary Information The online version contains supplementary material available at 10.1186/s12896-021-00701-x.
Collapse
Affiliation(s)
- Garshasb Rigi
- Department of Genetics, Faculty of Basic Science, Shahrekord University, P. O. Box 115, Shahrekord, 881 863 4141, Iran.,Department of Industrial Biotechnology, Research Institute of Biotechnology, Shahrekord University, Shahrekord, Iran
| | - Amin Rostami
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Habib Ghomi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Gholamreza Ahmadian
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Vasiqe Sadat Mirbagheri
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.,Fisheries products processing group, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Meisam Jeiranikhameneh
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Majid Vahed
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Niayesh Highway, Valiasr Ave, Tehran, Iran.,Department of Toxico/Pharmacology, School of Pharmacy, Shahid Beheshti, University of Medical Sciences, Niayesh Highway, Valiasr Ave, Tehran, Iran
| | - Sahel Rahimi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
19
|
Vaccination with rEGVac elicits immunoprotection against different stages of Echinococcus granulosus life cycle: A pilot study. Acta Trop 2021; 218:105883. [PMID: 33676937 DOI: 10.1016/j.actatropica.2021.105883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022]
Abstract
Vaccination against dog-sheep transmission cycle is necessary to control cystic echinococcosis (CE) infection. A multi-epitope multi-antigenic recombinant vaccine was developed-comprising the three putative vaccine antigens EG95, Eg14-3-3 and EgEnolase-was cloned and expressed. In a pilot experiment, the multi-antigen vaccine was assessed in 15 dogs and 15 sheep (five experimental groups and three animals in each group) by two subcutaneous doses 28 days apart. To evaluate the efficacy of the vaccine candidate first immunological analysis were done comprising IgG and IgE antibodies and the cytokine IL-4 in sera of the immunized dogs and sheep. Serum IgG, IgE, and IL-4, in particular in the dogs, were increased after the two rounds of vaccine candidate injection, while the total number of hydatid cysts was reduced (~85.43%). This pilot trial indicated significant immune protection efficacy against E. granulosus especially in dogs, while its efficacy in sheep was not as high as dogs. The multi-antigenic candidate vaccine is proposed as a protective vaccine modality in both dogs and sheep.
Collapse
|
20
|
Mousavi P, Morowvat MH, Mostafavi-Pour Z, Aram F, Malekzadeh K, Nezafat N, Ghasemi Y. Experimental Analysis of E2BB (LTIIb) Signal Peptide in Secretory Production of Reteplase in Escherichia coli. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-020-10059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Secretory production in Escherichia coli of a GH46 chitosanase from Chromobacterium violaceum, suitable to generate antifungal chitooligosaccharides. Int J Biol Macromol 2020; 165:1482-1495. [PMID: 33017605 DOI: 10.1016/j.ijbiomac.2020.09.221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 01/23/2023]
|
22
|
Kastenhofer J, Rettenbacher L, Feuchtenhofer L, Mairhofer J, Spadiut O. Inhibition of E. coli Host RNA Polymerase Allows Efficient Extracellular Recombinant Protein Production by Enhancing Outer Membrane Leakiness. Biotechnol J 2020; 16:e2000274. [PMID: 32915502 DOI: 10.1002/biot.202000274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/27/2020] [Indexed: 12/20/2022]
Abstract
With the growing interest in continuous cultivation of Escherichia coli, secretion of product to the medium is not only a benefit, but a necessity in future bioprocessing. In this study, it is shown that induced decoupling of growth and heterologous gene expression in the E. coli X-press strain (derived from BL21(DE3)) facilitates extracellular recombinant protein production. The effect of the process parameters temperature and specific glucose consumption rate (qS ) on growth, productivity, lysis and leakiness, is investigated, to find the parameter space allowing extracellular protein production. Two model proteins are used, Protein A (SpA) and a heavy-chain single-domain antibody (VHH), and performance is compared to the industrial standard strain BL21(DE3). It is shown that inducible growth repression in the X-press strain greatly mitigates the effect of metabolic burden under different process conditions. Furthermore, temperature and qS are used to control productivity and leakiness. In the X-press strain, extracellular SpA and VHH titer reach up to 349 and 19.6 mg g-1 , respectively, comprising up to 90% of the total soluble product, while keeping cell lysis at a minimum. The findings demonstrate that the X-press strain constitutes a valuable host for extracellular production of recombinant protein with E. coli.
Collapse
Affiliation(s)
- Jens Kastenhofer
- TU Wien, Environmental and Bioscience Engineering, Research Division Biochemical Engineering, Research Group Integrated Bioprocess Development, Institute of Chemical, Gumpendorfer Strasse 1a, Vienna, 1060, Austria
| | - Lukas Rettenbacher
- TU Wien, Environmental and Bioscience Engineering, Research Division Biochemical Engineering, Research Group Integrated Bioprocess Development, Institute of Chemical, Gumpendorfer Strasse 1a, Vienna, 1060, Austria
| | | | | | - Oliver Spadiut
- TU Wien, Environmental and Bioscience Engineering, Research Division Biochemical Engineering, Research Group Integrated Bioprocess Development, Institute of Chemical, Gumpendorfer Strasse 1a, Vienna, 1060, Austria
| |
Collapse
|
23
|
Ya’u Sabo Ajingi, Nujarin Jongruja. Antimicrobial Peptide Engineering: Rational Design, Synthesis, and Synergistic Effect. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020040044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Expression and purification of soluble recombinant SapM from Mycobacterium tuberculosis. Protein Expr Purif 2020; 174:105663. [PMID: 32387341 DOI: 10.1016/j.pep.2020.105663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 01/31/2023]
Abstract
SapM from Mycobacterium tuberculosis is a secreted phosphatase critical for pathogen survival inside the host, representing an attractive target for the development of anti-tuberculosis drugs. The main limitation to biochemical and structural studies of SapM has been the lack of a suitable protocol to produce soluble recombinant protein. The aim of the present work was to produce SapM in Escherichia coli in a soluble and catalytically active form. We describe here the construct design, expression and purification of soluble SapM using Sarkosyl as a solubility-enhancing agent and auto-induction media. We demonstrate that solubilisation of the recombinant protein with Sarkosyl, and further purification, yields a catalytically active enzyme with high purity and monodisperse. The identity and molecular weight of the recombinant SapM was confirmed by mass spectrometry analyses, and we provide evidence that SapM behaves as a monomer in solution. Overall, this work lays the foundation for further studies to exploit SapM as a drug target, and provides a protocol for producing active and soluble recombinant enzymes that are hard to solubilise in E. coli.
Collapse
|
25
|
Culture medium density as a simple monitoring tool for cell integrity of Escherichia coli. J Biotechnol 2020; 324S:100017. [PMID: 34154736 DOI: 10.1016/j.btecx.2020.100017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 11/20/2022]
Abstract
During the expression of recombinant proteins in the periplasm of Escherichia coli, the integrity of the outer membrane can change, so that product leaks to the medium. Additional stress can induce lysis, the complete disintegration of both inner and outer membrane, leading to release of both product and host cell proteins. Whether leakiness is unwanted or intentional, appropriate monitoring of leakiness and its distinction from lysis is necessary to ensure product quality and process performance. Here, we investigated a novel monitoring tool for leakiness and lysis based on the measurement of the culture supernatant density. The method benefits from short analysis time and low analytical error, simple result output, relatively low cost, low risk of operator errors and the option of easy on-line implementation. Although limitations exist regarding selectivity, we could show that the method is capable of detecting changes in cell integrity. This tool is therefore an interesting addition to the monitoring toolbox for industrial E. coli bioprocesses.
Collapse
|
26
|
Tanhaeian A, Habibi Najafi MB, Rahnama P, Azghandi M. Production of a Recombinant Peptide (Lasioglossin LL ΙΙΙ) and Assessment of Antibacterial and Antioxidant Activity. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09904-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Vega MV, Nigro A, Luti S, Capitini C, Fani G, Gonnelli L, Boscaro F, Chiti F. Isolation and characterization of soluble human full‐length TDP‐43 associated with neurodegeneration. FASEB J 2019; 33:10780-10793. [DOI: 10.1096/fj.201900474r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mirella Vivoli Vega
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| | - Alessia Nigro
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| | - Simone Luti
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| | - Claudia Capitini
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| | - Giulia Fani
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| | - Leonardo Gonnelli
- Centro di Ricerca di Risonanze Magnetiche (CERM)University of FlorenceFlorenceItaly
| | | | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| |
Collapse
|
28
|
The Lipid A 1-Phosphatase, LpxE, Functionally Connects Multiple Layers of Bacterial Envelope Biogenesis. mBio 2019; 10:mBio.00886-19. [PMID: 31213552 PMCID: PMC6581854 DOI: 10.1128/mbio.00886-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dephosphorylation of the lipid A 1-phosphate by LpxE in Gram-negative bacteria plays important roles in antibiotic resistance, bacterial virulence, and modulation of the host immune system. Our results demonstrate that in addition to removing the 1-phosphate from lipid A, LpxEs also dephosphorylate undecaprenyl pyrophosphate, an important metabolite for the synthesis of the essential envelope components, peptidoglycan and O-antigen. Therefore, LpxEs participate in multiple layers of biogenesis of the Gram-negative bacterial envelope and increase antibiotic resistance. This discovery marks an important step toward understanding the regulation and biogenesis of the Gram-negative bacterial envelope. Although distinct lipid phosphatases are thought to be required for processing lipid A (component of the outer leaflet of the outer membrane), glycerophospholipid (component of the inner membrane and the inner leaflet of the outer membrane), and undecaprenyl pyrophosphate (C55-PP; precursors of peptidoglycan and O antigens of lipopolysaccharide) in Gram-negative bacteria, we report that the lipid A 1-phosphatases, LpxEs, functionally connect multiple layers of cell envelope biogenesis in Gram-negative bacteria. We found that Aquifex aeolicus LpxE structurally resembles YodM in Bacillus subtilis, a phosphatase for phosphatidylglycerol phosphate (PGP) with a weak in vitro activity on C55-PP, and rescues Escherichia coli deficient in PGP and C55-PP phosphatase activities; deletion of lpxE in Francisella novicida reduces the MIC value of bacitracin, indicating a significant contribution of LpxE to the native bacterial C55-PP phosphatase activity. Suppression of plasmid-borne lpxE in F. novicida deficient in chromosomally encoded C55-PP phosphatase activities results in cell enlargement, loss of O-antigen repeats of lipopolysaccharide, and ultimately cell death. These discoveries implicate LpxE as the first example of a multifunctional regulatory enzyme that orchestrates lipid A modification, O-antigen production, and peptidoglycan biogenesis to remodel multiple layers of the Gram-negative bacterial envelope.
Collapse
|
29
|
In silico analysis of different signal peptides for the secretory production of recombinant human keratinocyte growth factor in Escherichia coli. Comput Biol Chem 2019; 80:225-233. [DOI: 10.1016/j.compbiolchem.2019.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 01/23/2019] [Accepted: 03/11/2019] [Indexed: 12/31/2022]
|
30
|
Doozandeh-Juibari A, Ghovvati S, Vaziri HR, Sohani MM, Pezeshkian Z. Cloning, Expression, Purification and Evaluation of the Biological Properties of the Recombinant Human Growth Hormone (hGH) in Escherichia coli. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09854-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
31
|
Mohammadi E, Seyedhosseini-Ghaheh H, Mahnam K, Jahanian-Najafabadi A, Mir Mohammad Sadeghi H. Reteplase: Structure, Function, and Production. Adv Biomed Res 2019; 8:19. [PMID: 31016177 PMCID: PMC6446582 DOI: 10.4103/abr.abr_169_18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Thrombolytic drugs activate plasminogen which creates a cleaved form called plasmin, a proteolytic enzyme that breaks the crosslinks between fibrin molecules. The crosslinks create blood clots, so reteplase dissolves blood clots. Tissue plasminogen activator (tPA) is a well-known thrombolytic drug and is fibrin specific. Reteplase is a modified nonglycosylated recombinant form of tPA used to dissolve intracoronary emboli, lysis of acute pulmonary emboli, and handling of myocardial infarction. This protein contains kringle-2 and serine protease domains. The lack of glycosylation means that a prokaryotic system can be used to express reteplase. Therefore, the production of reteplase is more affordable than that of tPA. Different methods have been proposed to improve the production of reteplase. This article reviews the structure and function of reteplase as well as the methods used to produce it.
Collapse
Affiliation(s)
- Elmira Mohammadi
- From the Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Karim Mahnam
- Department of Biology, Faculty of Science, Shahrekord University, Shahr-e Kord, Iran
| | - Ali Jahanian-Najafabadi
- From the Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Mir Mohammad Sadeghi
- From the Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
32
|
Lin L, Li L, Zhou C, Li J, Liu J, Shu R, Dong B, Li Q, Wang Z. A HER2 bispecific antibody can be efficiently expressed in Escherichia coli with potent cytotoxicity. Oncol Lett 2018; 16:1259-1266. [PMID: 29963199 DOI: 10.3892/ol.2018.8698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 03/07/2018] [Indexed: 12/26/2022] Open
Abstract
Bispecific antibodies have been actively studied for cancer therapy due to their potent cytotoxicity against tumor cells. A number of bispecific antibody formats have exhibited strong tumor cytotoxicity in vitro and in vivo. However, effective production of bispecific antibodies remains challenging for the majority of bispecific antibody formats. In the present study, a bispecific antibody was designed that links a conventional antigen-binding fragment (Fab) against cluster of differentiation 3 antigen (CD3) to a camel single domain antibody (VHH) against human epidermal growth factor receptor 2 (HER2). This bispecific antibody may be secreted and purified efficiently from Escherichia coli culture medium. The purified bispecific antibody is able to trigger T cell-mediated HER2-specific cytotoxicity in vitro and in vivo. The data gathered in the present study suggest that this bispecific format may be applied to other tumor antigens to produce bispecific antibodies more efficiently.
Collapse
Affiliation(s)
- Limin Lin
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China.,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Li Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China.,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Changhua Zhou
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China.,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Jing Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China.,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Jiayu Liu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China.,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Rui Shu
- Ying Rui, Inc., Guangzhou, Guangdong 510009, P.R. China
| | - Bin Dong
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510009, P.R. China
| | - Qing Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China.,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Zhong Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China.,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
33
|
Mignon C, Mariano N, Stadthagen G, Lugari A, Lagoutte P, Donnat S, Chenavas S, Perot C, Sodoyer R, Werle B. Codon harmonization - going beyond the speed limit for protein expression. FEBS Lett 2018; 592:1554-1564. [PMID: 29624661 DOI: 10.1002/1873-3468.13046] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 02/26/2018] [Accepted: 03/09/2018] [Indexed: 12/14/2022]
Abstract
Codon usage distribution has been soundly used by nature to fine tune protein biogenesis. Alteration of the mRNA structure or sequential scheduling of codons can profoundly affect translation, thus altering protein yield, functionality, solubility, and proper folding. Building on these observations, here, we present an evaluation of different recently designed algorithms of sequence adaptation based on Codon Adaptation Index (CAI) profiling. The first algorithm globally harmonizes synonymous codons in the original sequence in full respect to the heterologous expression host codon usage. The second recodes the sequence in accordance with the native sequence CAI profile. Our data, generated on three model proteins, highlights the importance to consider gene recoding as a parameter itself for recombinant protein expression improvement.
Collapse
Affiliation(s)
- Charlotte Mignon
- Protein and Expression System Engineering Unit, BIOASTER, Lyon, France
| | - Natacha Mariano
- Protein and Expression System Engineering Unit, BIOASTER, Lyon, France
| | | | - Adrien Lugari
- Protein and Expression System Engineering Unit, BIOASTER, Lyon, France
| | | | - Stéphanie Donnat
- Protein and Expression System Engineering Unit, BIOASTER, Lyon, France
| | | | | | | | - Bettina Werle
- Protein and Expression System Engineering Unit, BIOASTER, Lyon, France
| |
Collapse
|
34
|
Kleiner-Grote GRM, Risse JM, Friehs K. Secretion of recombinant proteins from E. coli. Eng Life Sci 2018; 18:532-550. [PMID: 32624934 DOI: 10.1002/elsc.201700200] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/07/2018] [Accepted: 03/13/2018] [Indexed: 11/10/2022] Open
Abstract
The microorganism Escherichia coli is commonly used for recombinant protein production. Despite several advantageous characteristics like fast growth and high protein yields, its inability to easily secrete recombinant proteins into the extracellular medium remains a drawback for industrial production processes. To overcome this limitation, a multitude of approaches to enhance the extracellular yield and the secretion efficiency of recombinant proteins have been developed in recent years. Here, a comprehensive overview of secretion mechanisms for recombinant proteins from E. coli is given and divided into three main sections. First, the structure of the E. coli cell envelope and the known natural secretion systems are described. Second, the use and optimization of different one- or two-step secretion systems for recombinant protein production, as well as further permeabilization methods are discussed. Finally, the often-overlooked role of cell lysis in secretion studies and its analysis are addressed. So far, effective approaches for increasing the extracellular protein concentration to more than 10 g/L and almost 100% secretion efficiency exist, however, the large range of optimization methods and their combinations suggests that the potential for secretory protein production from E. coli has not yet been fully realized.
Collapse
Affiliation(s)
| | - Joe M Risse
- Fermentation Engineering Bielefeld University Bielefeld Germany.,Center for Biotechnology Bielefeld University Bielefeld Germany
| | - Karl Friehs
- Fermentation Engineering Bielefeld University Bielefeld Germany.,Center for Biotechnology Bielefeld University Bielefeld Germany
| |
Collapse
|
35
|
Hemansi, Gupta R, Kuhad RC, Saini JK. Cost effective production of complete cellulase system by newly isolated Aspergillus niger RCKH-3 for efficient enzymatic saccharification: Medium engineering by overall evaluation criteria approach (OEC). Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.01.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Sutherland GA, Grayson KJ, Adams NBP, Mermans DMJ, Jones AS, Robertson AJ, Auman DB, Brindley AA, Sterpone F, Tuffery P, Derreumaux P, Dutton PL, Robinson C, Hitchcock A, Hunter CN. Probing the quality control mechanism of the Escherichia coli twin-arginine translocase with folding variants of a de novo-designed heme protein. J Biol Chem 2018; 293:6672-6681. [PMID: 29559557 PMCID: PMC5936819 DOI: 10.1074/jbc.ra117.000880] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/15/2018] [Indexed: 11/08/2022] Open
Abstract
Protein transport across the cytoplasmic membrane of bacterial cells is mediated by either the general secretion (Sec) system or the twin-arginine translocase (Tat). The Tat machinery exports folded and cofactor-containing proteins from the cytoplasm to the periplasm by using the transmembrane proton motive force as a source of energy. The Tat apparatus apparently senses the folded state of its protein substrates, a quality-control mechanism that prevents premature export of nascent unfolded or misfolded polypeptides, but its mechanistic basis has not yet been determined. Here, we investigated the innate ability of the model Escherichia coli Tat system to recognize and translocate de novo–designed protein substrates with experimentally determined differences in the extent of folding. Water-soluble, four-helix bundle maquette proteins were engineered to bind two, one, or no heme b cofactors, resulting in a concomitant reduction in the extent of their folding, assessed with temperature-dependent CD spectroscopy and one-dimensional 1H NMR spectroscopy. Fusion of the archetypal N-terminal Tat signal peptide of the E. coli trimethylamine-N-oxide (TMAO) reductase (TorA) to the N terminus of the protein maquettes was sufficient for the Tat system to recognize them as substrates. The clear correlation between the level of Tat-dependent export and the degree of heme b–induced folding of the maquette protein suggested that the membrane-bound Tat machinery can sense the extent of folding and conformational flexibility of its substrates. We propose that these artificial proteins are ideal substrates for future investigations of the Tat system's quality-control mechanism.
Collapse
Affiliation(s)
- George A Sutherland
- From the Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Katie J Grayson
- From the Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Nathan B P Adams
- From the Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Daphne M J Mermans
- the School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Alexander S Jones
- the School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Angus J Robertson
- From the Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Dirk B Auman
- the Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Amanda A Brindley
- From the Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Fabio Sterpone
- the Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 75005 Paris, France, and
| | - Pierre Tuffery
- INSERM U973, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Philippe Derreumaux
- the Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 75005 Paris, France, and
| | - P Leslie Dutton
- the Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Colin Robinson
- the School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Andrew Hitchcock
- From the Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - C Neil Hunter
- From the Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom,
| |
Collapse
|
37
|
Hemmerich J, Freier L, Wiechert W, von Lieres E, Oldiges M. Generic Protocol for Optimization of Heterologous Protein Production Using Automated Microbioreactor Technology. J Vis Exp 2017. [PMID: 29286407 PMCID: PMC5755569 DOI: 10.3791/56234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A core business in industrial biotechnology using microbial production cell factories is the iterative process of strain engineering and optimization of bioprocess conditions. One important aspect is the improvement of cultivation medium to provide an optimal environment for microbial formation of the product of interest. It is well accepted that the media composition can dramatically influence overall bioprocess performance. Nutrition medium optimization is known to improve recombinant protein production with microbial systems and thus, this is a rewarding step in bioprocess development. However, very often standard media recipes are taken from literature, since tailor-made design of the cultivation medium is a tedious task that demands microbioreactor technology for sufficient cultivation throughput, fast product analytics, as well as support by lab robotics to enable reliability in liquid handling steps. Furthermore, advanced mathematical methods are required for rationally analyzing measurement data and efficiently designing parallel experiments such as to achieve optimal information content. The generic nature of the presented protocol allows for easy adaption to different lab equipment, other expression hosts, and target proteins of interest, as well as further bioprocess parameters. Moreover, other optimization objectives like protein production rate, specific yield, or product quality can be chosen to fit the scope of other optimization studies. The applied Kriging Toolbox (KriKit) is a general tool for Design of Experiments (DOE) that contributes to improved holistic bioprocess optimization. It also supports multi-objective optimization which can be important in optimizing both upstream and downstream processes.
Collapse
Affiliation(s)
- Johannes Hemmerich
- IBG-1: Biotechnology, Forschungszentrum Jülich; Research Center Jülich, Bioeconomy Science Center (BioSC)
| | - Lars Freier
- IBG-1: Biotechnology, Forschungszentrum Jülich; Research Center Jülich, Bioeconomy Science Center (BioSC)
| | - Wolfgang Wiechert
- IBG-1: Biotechnology, Forschungszentrum Jülich; Research Center Jülich, Bioeconomy Science Center (BioSC); Computational Systems Biotechnology (AVT.CSB), RWTH Aachen University
| | - Eric von Lieres
- IBG-1: Biotechnology, Forschungszentrum Jülich; Research Center Jülich, Bioeconomy Science Center (BioSC);
| | - Marco Oldiges
- IBG-1: Biotechnology, Forschungszentrum Jülich; Research Center Jülich, Bioeconomy Science Center (BioSC); Institute for Biotechnology, RWTH Aachen University;
| |
Collapse
|
38
|
Ismail A, Illias RM. Site-saturation mutagenesis of mutant l-asparaginase II signal peptide hydrophobic region for improved excretion of cyclodextrin glucanotransferase. ACTA ACUST UNITED AC 2017; 44:1627-1641. [DOI: 10.1007/s10295-017-1980-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/10/2017] [Indexed: 10/18/2022]
Abstract
Abstract
The excretion of cyclodextrin glucanotransferase (CGTase) into the culture medium offers significant advantages over cytoplasmic expression. However, the limitation of Escherichia coli is its inability to excrete high amount of CGTase outside the cells. In this study, modification of the hydrophobic region of the N1R3 signal peptide using site-saturation mutagenesis improved the excretion of CGTase. Signal peptide mutants designated M9F, V10L and A15Y enhanced the excretion of CGTase three-fold and demonstrated two-fold higher secretion rate than the wild type. However, high secretion rate of these mutants was non-productive for recombinant protein production because it caused up to a seven-fold increase in cell death compared to the wild type. Our results indicated that the excretion of CGTase is highly dependent on hydrophobicity, secondary conformation and the type and position of amino acids at the region boundary and core segment of the h-region.
Collapse
Affiliation(s)
- Abbas Ismail
- 0000 0001 2296 1505 grid.410877.d Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering Universiti Teknologi Malaysia 81310 Skudai Johor Malaysia
| | - Rosli Md Illias
- 0000 0001 2296 1505 grid.410877.d Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering Universiti Teknologi Malaysia 81310 Skudai Johor Malaysia
| |
Collapse
|
39
|
Landry BP, Tabor JJ. Engineering Diagnostic and Therapeutic Gut Bacteria. Microbiol Spectr 2017; 5:10.1128/microbiolspec.bad-0020-2017. [PMID: 29052539 PMCID: PMC11687543 DOI: 10.1128/microbiolspec.bad-0020-2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Indexed: 12/18/2022] Open
Abstract
Genetically engineered bacteria have the potential to diagnose and treat a wide range of diseases linked to the gastrointestinal tract, or gut. Such engineered microbes will be less expensive and invasive than current diagnostics and more effective and safe than current therapeutics. Recent advances in synthetic biology have dramatically improved the reliability with which bacteria can be engineered with the sensors, genetic circuits, and output (actuator) genes necessary for diagnostic and therapeutic functions. However, to deploy such bacteria in vivo, researchers must identify appropriate gut-adapted strains and consider performance metrics such as sensor detection thresholds, circuit computation speed, growth rate effects, and the evolutionary stability of engineered genetic systems. Other recent reviews have focused on engineering bacteria to target cancer or genetically modifying the endogenous gut microbiota in situ. Here, we develop a standard approach for engineering "smart probiotics," which both diagnose and treat disease, as well as "diagnostic gut bacteria" and "drug factory probiotics," which perform only the former and latter function, respectively. We focus on the use of cutting-edge synthetic biology tools, gut-specific design considerations, and current and future engineering challenges.
Collapse
Affiliation(s)
- Brian P Landry
- Department of Bioengineering, Rice University, Houston, TX 77030
| | - Jeffrey J Tabor
- Department of Bioengineering, Rice University, Houston, TX 77030
- Department of Biosciences, Rice University, Houston, TX 77030
| |
Collapse
|
40
|
Improving extracellular production of Serratia marcescens lytic polysaccharide monooxygenase CBP21 and Aeromonas veronii B565 chitinase Chi92 in Escherichia coli and their synergism. AMB Express 2017; 7:170. [PMID: 28884316 PMCID: PMC5589716 DOI: 10.1186/s13568-017-0470-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/29/2017] [Indexed: 11/10/2022] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) can oxidize recalcitrant polysaccharides and boost the conversion of the second most abundant polysaccharide chitin by chitinase. In this study, we aimed to achieve the efficient extracellular production of Serratia marcescens LPMO CBP21 and Aeromonas veronii B565 chitinase Chi92 by Escherichia coli. Twelve signal peptides reported with high secretion efficiency were screened to assess the extracellular production efficiency of CBP21 and Chi92, with glycine used as a medium supplement. The results showed that PelB was the most productive signal peptide for the extracellular production of CBP21 and Chi92 in E. coli. Furthermore, CBP21 facilitated the degradation of the three chitin substrates (colloidal chitin, β-chitin, and α-chitin) by Chi92. This study will be valuable for the industrial production and application of the two enzymes for chitin degradation.
Collapse
|
41
|
Haddad Kashani H, Fahimi H, Dasteh Goli Y, Moniri R. A Novel Chimeric Endolysin with Antibacterial Activity against Methicillin-Resistant Staphylococcus aureus. Front Cell Infect Microbiol 2017; 7:290. [PMID: 28713777 PMCID: PMC5491540 DOI: 10.3389/fcimb.2017.00290] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 06/14/2017] [Indexed: 01/21/2023] Open
Abstract
Cysteine/histidine-dependent amidohydrolase/peptidase (CHAP) and amidase are known as catalytic domains of the bacteriophage-derived endolysin LysK and were previously reported to show lytic activity against methicillin-resistant Staphylococcus aureus (MRSA). In the current study, the in silico design and analysis of chimeric CHAP-amidase model was applied to enhance the stability and solubility of protein, which was achieved through improving the properties of primary, secondary and tertiary structures. The coding gene sequence of the chimeric CHAP-amidase was synthesized and subcloned into the pET-22(+) expression vector, and the recombinant protein was expressed in E. coli BL21 (DE3) strain. Subsequent affinity-based purification yielded ~12 mg soluble protein per liter of E. coli culture. Statistical analysis indicated that concentrations of ≥1 μg/mL of the purified protein have significant antibacterial activity against S. aureus MRSA252 cells. The engineered chimeric CHAP-amidase exhibited 3.2 log reduction of MRSA252 cell counts at the concentration of 10 μg/mL. A synergistic interaction between CHAP-amidase and vancomycin was detected by using checkerboard assay and calculating the fractional inhibitory concentration (FIC) index. This synergistic effect was shown by 8-fold reduction in the minimum inhibitory concentration of vancomycin. The chimeric CHAP-amidase displayed strong antibacterial activity against S. aureus, S. epidermidis, and enterococcus. However, it did not indicate any significant antibacterial activity against E. coli and Lactococcus lactis. Taken together, these findings suggest that our chimeric CHAP-amidase might represent potential to be used for the development of efficient antibacterial therapies targeting MRSA and certain Gram-positive bacteria.
Collapse
Affiliation(s)
- Hamed Haddad Kashani
- Anatomical Sciences Research Center, Kashan University of Medical SciencesKashan, Iran
| | - Hossein Fahimi
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad UniversityTehran, Iran
| | - Yasaman Dasteh Goli
- Department of Biology, University of MarylandCollege Park, MD, United States
| | - Rezvan Moniri
- Anatomical Sciences Research Center, Kashan University of Medical SciencesKashan, Iran
| |
Collapse
|
42
|
Goffin P, Dewerchin M, De Rop P, Blais N, Dehottay P. High-yield production of recombinant CRM197, a non-toxic mutant of diphtheria toxin, in the periplasm ofEscherichia coli. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/05/2017] [Accepted: 04/10/2017] [Indexed: 02/06/2023]
|
43
|
Koschorreck K, Wahrendorff F, Biemann S, Jesse A, Urlacher VB. Cell thermolysis – A simple and fast approach for isolation of bacterial laccases with potential to decolorize industrial dyes. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
44
|
Javitt G, Ben-Barak-Zelas Z, Jerabek-Willemsen M, Fishman A. Constitutive expression of active microbial transglutaminase in Escherichia coli and comparative characterization to a known variant. BMC Biotechnol 2017; 17:23. [PMID: 28245818 PMCID: PMC5331659 DOI: 10.1186/s12896-017-0339-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/15/2017] [Indexed: 01/11/2023] Open
Abstract
Background Microbial transglutaminase (mTG) is a robust enzyme catalyzing the formation of an isopeptide bond between glutamine and lysine residues. It has found use in food applications, pharmaceuticals, textiles, and biomedicine. Overexpression of soluble and active mTG in E. coli has been limited due to improper protein folding and requirement for proteolytic cleavage of the pro-domain. Furthermore, to integrate mTG more fully industrially and academically, thermostable and solvent-stable variants may be imperative. Results A novel expression system constitutively producing active mTG was designed. Wild-type (WT) mTG and a S2P variant had similar expression levels, comparable to previous studies. Kinetic constants were determined by a glutamate dehydrogenase-coupled assay, and the S2P variant showed an increased affinity and a doubled enzyme efficiency towards Z-Gln-Gly. The melting temperature (Tm) of the WT was determined by intrinsic fluorescence measurements to be 55.8 ± 0.1 °C and of the S2P variant to be 56.3 ± 0.4 °C and 45.5 ± 0.1 °C, showing a moderately different thermostability profile. Stability in water miscible organic solvents was determined for both the WT and S2P variant. Of the solvents tested, incubation of mTG in isopropanol for 24 h at 4 °C showed the strongest stabilizing effect with mTG retaining 61 and 72% activity for WT and S2P respectively in 70% isopropanol. Both enzymes also showed an increased initial activity in the presence of organic solvents with the highest activity increase in 40% DMSO. Nevertheless, both enzymes were inactivated in 70% of all organic solvents tested. Conclusions A constitutive expression system of active mTG in E. coli without downstream proteolytic cleavage processing was used for overexpression and characterization. High throughput techniques for testing thermostability and kinetics were useful in streamlining analysis and could be used in the future for quickly identifying beneficial mutants. Hitherto untested thermostability and stability of mTG in organic solvents was evaluated, which can pave the way for use of the enzyme in novel applications and processes.
Collapse
Affiliation(s)
- Gabe Javitt
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zohar Ben-Barak-Zelas
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | | | - Ayelet Fishman
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
45
|
Su L, Jiang Q, Yu L, Wu J. Enhanced extracellular production of recombinant proteins in Escherichia coli by co-expression with Bacillus cereus phospholipase C. Microb Cell Fact 2017; 16:24. [PMID: 28178978 PMCID: PMC5299778 DOI: 10.1186/s12934-017-0639-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/25/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Our laboratory has reported a strategy for improving the extracellular production of recombinant proteins through co-expression with Thermobifida fusca cutinase, which increases membrane permeability via its phospholipid hydrolysis activity. However, the foam generated by the lysophospholipid product makes the fermentation process difficult to control in a fermentor. Phospholipase C (PLC) catalyzes the hydrolysis of phospholipids to produce sn1,2-diacylglycerides and organic phosphate, which do not induce foam formation. Therefore, co-expression with Bacillus cereus PLC was investigated as a method to improve the extracellular production of recombinant proteins. RESULTS When B. cereus PLC was expressed in Escherichia coli without its signal peptide, 95.3% of the total PLC activity was detected in the culture supernatant. PLC expression enhanced membrane permeability without obvious cell lysis. Then, six test enzymes, three secretory and three cytosolic, were co-expressed with B. cereus PLC. The enhancement of extracellular production correlated strongly with the molecular mass of the test enzyme. Extracellular production of Streptomyces sp. FA1 xylanase (43 kDa), which had the lowest molecular mass among the secretory enzymes, was 4.0-fold that of its individual expression control. Extracellular production of glutamate decarboxylase (51 kDa), which had the lowest molecular mass among the cytosolic enzymes, reached 26.7 U/mL; 88.3% of the total activity produced. This strategy was effectively scaled up using a 3-L fermentor. No obvious foam was generated during this fermentation process. CONCLUSIONS This is the first study to detail the enhanced extracellular production of recombinant proteins through co-expression with PLC. This new strategy, which is especially appropriate for lower molecular mass proteins, allows large-scale protein production in an easily controlled fermentation process.
Collapse
Affiliation(s)
- Lingqia Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Qi Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Lingang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China. .,School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
| |
Collapse
|
46
|
Abstract
Differential protein precipitation is a rapid and economical step in protein purification and is based on exploiting the inherent physicochemical properties of the polypeptide. Precipitation of recombinant proteins, lysed from the host cell, is commonly used to concentrate the protein of choice before further polishing steps with more selective purification columns (e.g., His-Tag, Size Exclusion, etc.). Recombinant proteins can also precipitate naturally as inclusion bodies due to various influences during overexpression in the host cell. Although this phenomenon permits easier initial separation from native proteins, these inclusion bodies must carefully be differentially solubilized so as to reform functional, correctly folded proteins. Here, appropriate bioinformatics tools to aid in understanding a protein's propensity to aggregate and solubilize are explored as a backdrop for a typical protein extraction, precipitation, and selective resolubilization procedure, based on a recombinantly expressed protein.
Collapse
Affiliation(s)
- Barry J Ryan
- School of Food Science and Environmental Health, Dublin Institute of Technology, Cathal Brugha Street, Dublin 1, Republic of Ireland.
| | - Gemma K Kinsella
- School of Food Science and Environmental Health, Dublin Institute of Technology, Cathal Brugha Street, Dublin 1, Republic of Ireland
| |
Collapse
|
47
|
Cui Y, Meng Y, Zhang J, Cheng B, Yin H, Gao C, Xu P, Yang C. Efficient secretory expression of recombinant proteins in Escherichia coli with a novel actinomycete signal peptide. Protein Expr Purif 2017; 129:69-74. [DOI: 10.1016/j.pep.2016.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/04/2016] [Accepted: 09/20/2016] [Indexed: 10/21/2022]
|
48
|
Assessment of Prokaryotic Signal Peptides for Secretion of Tumor Necrosis Factor Related Apoptosis Inducing Ligand (TRAIL) in E. coli: An in silico Approach. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2016. [DOI: 10.22207/jpam.10.4.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
49
|
Sales KC, Rosa F, Cunha BR, Sampaio PN, Lopes MB, Calado CRC. Metabolic profiling of recombinant Escherichia coli cultivations based on high-throughput FT-MIR spectroscopic analysis. Biotechnol Prog 2016; 33:285-298. [PMID: 27696721 DOI: 10.1002/btpr.2378] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 09/19/2016] [Indexed: 01/30/2023]
Abstract
Escherichia coli is one of the most used host microorganism for the production of recombinant products, such as heterologous proteins and plasmids. However, genetic, physiological and environmental factors influence the plasmid replication and cloned gene expression in a highly complex way. To control and optimize the recombinant expression system performance, it is very important to understand this complexity. Therefore, the development of rapid, highly sensitive and economic analytical methodologies, which enable the simultaneous characterization of the heterologous product synthesis and physiologic cell behavior under a variety of culture conditions, is highly desirable. For that, the metabolic profile of recombinant E. coli cultures producing the pVAX-lacZ plasmid model was analyzed by rapid, economic and high-throughput Fourier Transform Mid-Infrared (FT-MIR) spectroscopy. The main goal of the present work is to show as the simultaneous multivariate data analysis by principal component analysis (PCA) and direct spectral analysis could represent a very interesting tool to monitor E. coli culture processes and acquire relevant information according to current quality regulatory guidelines. While PCA allowed capturing the energetic metabolic state of the cell, e.g. by identifying different C-sources consumption phases, direct FT-MIR spectral analysis allowed obtaining valuable biochemical and metabolic information along the cell culture, e.g. lipids, RNA, protein synthesis and turnover metabolism. The information achieved by spectral multivariate data and direct spectral analyses complement each other and may contribute to understand the complex interrelationships between the recombinant cell metabolism and the bioprocess environment towards more economic and robust processes design according to Quality by Design framework. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:285-298, 2017.
Collapse
Affiliation(s)
- Kevin C Sales
- Faculty of Engineering, Catholic University of Portugal, Rio de Mouro, 2635-631, Portugal
| | - Filipa Rosa
- Faculty of Engineering, Catholic University of Portugal, Rio de Mouro, 2635-631, Portugal
| | - Bernardo R Cunha
- Faculty of Engineering, Catholic University of Portugal, Rio de Mouro, 2635-631, Portugal
| | - Pedro N Sampaio
- Faculty of Engineering, Catholic University of Portugal, Rio de Mouro, 2635-631, Portugal.,Faculty of Engineering, Lusophone University of Humanities and Technology, Campo Grande 376, Lisbon, 1749-019, Portugal
| | - Marta B Lopes
- Faculty of Engineering, Catholic University of Portugal, Rio de Mouro, 2635-631, Portugal.,Institute of Telecommunications, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, Lisboa, 1049-001, Portugal.,ISEL-Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro 1, Lisboa, 1959-007, Portugal
| | - Cecília R C Calado
- ISEL-Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro 1, Lisboa, 1959-007, Portugal
| |
Collapse
|
50
|
Bao RM, Yang HM, Yu CM, Zhang WF, Tang JB. An efficient protocol to enhance the extracellular production of recombinant protein from Escherichia coli by the synergistic effects of sucrose, glycine, and Triton X-100. Protein Expr Purif 2016; 126:9-15. [DOI: 10.1016/j.pep.2016.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 05/11/2016] [Accepted: 05/13/2016] [Indexed: 11/17/2022]
|