1
|
Edelmann MR, Sladojevich F, Husbands SM, Otteneder MB, Blagbrough IS. A Brief Review of Radiolabelling Nucleic Acid-Based Molecules for Tracking and Monitoring. J Labelled Comp Radiopharm 2024; 67:410-424. [PMID: 39543953 DOI: 10.1002/jlcr.4126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
The rise of nucleic acid-based therapeutics continues apace. At the same time, the need for radiolabelled oligonucleotides for determination of spatial distribution is increasing. Complex molecular structures with mostly multiple charges and low solubility in organic solvents increase the challenge of integrating radionuclides. In preclinical research, it is important to understand the fate of new drug candidates in biodistribution studies, target binding or biotransformation studies. Depending on a specific question, the selection of a respective radiolabelling strategy is crucial. Radiometals for molecular imaging with positron emission tomography or single-photon computed tomography generally require an attached chelating agent for stable complexation of the metal with the oligonucleotide, whereas labelling using carbon-11/-14 or tritium allows incorporation of the radioisotope into the native structure without altering it. Moreover, the suitability of direct radiolabelling of the oligonucleotide of interest or indirect radiolabelling, for example, by a two-step pretargeting approach, for the study design requires consideration. This review focuses on the challenges of radiolabelling nucleic acid-based molecules with beta-plus, gamma and beta-minus emitters and their use for tracking and monitoring.
Collapse
Affiliation(s)
- Martin R Edelmann
- Roche Pharma Research and Early Development, Roche Innovation Centre Basel, Therapeutic Modalities, Small Molecule Research, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Filippo Sladojevich
- Roche Pharma Research and Early Development, Roche Innovation Centre Basel, Therapeutic Modalities, Small Molecule Research, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | - Michael B Otteneder
- Roche Pharma Research and Early Development, Roche Innovation Centre Basel, Pharmaceutical Sciences, In Vivo Sciences, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | |
Collapse
|
2
|
Pánczél J, Kertesz V, Schiell M. Improved lipid analysis using a 2D-LC-MS system with a novel injection procedure. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1239:124129. [PMID: 38640792 DOI: 10.1016/j.jchromb.2024.124129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/27/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
The aim of this study was to improve analysis of nonpolar lipidomics sample extracts using reversed phase (RP) chromatography. A 4/3/3 (v/v/v) mixture of methanol/methyl tert-butyl ether/chloroform (MeOH/MTBE/CHCl3, MMC) was chosen for sample extraction solvent based on its proven extraction capability for several lipid classes. To avoid carry over, loss of analytes and peak distortion the loops and all capillaries of the presented LC system were flushed and filled up with methanol until the analytical column. The choice of methanol was due to its weak elution strength and being infinitely miscible with MMC and several other nonpolar solvents. This allowed injection of a 100 μl sample that was 20 μl nonpolar extraction solvent diluted fivefold with methanol. All lipids of 25 lipid classes were transferred quantitatively to the column head where the online dilution of methanol was carried out with aqueous eluent for focusing the lipid analytes. The weak elution strength of methanol prevented peak distortions. The consecutive reversed phase elution resulted in remarkably narrow peaks (full width at half maximum was 0.07-0.08 min typically) and enhanced sensitivity (limit of detection usually in sub nM region) because of increased sample injection volume and narrow peaks. Calibration and quality control samples made by diluting commercial lipid standards 200-50000 times confirmed the applicability of this approach both for targeted lipid quantification and for untargeted quantitative comparison of lipids from different sources.
Collapse
Affiliation(s)
- József Pánczél
- Research and Development, DMPK, Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | - Vilmos Kertesz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6131, USA
| | - Matthias Schiell
- Research and Development, DMPK, Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany.
| |
Collapse
|
3
|
Hu Z, Wang W, Yang H, Zhao F, Sha C, Mi W, Yin S, Wang H, Tian J, Ye L. Metabolism, Disposition, Excretion, and Potential Transporter Inhibition of 7-16, an Improving 5-HT 2A Receptor Antagonist and Inverse Agonist for Parkinson's Disease. Molecules 2024; 29:2184. [PMID: 38792047 PMCID: PMC11124362 DOI: 10.3390/molecules29102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Compound 7-16 was designed and synthesized in our previous study and was identified as a more potential selective 5-HT2A receptor antagonist and inverse agonist for treating Parkinson's disease psychosis (PDP). Then, the metabolism, disposition, and excretion properties of 7-16 and its potential inhibition on transporters were investigated in this study to highlight advancements in the understanding of its therapeutic mechanisms. The results indicate that a total of 10 metabolites of 7-16/[14C]7-16 were identified and determined in five species of liver microsomes and in rats using UPLC-Q Exactive high-resolution mass spectrometry combined with radioanalysis. Metabolites formed in human liver microsomes could be covered by animal species. 7-16 is mainly metabolized through mono-oxidation (M470-2) and N-demethylation (M440), and the CYP3A4 isozyme was responsible for both metabolic reactions. Based on the excretion data in bile and urine, the absorption rate of 7-16 was at least 74.7%. 7-16 had weak inhibition on P-glycoprotein and no effect on the transport activity of OATP1B1, OATP1B3, OAT1, OAT3, and OCT2 transporters. The comprehensive pharmacokinetic properties indicate that 7-16 deserves further development as a new treatment drug for PDP.
Collapse
Affiliation(s)
- Zhengping Hu
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai 264003, China
| | - Wenyan Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (W.W.)
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong Luye Pharmaceutical Co., Ltd., Yantai 264003, China (F.Z.)
| | - Huijie Yang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong Luye Pharmaceutical Co., Ltd., Yantai 264003, China (F.Z.)
| | - Fengjuan Zhao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong Luye Pharmaceutical Co., Ltd., Yantai 264003, China (F.Z.)
| | - Chunjie Sha
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong Luye Pharmaceutical Co., Ltd., Yantai 264003, China (F.Z.)
| | - Wei Mi
- School of Public Health, Binzhou Medical University, Yantai 264003, China
| | - Shuying Yin
- School of Public Health, Binzhou Medical University, Yantai 264003, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (W.W.)
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (W.W.)
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong Luye Pharmaceutical Co., Ltd., Yantai 264003, China (F.Z.)
| | - Liang Ye
- School of Public Health, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
4
|
Kertesz V, Cahill JF, Srijanto BR, Collier CP, Vavrek M, Chen B. Integrated laser ablation-dropletProbe-mass spectrometry for absolute drug quantitation, metabolite detection, and distribution in tissue. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9202. [PMID: 34545636 DOI: 10.1002/rcm.9202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE Spatially resolved and accurate quantitation of drug-related compounds in tissue is a much-needed capability in drug discovery research. Here, application of an integrated laser ablation-dropletProbe-mass spectrometry surface sampling system (LADP-MS) is reported, which achieved absolute quantitation of propranolol measured from <500 × 500 μm thin tissue samples. METHODS Mouse liver and kidney thin tissue sections were coated with parylene C and analyzed for propranolol by a laser ablation/liquid extraction workflow. Non-coated adjacent sections were microdissected for validation and processed using standard bulk tissue extraction protocols. High-performance liquid chromatography with positive ion mode electrospray ionization tandem mass spectrometry was applied to detect the drug and its metabolites. RESULTS Absolute propranolol concentration in ~500 × 500 μm tissue regions measured by the two methods agreed within ±8% and had a relative standard deviation within ±17%. Quantitation down to ~400 × 400 μm tissue regions was shown, and this resolution was also used for automated mapping of propranolol and phase II hydroxypropranolol glucuronide metabolites in kidney tissue. CONCLUSIONS This study exemplifies the capabilities of integrated laser ablation-dropletProbe-mass spectrometry (LADP-MS) for high resolution absolute drug quantitation analysis of thin tissue sections. This capability will be valuable for applications needing to quantitatively understand the spatial distribution of small molecules in tissue.
Collapse
Affiliation(s)
- Vilmos Kertesz
- Bioanalytical Mass Spectrometry Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - John F Cahill
- Bioanalytical Mass Spectrometry Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Bernadeta R Srijanto
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Charles P Collier
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Marissa Vavrek
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Bingming Chen
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., Kenilworth, New Jersey, USA
| |
Collapse
|