1
|
Le DCP, Bui HT, Vu YTH, Vo QD. Induced pluripotent stem cell therapies in heart failure treatment: a meta-analysis and systematic review. Regen Med 2024; 19:1-13. [PMID: 39263954 PMCID: PMC11487948 DOI: 10.1080/17460751.2024.2393558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
Background: Heart failure (HF) causes over 266,400 deaths annually. Despite treatment advancements, HF mortality remains high. Induced pluripotent stem cells (iPSCs) offer promising new options. This review assesses iPSC-based treatments for HF.Method: the review included studies from PubMed, ScienceDirect and Web of Science.Results: Analysis of 25 studies with 553 animals showed a baseline ejection fraction (EF) of 39.2 ± 8.9%. iPSC treatment significantly improved EF (MD = 8.6, p < 0.001) and fractional shortening (MD = 6.38, p < 0.001), and reduced ventricular remodeling without increasing arrhythmia risk.Conclusion: iPSC-based therapy improves heart function and reduces ventricular volumes in HF animal models, aligning with promising early clinical trial outcomes.
Collapse
Affiliation(s)
- Duy Cao Phuong Le
- Departmentof Cardiovascular Intervention, Nguyen Tri Phuong Hospital, Ho Chi Minh city, 700000, Vietnam
- Faculty of Medicine, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
| | - Hoa The Bui
- Departmentof Cardiovascular Intervention, Nguyen Tri Phuong Hospital, Ho Chi Minh city, 700000, Vietnam
| | - Yen Thi Hai Vu
- Faculty of Medicine, Thai Binh University of Medicine, Thai Binh, 61000, Vietnam
| | - Quan Duy Vo
- Departmentof Cardiovascular Intervention, Nguyen Tri Phuong Hospital, Ho Chi Minh city, 700000, Vietnam
- Faculty of Medicine, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
- Cardiovascular Medicine Department, Okayama University, Okayama city, 7000000, Japan
| |
Collapse
|
2
|
Tirukoti ND. Editorial for "Post-Myocardial Infarction Remodeling and Hyperkinetic Remote Myocardium in Sheep Measured by Cardiac MRI Feature Tracking". J Magn Reson Imaging 2024. [PMID: 39011765 DOI: 10.1002/jmri.29516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 07/17/2024] Open
Affiliation(s)
- Nishanth D Tirukoti
- Preclinical Imaging, Calico Life Sciences LLC, South San Francisco, California, USA
| |
Collapse
|
3
|
Onishi R, Ueda J, Ide S, Koseki M, Sakata Y, Saito S. Application of Magnetic Resonance Strain Analysis Using Feature Tracking in a Myocardial Infarction Model. Tomography 2023; 9:871-882. [PMID: 37104142 PMCID: PMC10141923 DOI: 10.3390/tomography9020071] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023] Open
Abstract
This study validates the usefulness of myocardial strain analysis with cardiac cine magnetic resonance imaging (MRI) by evaluating the changes in the cardiac function and myocardial strain values longitudinally in a myocardial disease model. Six eight-week-old male Wistar rats were used as a model of myocardial infarction (MI). Cine images were taken in the short axis, two-chamber view longitudinal axis, and four-chamber view longitudinal axis directions in rats 3 and 9 days after MI and in control rats, with preclinical 7-T MRI. The control images and the images on days 3 and 9 were evaluated by measuring the ventricular ejection fraction (EF) and the strain values in the circumferential (CS), radial (RS), and longitudinal directions (LS). The CS decreased significantly 3 days after MI, but there was no difference between the images on days 3 and 9. The two-chamber view LS was -9.7 ± 2.1% at 3 days and -13.9 ± 1.4% at 9 days after MI. The four-chamber view LS was -9.9 ± 1.5% at 3 days and -11.9 ± 1.3% at 9 days after MI. Both the two- and four-chamber LS values were significantly decreased 3 days after MI. Myocardial strain analysis is, therefore, useful for assessing the pathophysiology of MI.
Collapse
Affiliation(s)
- Ryutaro Onishi
- Department of Medical Physics and Engineering, Area of Medical Imaging Technology and Science, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Division of Clinical Radiology Service, Kyoto University Hospital, Kyoto 606-8507, Japan
| | - Junpei Ueda
- Department of Medical Physics and Engineering, Area of Medical Imaging Technology and Science, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Seiko Ide
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Masahiro Koseki
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Shigeyoshi Saito
- Department of Medical Physics and Engineering, Area of Medical Imaging Technology and Science, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Department of Advanced Medical Technologies, National Cerebral and Cardiovascular Center Research Institute, Osaka 564-8565, Japan
| |
Collapse
|
4
|
Lin L, Tong X, Cavallero S, Zhang Y, Na S, Cao R, Hsiai TK, Wang LV. Non-invasive photoacoustic computed tomography of rat heart anatomy and function. LIGHT, SCIENCE & APPLICATIONS 2023; 12:12. [PMID: 36593252 PMCID: PMC9807634 DOI: 10.1038/s41377-022-01053-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Complementary to mainstream cardiac imaging modalities for preclinical research, photoacoustic computed tomography (PACT) can provide functional optical contrast with high imaging speed and resolution. However, PACT has not been demonstrated to reveal the dynamics of whole cardiac anatomy or vascular system without surgical procedure (thoracotomy) for tissue penetration. Here, we achieved non-invasive imaging of rat hearts using the recently developed three-dimensional PACT (3D-PACT) platform, demonstrating the regulated illumination and detection schemes to reduce the effects of optical attenuation and acoustic distortion through the chest wall; thereby, enabling unimpeded visualization of the cardiac anatomy and intracardiac hemodynamics following rapidly scanning the heart within 10 s. We further applied 3D-PACT to reveal distinct cardiac structural and functional changes among the healthy, hypertensive, and obese rats, with optical contrast to uncover differences in cardiac chamber size, wall thickness, and hemodynamics. Accordingly, 3D-PACT provides high imaging speed and nonionizing penetration to capture the whole heart for diagnosing the animal models, holding promises for clinical translation to cardiac imaging of human neonates.
Collapse
Affiliation(s)
- Li Lin
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Tong
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | - Yide Zhang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Shuai Na
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Rui Cao
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tzung K Hsiai
- Department of Bioengineering, UCLA, Los Angeles, CA, USA.
- Division of Cardiology, Department of Medicine, UCLA, Los Angeles, CA, USA.
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
5
|
Can E, Smith M, Boukens BJ, Coronel R, Buffenstein R, Riegler J. Naked mole-rats maintain cardiac function and body composition well into their fourth decade of life. GeroScience 2022; 44:731-746. [PMID: 35107705 PMCID: PMC9135933 DOI: 10.1007/s11357-022-00522-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/21/2022] [Indexed: 11/04/2022] Open
Abstract
The prevalence of cardiovascular disease increases exponentially with age, highlighting the contribution of aging mechanisms to cardiac diseases. Although model organisms which share human disease pathologies can elucidate mechanisms driving disease, they do not provide us with innate examples how cardiac aging might be slowed or attenuated. The identification of animal models that preserve cardiac function throughout most of life offers an alternative approach to study mechanisms which might slow cardiac aging. One such species may be the naked mole-rat (NMR), a mouse-sized (40 g) rodent with extraordinary longevity (> 37 years), and constant mortality hazard over its four decades of life. We used a cross-sectional study design to measure a range of physiological parameters in NMRs between 2 and 34 years of age and compared these findings with those of mice aged between 3 months and 2.5 years. We observed a rapid decline in body fat content and bone mineral density in old mice, but no changes in NMRs. Similarly, rhythm disorders (premature atrial and ventricular complexes) occurred in aged mice but not in NMRs. Magnetic resonance and ultrasound imaging showed age-dependent increases in cardiac hypertrophy and diastolic dysfunction in mice which were absent in NMRs. Finally, cardiac stress tests showed an age-dependent decline in normalized cardiac output in mice, which was absent in NMRs. Unlike mice, that manifest several aspects of human cardiac aging, NMRs maintain cardiac function and reserve capacity throughout their long lives and may offer insights on how to delay or prevent cardiac aging.
Collapse
Affiliation(s)
- Emine Can
- Calico Life Sciences LLC, 1170 Veterans Blvd, South San Francisco, CA, 94080, USA
| | - Megan Smith
- Calico Life Sciences LLC, 1170 Veterans Blvd, South San Francisco, CA, 94080, USA
| | - Bastiaan J Boukens
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105, AZ, Amsterdam, The Netherlands
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, 6200, MD, Maastricht, The Netherlands
| | - Ruben Coronel
- Department of Experimental Cardiology, Heart Center, Academic University Medical Centers, University of Amsterdam, 1105, AZ, Amsterdam, The Netherlands
| | - Rochelle Buffenstein
- Calico Life Sciences LLC, 1170 Veterans Blvd, South San Francisco, CA, 94080, USA.
- Department of Biology, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| | - Johannes Riegler
- Calico Life Sciences LLC, 1170 Veterans Blvd, South San Francisco, CA, 94080, USA.
| |
Collapse
|
6
|
Bensimon-Brito A, Boezio GLM, Cardeira-da-Silva J, Wietelmann A, Ramkumar S, Lundegaard PR, Helker CSM, Ramadass R, Piesker J, Nauerth A, Mueller C, Stainier DYR. Integration of multiple imaging platforms to uncover cardiovascular defects in adult zebrafish. Cardiovasc Res 2021; 118:2665-2687. [PMID: 34609500 PMCID: PMC9491864 DOI: 10.1093/cvr/cvab310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/29/2021] [Indexed: 11/29/2022] Open
Abstract
Aims Mammalian models have been instrumental in investigating adult heart function and human disease. However, electrophysiological differences with human hearts and high costs motivate the need for non-mammalian models. The zebrafish is a well-established genetic model to study cardiovascular development and function; however, analysis of cardiovascular phenotypes in adult specimens is particularly challenging as they are opaque. Methods and results Here, we optimized and combined multiple imaging techniques including echocardiography, magnetic resonance imaging, and micro-computed tomography to identify and analyse cardiovascular phenotypes in adult zebrafish. Using alk5a/tgfbr1a mutants as a case study, we observed morphological and functional cardiovascular defects that were undetected with conventional approaches. Correlation analysis of multiple parameters revealed an association between haemodynamic defects and structural alterations of the heart, as observed clinically. Conclusion We report a new, comprehensive, and sensitive platform to identify otherwise indiscernible cardiovascular phenotypes in adult zebrafish.
Collapse
Affiliation(s)
- Anabela Bensimon-Brito
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Giulia L M Boezio
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
| | - João Cardeira-da-Silva
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Astrid Wietelmann
- Scientific Service Group MRI and µ-CT, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Srinath Ramkumar
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Pia R Lundegaard
- Laboratory for Molecular Cardiology, Department of Cardiology, Vascular, Pulmonary and Infectious Diseases, University Hospital of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian S M Helker
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Radhan Ramadass
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Janett Piesker
- Scientific Service Group Microscopy, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | | | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
| |
Collapse
|
7
|
Lam B, Wendland M, Godines K, Shin SH, Vandsburger M. Accelerated multi-target chemical exchange saturation transfer magnetic resonance imaging of the mouse heart. Phys Med Biol 2021; 66. [PMID: 34167100 DOI: 10.1088/1361-6560/ac0e78] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/24/2021] [Indexed: 12/21/2022]
Abstract
Cardiac chemical exchange saturation transfer-magnetic resonance imaging (CEST-MRI) has been used to probe levels of various metabolites that provide insight into myocardial structure and function. However, imaging of the heart using CEST-MRI is prolonged by the need to repeatedly acquire multiple images for a full Z-spectrum and to perform saturation and acquisition around cardiac and respiratory cycles. Compressed sensing (CS) reconstruction of sparse data enables accelerated acquisition, but reconstruction artifacts may bias subsequently derived measures of CEST contrast. In this study, we examine the impact of CS reconstruction of increasingly under-sampled cardiac CEST-MRI data on subsequent CEST contrasts of amine-containing metabolites and amide-containing proteins. Cardiac CEST-MRI data sets were acquired in six mice using low and high RF saturation for single and dual contrast generation, respectively. CEST-weighted images were reconstructed using CS methods at 2-5× levels of under-sampling. CEST contrasts were derived from corresponding Z-spectra and the impact of accelerated imaging on accuracy was assessed via analysis of variance. CS reconstruction preserved myocardial signal to noise ratio as compared to conventional reconstruction. However, greater absolute error and distribution of derived contrasts was observed with increasing acceleration factors. The results from this study indicate that acquisition of radial cardiac CEST-MRI data can be modestly, but meaningfully, accelerated via CS reconstructions with little error in CEST contrast quantification.
Collapse
Affiliation(s)
- Bonnie Lam
- Department of Bioengineering, UC Berkeley, Berkeley CA, United States of America
| | - Michael Wendland
- Berkeley Pre-clinical Imaging Core, UC Berkeley, Berkeley CA, United States of America
| | - Kevin Godines
- Department of Bioengineering, UC Berkeley, Berkeley CA, United States of America
| | - Soo Hyun Shin
- Department of Bioengineering, UC Berkeley, Berkeley CA, United States of America
| | - Moriel Vandsburger
- Department of Bioengineering, UC Berkeley, Berkeley CA, United States of America
| |
Collapse
|
8
|
Bar A, Targosz-Korecka M, Suraj J, Proniewski B, Jasztal A, Marczyk B, Sternak M, Przybyło M, Kurpińska A, Walczak M, Kostogrys RB, Szymonski M, Chlopicki S. Degradation of Glycocalyx and Multiple Manifestations of Endothelial Dysfunction Coincide in the Early Phase of Endothelial Dysfunction Before Atherosclerotic Plaque Development in Apolipoprotein E/Low-Density Lipoprotein Receptor-Deficient Mice. J Am Heart Assoc 2020; 8:e011171. [PMID: 30866689 PMCID: PMC6475045 DOI: 10.1161/jaha.118.011171] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background The impairment of endothelium‐dependent vasodilation, increased endothelial permeability, and glycocalyx degradation are all important pathophysiological components of endothelial dysfunction. However, it is still not clear whether in atherosclerosis, glycocalyx injury precedes other features of endothelial dysfunction or these events coincide. Methods and Results Herein, we demonstrate that in 4‐ to 8‐week‐old apolipoprotein E/low‐density lipoprotein receptor‐deficient mice, at the stage before development of atherosclerotic plaques, impaired acetylcholine‐induced vasodilation, reduced NO production in aorta, and increased endothelial permeability were all observed; however, flow‐mediated dilation in the femoral artery was fully preserved. In 4‐week‐old mice, glycocalyx coverage was reduced and endothelial stiffness was increased, whereas glycocalyx length was significantly decreased at 8 weeks of age. Early changes in endothelial function were also featured by increased plasma concentration of biomarkers of glycocalyx disruption (endocan), biomarkers of endothelial inflammation (soluble vascular cell adhesion molecule 1), increased vascular permeability (angiopoietin 2), and alterations in hemostasis (tissue plasminogen activator and plasminogen activator inhibitor 1). In 28‐week‐old mice, at the stage of advanced atherosclerotic plaque development, impaired NO production and nearly all other features of endothelial dysfunction were changed to a similar extent, compared with the preatherosclerotic plaque phase. The exceptions were the occurrence of acetylcholine‐induced vasoconstriction in the aorta and brachiocephalic artery, impaired flow‐mediated vasodilation in the femoral artery, and further reduction of glycocalyx length and coverage with a concomitant further increase in endothelial permeability. Conclusions In conclusion, even at the early stage before the development of atherosclerotic plaques, endothelial dysfunction is a complex multifactorial response that has not been previously appreciated.
Collapse
Affiliation(s)
- Anna Bar
- 1 Jagiellonian University Jagiellonian Centre for Experimental Therapeutics Krakow Poland.,3 Jagiellonian University Medical College Faculty of Medicine Chair of Pharmacology Krakow Poland
| | - Marta Targosz-Korecka
- 2 Center for Nanometer-Scale Science and Advanced Materials NANOSAM Faculty of Physics, Astronomy and Applied Computer Science Krakow Poland
| | - Joanna Suraj
- 1 Jagiellonian University Jagiellonian Centre for Experimental Therapeutics Krakow Poland.,4 Faculty of Pharmacy Chair and Department of Toxicology Krakow Poland
| | - Bartosz Proniewski
- 1 Jagiellonian University Jagiellonian Centre for Experimental Therapeutics Krakow Poland
| | - Agnieszka Jasztal
- 1 Jagiellonian University Jagiellonian Centre for Experimental Therapeutics Krakow Poland
| | - Brygida Marczyk
- 1 Jagiellonian University Jagiellonian Centre for Experimental Therapeutics Krakow Poland.,3 Jagiellonian University Medical College Faculty of Medicine Chair of Pharmacology Krakow Poland
| | - Magdalena Sternak
- 1 Jagiellonian University Jagiellonian Centre for Experimental Therapeutics Krakow Poland
| | - Magdalena Przybyło
- 5 Wroclaw University of Science and Technology Department of Biomedical Engineering Wroclaw Poland
| | - Anna Kurpińska
- 1 Jagiellonian University Jagiellonian Centre for Experimental Therapeutics Krakow Poland
| | - Maria Walczak
- 1 Jagiellonian University Jagiellonian Centre for Experimental Therapeutics Krakow Poland.,4 Faculty of Pharmacy Chair and Department of Toxicology Krakow Poland
| | - Renata B Kostogrys
- 6 University of Agriculture H. Kollataja in Cracow Department of Human Nutrition Faculty of Food Technology Krakow Poland
| | - Marek Szymonski
- 2 Center for Nanometer-Scale Science and Advanced Materials NANOSAM Faculty of Physics, Astronomy and Applied Computer Science Krakow Poland
| | - Stefan Chlopicki
- 1 Jagiellonian University Jagiellonian Centre for Experimental Therapeutics Krakow Poland.,3 Jagiellonian University Medical College Faculty of Medicine Chair of Pharmacology Krakow Poland
| |
Collapse
|
9
|
Park CJ, Branch ME, Vasu S, Meléndez GC. The Role of Cardiac MRI in Animal Models of Cardiotoxicity: Hopes and Challenges. J Cardiovasc Transl Res 2020; 13:367-376. [PMID: 32248349 DOI: 10.1007/s12265-020-09981-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/27/2020] [Indexed: 12/13/2022]
Abstract
Animal models of chemotherapy-induced cardiotoxicity have been instrumental in understanding the underlying mechanisms of the disease. The use of cardiac magnetic resonance (CMR) imaging and nuclear magnetic resonance (NMR) imaging in preclinical models allows the non-invasive study of subclinical pathophysiological processes that influence cardiac function and establish imaging parameters that can be adopted into clinical practice to predict cardiovascular outcomes. Given the rising population of cancer survivors and the current lack of effective therapies for the management of cardiotoxicity, research combining clinically relevant animal models and non-invasive cardiac imaging remains essential to improve methods to monitor, predict, and treat cardiovascular adverse events. This comprehensive review summarizes the lessons learned from animal models of cardiotoxicity employing CMR and tissue characterization techniques and discusses the ongoing challenges and hopes for the future.
Collapse
Affiliation(s)
- Carolyn J Park
- Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Mary E Branch
- Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Sujethra Vasu
- Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Giselle C Meléndez
- Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
10
|
Rutledge C, Cater G, McMahon B, Guo L, Nouraie SM, Wu Y, Villanueva F, Kaufman BA. Commercial 4-dimensional echocardiography for murine heart volumetric evaluation after myocardial infarction. Cardiovasc Ultrasound 2020; 18:9. [PMID: 32164714 PMCID: PMC7068892 DOI: 10.1186/s12947-020-00191-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/26/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Traditional preclinical echocardiography (ECHO) modalities, including 1-dimensional motion-mode (M-Mode) and 2-dimensional long axis (2D-US), rely on geometric and temporal assumptions about the heart for volumetric measurements. Surgical animal models, such as the mouse coronary artery ligation (CAL) model of myocardial infarction, result in morphologic changes that do not fit these geometric assumptions. New ECHO technology, including 4-dimensional ultrasound (4D-US), improves on these traditional models. This paper aims to compare commercially available 4D-US to M-mode and 2D-US in a mouse model of CAL. METHODS 37 mice underwent CAL surgery, of which 32 survived to a 4 week post-operative time point. ECHO was completed at baseline, 1 week, and 4 weeks after CAL. M-mode, 2D-US, and 4D-US were taken at each time point and evaluated by two separate echocardiographers. At 4 weeks, a subset (n = 12) of mice underwent cardiac magnetic resonance (CMR) imaging to serve as a reference standard. End systolic volume (ESV), end diastolic volume (EDV), and ejection fraction (EF) were compared among imaging modalities. Hearts were also collected for histologic evaluation of scar size (n = 16) and compared to ECHO-derived wall motion severity index (WMSI) and global longitudinal strain as well as gadolinium-enhanced CMR to compare scar assessment modalities. RESULTS 4D-US provides close agreement of ESV (Bias: -2.55%, LOA: - 61.55 to 66.66) and EF (US Bias: 11.23%, LOA - 43.10 to 102.8) 4 weeks after CAL when compared to CMR, outperforming 2D-US and M-mode estimations. 4D-US has lower inter-user variability as measured by intraclass correlation (ICC) in the evaluation of EDV (0.91) and ESV (0.93) when compared to other modalities. 4D-US also allows for rapid assessment of WMSI, which correlates strongly with infarct size by histology (r = 0.77). CONCLUSION 4D-US outperforms M-Mode and 2D-US for volumetric analysis 4 weeks after CAL and has higher inter-user reliability. 4D-US allows for rapid calculation of WMSI, which correlates well with histologic scar size.
Collapse
Affiliation(s)
- Cody Rutledge
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - George Cater
- Division of Cardiology, Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brenda McMahon
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lanping Guo
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Seyed Mehdi Nouraie
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yijen Wu
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Flordeliza Villanueva
- Division of Cardiology, Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Brett A Kaufman
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
Russo I, Micotti E, Fumagalli F, Magnoli M, Ristagno G, Latini R, Staszewsky L. A novel echocardiographic method closely agrees with cardiac magnetic resonance in the assessment of left ventricular function in infarcted mice. Sci Rep 2019; 9:3580. [PMID: 30837662 PMCID: PMC6400943 DOI: 10.1038/s41598-019-40393-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/13/2019] [Indexed: 12/19/2022] Open
Abstract
Cardiac Magnetic Resonance (CMR) is the gold standard for left ventricular (LV) function assessment in small rodents and, though echocardiography (ECHO) has been proposed as an alternative method, LV volumes may be underestimated when marked eccentric remodeling is present. In the present study we described a novel echocardiographic method and we tested the agreement with CMR for LV volumes and ejection fraction calculation in mice with experimental myocardial infarction. Sham-operated and infarcted mice, subjected to Coronary Artery Ligation, underwent ECHO and CMR. Volumes and ejection fraction were calculated by ECHO using a standard Simpson’s modified method (ECHO pLAX) or a method from sequential parasternal short axis (ECHO pSAX) acquired mechanically by translating the probe every 1 mm along the left ventricle. The mean differences ±1.96 standard deviation near to zero suggested close agreement between ECHO pSAX and CMR; contrarily ECHO pLAX agreement with CMR was lower. In addition, ECHO was three times shorter and cheaper (Relative cost difference: pLAX: −66% and pSAX −57%) than CMR. In conclusion, ECHO pSAX is a new, fast, cheap and accurate method for LV function assessment in mice.
Collapse
Affiliation(s)
- Ilaria Russo
- Department of Cardiovascular Research, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy.
| | - Edoardo Micotti
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy
| | - Francesca Fumagalli
- Department of Cardiovascular Research, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy
| | - Michela Magnoli
- Department of Cardiovascular Research, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy
| | - Giuseppe Ristagno
- Department of Cardiovascular Research, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy
| | - Roberto Latini
- Department of Cardiovascular Research, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy
| | - Lidia Staszewsky
- Department of Cardiovascular Research, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy
| |
Collapse
|
12
|
Nagel F, Santer D, Stojkovic S, Kaun C, Schaefer AK, Krššák M, Abraham D, Bencsik P, Ferdinandy P, Kenyeres E, Szabados T, Wojta J, Trescher K, Kiss A, Podesser BK. The impact of age on cardiac function and extracellular matrix component expression in adverse post-infarction remodeling in mice. Exp Gerontol 2019; 119:193-202. [PMID: 30763602 DOI: 10.1016/j.exger.2019.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 01/18/2023]
Abstract
The aim of this study was to describe the potential associations of the expression of matricellular components in adverse post-infarction remodeling of the geriatric heart. In male geriatric (OM, age: 18 months) and young (YM, age: 11 weeks) OF1 mice myocardial infarction (MI) was induced by permanent ligation of the left anterior descending coronary artery. Cardiac function was evaluated by MRI. Plasma and myocardial tissue samples were collected 3d, 7d, and 32d post-MI. Age and MI were associated with impaired cardiac function accompanied by left-ventricular (LV) dilatation. mRNA expression of MMP-2 (7d: p < 0.05), TIMP-1 (7d: p < 0.05), TIMP-2 (7d: p < 0.05), Collagen-1 (3d and 7d: p < 0.05) and Collagen-3 (7d: p < 0.05) in LV non-infarcted myocardium was significantly higher in YM than in OM after MI. MMP-9 activity in plasma was increased in OM after MI (3d: p < 0.01). Tenascin-C protein levels assessed by ELISA were decreased in OM as compared to YM after MI in plasma (3d: p < 0.001, 7d: p < 0.05) and LV non-infarcted myocardium (7d: p < 0.01). Dysregulation in ECM components in non-infarcted LV might be associated and contribute to adverse LV remodeling and impaired cardiac function. Thus, targeting ECM might be a potential therapeutic approach to enhance cardiac function in geriatric patients following MI.
Collapse
Affiliation(s)
- Felix Nagel
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 1Q, 1090 Wien, Austria; Department of Cardiac Surgery, University Hospital St. Poelten, Dunant-Platz 1, 3100 St. Poelten, Austria
| | - David Santer
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 1Q, 1090 Wien, Austria; Department of Cardiovascular Surgery, Hospital Hietzing, Wolkersbergenstr. 1, 1130 Wien, Austria
| | - Stefan Stojkovic
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Wien, Austria
| | - Christoph Kaun
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Wien, Austria
| | - Anne-Kristin Schaefer
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 1Q, 1090 Wien, Austria
| | - Martin Krššák
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Wien, Austria; High Field MR Centre, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Lazarettg. 14, 1090 Wien, Austria
| | - Dietmar Abraham
- Laboratory for Molecular Cellular Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090 Wien, Austria
| | - Péter Bencsik
- Pharmahungary Group, Szeged, Hungary; Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Dom ter 12, 6721 Szeged, Hungary
| | - Péter Ferdinandy
- Pharmahungary Group, Szeged, Hungary; Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvarad ter 4, Budapest 1089, Hungary
| | - Eva Kenyeres
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Dom ter 12, 6721 Szeged, Hungary
| | - Tamara Szabados
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Dom ter 12, 6721 Szeged, Hungary
| | - Johann Wojta
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 1Q, 1090 Wien, Austria; Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Wien, Austria
| | - Karola Trescher
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 1Q, 1090 Wien, Austria; Department of Cardiac Surgery, University Hospital St. Poelten, Dunant-Platz 1, 3100 St. Poelten, Austria
| | - Attila Kiss
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 1Q, 1090 Wien, Austria
| | - Bruno K Podesser
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 1Q, 1090 Wien, Austria; Department of Cardiac Surgery, University Hospital St. Poelten, Dunant-Platz 1, 3100 St. Poelten, Austria.
| |
Collapse
|
13
|
Tricot B, Descoteaux M, Dumont M, Chagnon F, Tremblay L, Carpentier A, Lesur O, Lepage M, Lalande A. Improving the evaluation of cardiac function in rats at 7T with denoising filters: a comparison study. BMC Med Imaging 2017; 17:62. [PMID: 29258458 PMCID: PMC5735834 DOI: 10.1186/s12880-017-0236-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 12/06/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We investigate the use of different denoising filters on low signal-to-noise ratio cardiac images of the rat heart acquired with a birdcage volume coil at 7T. Accuracy and variability of cardiac function parameters were measured from manual segmentation of rat heart images with and without filtering. METHODS Ten rats were studied using a 7T Varian system. End-diastolic and end-systolic volumes, ejection fraction and left ventricle mass (LVM) were calculated from manual segmentation by two experts on cine-FLASH short-axis slices covering the left ventricle. Series were denoised with an anisotropic diffusion filter, a whole variation regularization or an optimized Rician non-local means (ORNLM) filtering technique. The effect of the different filters was evaluated by the calculation of signal-to-noise (SNR) and contrast-to-noise (CNR) ratios, followed by a study of intra- and inter-expert variability of the measurement of physiological parameters. The calculated LVM was compared to the LVM obtained by weighing the heart ex vivo. RESULTS The SNR and the CNR increased after application of the different filters. The performance of the ORNLM filter was superior for all the parameters of the cardiac function, as judged from the inter- and intra-observer variabilities. Moreover, this filtering technique resulted in the lowest variability in the LVM evaluation. CONCLUSIONS In cardiac MRI of rats, filtering is an interesting alternative that yields better contrast between myocardium and surrounding tissues and the ORNLM filter provided the largest improvements.
Collapse
Affiliation(s)
- Benoit Tricot
- Centre d’Imagerie Moléculaire de Sherbrooke, CHUS - Hôpital Fleurimont, Sherbrooke, Canada
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Maxime Descoteaux
- Centre d’Imagerie Moléculaire de Sherbrooke, CHUS - Hôpital Fleurimont, Sherbrooke, Canada
- Département d’Informatique, Université de Sherbrooke, Sherbrooke, Canada
| | - Matthieu Dumont
- Centre d’Imagerie Moléculaire de Sherbrooke, CHUS - Hôpital Fleurimont, Sherbrooke, Canada
| | - Frederic Chagnon
- Soins Intensifs Médicaux, CHUS - Hôpital Fleurimont, Sherbrooke, Canada
| | - Luc Tremblay
- Centre d’Imagerie Moléculaire de Sherbrooke, CHUS - Hôpital Fleurimont, Sherbrooke, Canada
| | - André Carpentier
- Département de Médecine, CHUS - Hôpital Fleurimont, Sherbrooke, Canada
| | - Olivier Lesur
- Centre d’Imagerie Moléculaire de Sherbrooke, CHUS - Hôpital Fleurimont, Sherbrooke, Canada
- Soins Intensifs Médicaux, CHUS - Hôpital Fleurimont, Sherbrooke, Canada
| | - Martin Lepage
- Centre d’Imagerie Moléculaire de Sherbrooke, CHUS - Hôpital Fleurimont, Sherbrooke, Canada
| | - Alain Lalande
- Le2I, Faculté de Médecine, Université Bourgogne Franche-Comté, 7 Bld Jeanne d’Arc, 21079 Dijon Cedex, BP 87900 France
| |
Collapse
|
14
|
Titin-truncating variants affect heart function in disease cohorts and the general population. Nat Genet 2016; 49:46-53. [PMID: 27869827 PMCID: PMC5201198 DOI: 10.1038/ng.3719] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 10/18/2016] [Indexed: 11/08/2022]
Abstract
Titin-truncating variants (TTNtv) commonly cause dilated cardiomyopathy (DCM). TTNtv are also encountered in ∼1% of the general population, where they may be silent, perhaps reflecting allelic factors. To better understand TTNtv, we integrated TTN allelic series, cardiac imaging and genomic data in humans and studied rat models with disparate TTNtv. In patients with DCM, TTNtv throughout titin were significantly associated with DCM. Ribosomal profiling in rat showed the translational footprint of premature stop codons in Ttn, TTNtv-position-independent nonsense-mediated degradation of the mutant allele and a signature of perturbed cardiac metabolism. Heart physiology in rats with TTNtv was unremarkable at baseline but became impaired during cardiac stress. In healthy humans, machine-learning-based analysis of high-resolution cardiac imaging showed TTNtv to be associated with eccentric cardiac remodeling. These data show that TTNtv have molecular and physiological effects on the heart across species, with a continuum of expressivity in health and disease.
Collapse
|
15
|
Ventricular Fibrillation-Induced Cardiac Arrest Results in Regional Cardiac Injury Preferentially in Left Anterior Descending Coronary Artery Territory in Piglet Model. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5958196. [PMID: 27882326 PMCID: PMC5110865 DOI: 10.1155/2016/5958196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/30/2016] [Accepted: 09/05/2016] [Indexed: 11/23/2022]
Abstract
Objective. Decreased cardiac function after resuscitation from cardiac arrest (CA) results from global ischemia of the myocardium. In the evolution of postarrest myocardial dysfunction, preferential involvement of any coronary arterial territory is not known. We hypothesized that there is no preferential involvement of any coronary artery during electrical induced ventricular fibrillation (VF) in piglet model. Design. Prospective, randomized controlled study. Methods. 12 piglets were randomized to baseline and electrical induced VF. After 5 min, the animals were resuscitated according to AHA PALS guidelines. After return of spontaneous circulation (ROSC), animals were observed for an additional 4 hours prior to cardiac MRI. Data (mean ± SD) was analyzed using unpaired t-test; p value ≤ 0.05 was considered statistically significant. Results. Segmental wall motion (mm; baseline versus postarrest group) in segment 7 (left anterior descending (LAD)) was 4.68 ± 0.54 versus 3.31 ± 0.64, p = 0.0026. In segment 13, it was 3.82 ± 0.96 versus 2.58 ± 0.82, p = 0.02. In segment 14, it was 2.42 ± 0.44 versus 1.29 ± 0.99, p = 0.028. Conclusion. Postarrest myocardial dysfunction resulted in segmental wall motion defects in the LAD territory. There were no perfusion defects in the involved segments.
Collapse
|
16
|
Sampath S, Parimal AS, Feng D, Chang MML, Baumgartner R, Klimas M, Jacobsen K, Manigbas E, Gsell W, Evelhoch JL, Chin CL. Quantitative MRI biomarkers to characterize regional left ventricular perfusion and function in nonhuman primates during dobutamine-induced stress: A reproducibility and reliability study. J Magn Reson Imaging 2016; 45:556-569. [PMID: 27384520 DOI: 10.1002/jmri.25379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/22/2016] [Indexed: 01/07/2023] Open
Abstract
PURPOSE To identify reproducible and reliable noninvasive regional imaging biomarkers of cardiac function and perfusion at rest and under stress in healthy nonhuman primates (NHPs) that may be used in the future for the early characterization of preclinical heart failure models, to evaluate therapy, and for clinical translation. MATERIALS AND METHODS Seven naive cynomolgus macaques underwent test-retest 3T cardiac MRI tagging and dual-bolus perfusion experiments. Regional cardiac function biomarkers, such as peak circumferential strain (CS), average diastolic strain-rate (DSR), contractile reserve (CR), diastolic reserve, peak torsion, and torsion reserve were quantified. Further, regional myocardial blood flow (MBF), myocardial perfusion reserve (MPR), and myocardial perfusion reserve-to-contractile reserve (MPR/CR) were also derived. Inter- and intraobserver reproducibility and test-retest reliability analyses were conducted using the reliability and generalizability coefficients including correlation coefficient (CC) and intraclass correlation coefficient (ICC). RESULTS Overall, peak CS, DSR, and MBF are robust biomarkers at both rest and stress with moderate-good inter- and intraobserver reproducibility and test-retest reliability. At rest: intra-/interobserver reproducibility (CC): peak CS (0.81/0.81), DSR (0.81/0.81), MBF (0.72/0.57), peak torsion (0.79/0.79); test-retest reliability: (CC/ICC): peak CS (0.62/0.75), DSR (0.24/0.55), MBF (0.66/0.62), and peak torsion (0.79/0.78). Under stress: intra-/interobserver reproducibility (CC): peak CS (0.61/0.60), DSR (0.50/0.50), MBF (0.63/0.61), MPR (0.43/0.43), and peak torsion (0.38/0.38); test-retest reliability: (CC/ICC): peak CS (0.58/0.58), DSR (0.24/0.43), MBF (0.58/0.58), MPR (0.43/0.38), and peak torsion (0.38/0.38). CONCLUSION We demonstrated the feasibility of using cardiac MRI to characterize left ventricular functional and perfusion responses to stress in an NHP species, and specific robust biomarkers such as peak CS, DSR, MBF, diastolic reserve, and MPR have been identified for clinical translation and drug research. LEVEL OF EVIDENCE 1 J. Magn. Reson. Imaging 2017;45:556-569.
Collapse
Affiliation(s)
- Smita Sampath
- Translational Biomarkers, Merck Research Laboratories, MSD, Singapore
| | | | - Dai Feng
- Biometric Research, Biostatistics and Research Decision Sciences, Merck Research Laboratories, Merck & Co. Inc., Rahway, New Jersey, USA
| | | | - Richard Baumgartner
- Biometric Research, Biostatistics and Research Decision Sciences, Merck Research Laboratories, Merck & Co. Inc., Rahway, New Jersey, USA
| | - Michael Klimas
- Translational Biomarkers, Merck Research Laboratories, Merck & Co. Inc., West Point, Pennsylvania, USA
| | - Kirsten Jacobsen
- In Vivo Pharmacology, Merck Research Laboratories, MSD, Singapore
| | | | | | - Jeffrey L Evelhoch
- Translational Biomarkers, Merck Research Laboratories, Merck & Co. Inc., West Point, Pennsylvania, USA
| | - Chih-Liang Chin
- Translational Biomarkers, Merck Research Laboratories, MSD, Singapore
| |
Collapse
|
17
|
Vanhoutte L, Gerber BL, Gallez B, Po C, Magat J, Balligand JL, Feron O, Moniotte S. High field magnetic resonance imaging of rodents in cardiovascular research. Basic Res Cardiol 2016; 111:46. [PMID: 27287250 DOI: 10.1007/s00395-016-0565-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 06/01/2016] [Indexed: 02/07/2023]
Abstract
Transgenic and gene knockout rodent models are primordial to study pathophysiological processes in cardiovascular research. Over time, cardiac MRI has become a gold standard for in vivo evaluation of such models. Technical advances have led to the development of magnets with increasingly high field strength, allowing specific investigation of cardiac anatomy, global and regional function, viability, perfusion or vascular parameters. The aim of this report is to provide a review of the various sequences and techniques available to image mice on 7-11.7 T magnets and relevant to the clinical setting in humans. Specific technical aspects due to the rise of the magnetic field are also discussed.
Collapse
Affiliation(s)
- Laetitia Vanhoutte
- Department of Paediatric Cardiology, Cliniques universitaires Saint Luc, Université Catholique de Louvain (UCL), Brussels, Belgium. .,Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCL), Brussels, Belgium.
| | - Bernhard L Gerber
- Division of Cardiology, Cliniques universitaires Saint Luc, Université Catholique de Louvain (UCL), Brussels, Belgium.,Pole of Cardiovascular Research (CARD), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance Unit (REMA), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Chrystelle Po
- CNRS, ICube, FMTS, Institut de Physique Biologique, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Julie Magat
- L'Institut de RYthmologie et de Modélisation Cardiaque (LIRYC), Inserm U1045, Bordeaux, France
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Stéphane Moniotte
- Department of Paediatric Cardiology, Cliniques universitaires Saint Luc, Université Catholique de Louvain (UCL), Brussels, Belgium
| |
Collapse
|
18
|
Bakermans AJ, Abdurrachim D, Moonen RPM, Motaal AG, Prompers JJ, Strijkers GJ, Vandoorne K, Nicolay K. Small animal cardiovascular MR imaging and spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 88-89:1-47. [PMID: 26282195 DOI: 10.1016/j.pnmrs.2015.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 06/04/2023]
Abstract
The use of MR imaging and spectroscopy for studying cardiovascular disease processes in small animals has increased tremendously over the past decade. This is the result of the remarkable advances in MR technologies and the increased availability of genetically modified mice. MR techniques provide a window on the entire timeline of cardiovascular disease development, ranging from subtle early changes in myocardial metabolism that often mark disease onset to severe myocardial dysfunction associated with end-stage heart failure. MR imaging and spectroscopy techniques play an important role in basic cardiovascular research and in cardiovascular disease diagnosis and therapy follow-up. This is due to the broad range of functional, structural and metabolic parameters that can be quantified by MR under in vivo conditions non-invasively. This review describes the spectrum of MR techniques that are employed in small animal cardiovascular disease research and how the technological challenges resulting from the small dimensions of heart and blood vessels as well as high heart and respiratory rates, particularly in mice, are tackled.
Collapse
Affiliation(s)
- Adrianus J Bakermans
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Desiree Abdurrachim
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Rik P M Moonen
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Abdallah G Motaal
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeanine J Prompers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Gustav J Strijkers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Katrien Vandoorne
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Klaas Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
19
|
Variability of Mouse Left Ventricular Function Assessment by 11.7 Tesla MRI. J Cardiovasc Transl Res 2015; 8:362-71. [PMID: 26070905 DOI: 10.1007/s12265-015-9638-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/02/2015] [Indexed: 10/23/2022]
Abstract
We studied intraobserver (n = 24), interobserver (n = 24) and interexperiment (n = 12) reproducibility of left ventricular (LV) mass and volume measurements in mice using an 11.7 T MRI system. The LV systolic function was assessed with a short-axis FLASH-cine sequence in 29 mice, including animals having undergone transverse aortic constriction. Bland-Altman and regression analysis were used to compare the different data sets. Reproducibility was excellent for the LV mass and end-diastolic volume (coefficient of variability (CoV) between 5.4 and 11.8 %), good for end-systolic volume (CoV 15.2-19.4 %) and moderate for stroke volume and ejection fraction (CoV 14.7-20.9 %). We found an excellent correlation between LV mass determined by MRI and ex vivo morphometric data (r = 0.92). In conclusion, LV systolic function can be assessed on an 11.7 T MRI scanner with high reproducibility for most parameters, as needed in longitudinal studies. However, data should be interpreted taking into account the moderate reproducibility of small volumes.
Collapse
|
20
|
Bar A, Skorka T, Jasinski K, Chlopicki S. MRI-based assessment of endothelial function in mice in vivo. Pharmacol Rep 2015; 67:765-70. [PMID: 26321279 DOI: 10.1016/j.pharep.2015.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 05/08/2015] [Accepted: 05/13/2015] [Indexed: 12/28/2022]
Abstract
While a healthy endothelium serves to maintain vascular haemostasis, a malfunctioning endothelium leads to various cardiovascular diseases, including atherothrombosis. Endothelial dysfunction is characterized by increased vascular permeability, impaired endothelium-dependent responses and various pro-inflammatory and pro-thrombotic changes in endothelial phenotype, all of which could provide the basis for an in vivo diagnosis of endothelial dysfunction. In the present review, we briefly summarize the magnetic resonance imaging (MRI)-based methods available for assessing endothelial function in animal models, especially in mice. These methods are aimed to assess biochemical phenotype using molecular imaging, endothelium-dependent responses or changes in endothelial permeability. All these approaches provide a complementary insight into the endothelial dysfunction in vivo and may offer a unique opportunity to study endothelium-based mechanisms of diseases and endothelial response to treatment.
Collapse
Affiliation(s)
- Anna Bar
- Department of MRI, Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland; Department of Experimental Pharmacology, Jagiellonian University Medical College, Kraków, Poland
| | - Tomasz Skorka
- Department of MRI, Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland.
| | - Krzysztof Jasinski
- Department of MRI, Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
| | - Stefan Chlopicki
- Department of Experimental Pharmacology, Jagiellonian University Medical College, Kraków, Poland; Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Kraków, Poland
| |
Collapse
|
21
|
Hübner NS, Merkle A, Jung B, von Elverfeldt D, Harsan LA. Analysis of left ventricular function of the mouse heart during experimentally induced hyperthyroidism and recovery. NMR IN BIOMEDICINE 2015; 28:116-123. [PMID: 25394338 DOI: 10.1002/nbm.3233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 06/04/2023]
Abstract
Many of the clinical manifestations of hyperthyroidism are due to the ability of thyroid hormones to alter myocardial contractility and cardiovascular hemodynamics, leading to cardiovascular impairment. In contrast, recent studies highlight also the potential beneficial effects of thyroid hormone administration for clinical or preclinical treatment of different diseases such as atherosclerosis, obesity and diabetes or as a new therapeutic approach in demyelinating disorders. In these contexts and in the view of developing thyroid hormone-based therapeutic strategies, it is, however, important to analyze undesirable secondary effects on the heart. Animal models of experimentally induced hyperthyroidism therefore represent important tools for investigating and monitoring changes of cardiac function. In our present study we use high-field cardiac MRI to monitor and follow-up longitudinally the effects of prolonged thyroid hormone (triiodothyronine) administration focusing on murine left ventricular function. Using a 9.4 T small horizontal bore animal scanner, cinematographic MRI was used to analyze changes in ejection fraction, wall thickening, systolic index and fractional shortening. Cardiac MRI investigations were performed after sustained cycles of triiodothyronine administration and treatment arrest in adolescent (8 week old) and adult (24 week old) female C57Bl/6 N mice. Triiodothyronine supplementation of 3 weeks led to an impairment of cardiac performance with a decline in ejection fraction, wall thickening, systolic index and fractional shortening in both age groups but with a higher extent in the group of adolescent mice. However, after a hormonal treatment cessation of 3 weeks, only young mice are able to partly restore cardiac performance in contrast to adult mice lacking this recovery potential and therefore indicating a presence of chronically developed heart pathology.
Collapse
Affiliation(s)
- Neele Saskia Hübner
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | | | | | | |
Collapse
|
22
|
Walton S, Berger K, Thiyagalingam J, Duffy B, Fang H, Holloway C, Trefethen AE, Chen M. Visualizing Cardiovascular Magnetic Resonance (CMR) imagery: challenges and opportunities. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:349-58. [PMID: 25091538 DOI: 10.1016/j.pbiomolbio.2014.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 07/22/2014] [Indexed: 10/24/2022]
Abstract
Cardiovascular Magnetic Resonance (CMR) imaging is an essential technique for measuring regional myocardial function. However, it is a time-consuming and cognitively demanding task to interpret, identify and compare various motion characteristics based on watching CMR imagery. In this work, we focus on the problems of visualising imagery resulting from 2D myocardial tagging in CMR. In particular we provide an overview of the current state of the art of relevant visualization techniques, and a discussion on why the problem is difficult from a perceptual perspective. Finally, we introduce a proof-of-concept multilayered visualization user interface for visualizing CMR data using multiple derived attributes encoded into multivariate glyphs. An initial evaluation of the system by clinicians suggested a great potential for this visualisation technology to become a clinical practice in the future.
Collapse
Affiliation(s)
- Simon Walton
- Oxford e-Research Centre, Oxford University, 7 Keble Road, Oxford OX1 3QG, UK.
| | - Kai Berger
- INRIA Bretagne-Atlantique, Campus universitaire de Beaulieu, 35042 Rennes Cedex, France
| | | | - Brian Duffy
- Oxford e-Research Centre, Oxford University, 7 Keble Road, Oxford OX1 3QG, UK
| | - Hui Fang
- Oxford e-Research Centre, Oxford University, 7 Keble Road, Oxford OX1 3QG, UK
| | - Cameron Holloway
- St Vincent's Hospital, 390 Victoria St, Darlinghurst, NSW 2010, Australia
| | - Anne E Trefethen
- Oxford e-Research Centre, Oxford University, 7 Keble Road, Oxford OX1 3QG, UK
| | - Min Chen
- Oxford e-Research Centre, Oxford University, 7 Keble Road, Oxford OX1 3QG, UK.
| |
Collapse
|
23
|
Buonincontri G, Methner C, Krieg T, Carpenter TA, Sawiak SJ. Functional assessment of the mouse heart by MRI with a 1-min acquisition. NMR IN BIOMEDICINE 2014; 27:733-737. [PMID: 24737267 DOI: 10.1002/nbm.3116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/13/2014] [Accepted: 03/14/2014] [Indexed: 06/03/2023]
Abstract
In vivo assessment of heart function in mice is important for basic and translational research in cardiology. MRI is an accurate tool for the investigation of the anatomy and function in the preclinical setting; however, the long scan duration limits its usage. We aimed to reduce the acquisition time of cine MRI to 1 min. We employed spatiotemporal compressed sensing and parallel imaging to accelerate retrospectively gated cine MRI. We compared the functional parameters derived from full and undersampled data in Cartesian and radial MRI by means of Bland-Altman plots. We found that the scan time for the whole heart could be reduced to 2 min with Cartesian sampling and to 1 min with radial sampling. Despite a reduction in the signal-to-noise ratio, the accuracy in the estimation of left and right ventricular volumes was preserved for all tested subjects. This method can be used to perform accurate functional MRI examinations in mice for high-throughput phenotyping or translational studies.
Collapse
Affiliation(s)
- Guido Buonincontri
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | | | | | | |
Collapse
|
24
|
Buonincontri G, Methner C, Carpenter TA, Hawkes RC, Sawiak SJ, Krieg T. MRI and PET in mouse models of myocardial infarction. J Vis Exp 2013:e50806. [PMID: 24378323 PMCID: PMC4110968 DOI: 10.3791/50806] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Myocardial infarction is one of the leading causes of death in the Western world. The similarity of the mouse heart to the human heart has made it an ideal model for testing novel therapeutic strategies. In vivo magnetic resonance imaging (MRI) gives excellent views of the heart noninvasively with clear anatomical detail, which can be used for accurate functional assessment. Contrast agents can provide basic measures of tissue viability but these are nonspecific. Positron emission tomography (PET) is a complementary technique that is highly specific for molecular imaging, but lacks the anatomical detail of MRI. Used together, these techniques offer a sensitive, specific and quantitative tool for the assessment of the heart in disease and recovery following treatment. In this paper we explain how these methods are carried out in mouse models of acute myocardial infarction. The procedures described here were designed for the assessment of putative protective drug treatments. We used MRI to measure systolic function and infarct size with late gadolinium enhancement, and PET with fluorodeoxyglucose (FDG) to assess metabolic function in the infarcted region. The paper focuses on practical aspects such as slice planning, accurate gating, drug delivery, segmentation of images, and multimodal coregistration. The methods presented here achieve good repeatability and accuracy maintaining a high throughput.
Collapse
Affiliation(s)
- Guido Buonincontri
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, Unversity of Cambridge
| | | | | | | | | | | |
Collapse
|
25
|
Campbell-Washburn AE, Price AN, Ellmerich S, Simons JP, Al-Shawi R, Kalber TL, Ghatrora R, Hawkins PN, Moon JC, Ordidge RJ, Pepys MB, Lythgoe MF. Monitoring systemic amyloidosis using MRI measurements of the extracellular volume fraction. Amyloid 2013; 20:93-8. [PMID: 23621497 DOI: 10.3109/13506129.2013.787984] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We report the in vivo evaluation, in a murine model, of MRI measurements of the extracellular volume fraction (ECV) for the detection and monitoring of systemic amyloidosis. A new inducible transgenic model was used, with increased production of mouse serum amyloid A protein controlled by oral administration of doxycycline, that causes both the usual hepatic and splenic amyloidosis and also cardiac deposits. ECV was measured in vivo by equilibrium contrast MRI in the heart and liver of 11 amyloidotic and 10 control mice. There was no difference in the cardiac function between groups, but ECV was significantly increased in the heart, mean (standard deviation) 0.20 (0.05) versus 0.14 (0.04), p < 0.005, and liver, 0.27 (0.04) versus 0.15 (0.04), p < 0.0005, of amyloidotic animals and was strongly correlated with the histological amyloid score, myocardium, ρ = 0.67, p < 0.01; liver, ρ = 0.87, p < 0.01. In a further four mice that received human serum amyloid P component (SAP) followed by anti-human SAP antibody, a treatment to eliminate visceral amyloid deposits, ECV in the liver and spleen returned to baseline after therapy (p < 0.01). MRI measurement of ECV is a sensitive marker of amyloid deposits with potential application for early detection and monitoring therapies promoting their clearance.
Collapse
|
26
|
Campbell‐Washburn AE, Zhang H, Siow BM, Price AN, Lythgoe MF, Ordidge RJ, Thomas DL. Multislice cardiac arterial spin labeling using improved myocardial perfusion quantification with simultaneously measured blood pool input function. Magn Reson Med 2012; 70:1125-36. [DOI: 10.1002/mrm.24545] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/17/2012] [Accepted: 10/06/2012] [Indexed: 12/20/2022]
Affiliation(s)
- Adrienne E. Campbell‐Washburn
- Centre for Advanced Biomedical ImagingDivision of Medicine and Institute of Child HealthUniversity College LondonUK
- Department of Medical Physics and BioengineeringUniversity College LondonUK
| | - Hui Zhang
- Centre for Medical Image ComputingDepartment of Computer ScienceUniversity College LondonUK
| | - Bernard M. Siow
- Centre for Advanced Biomedical ImagingDivision of Medicine and Institute of Child HealthUniversity College LondonUK
- Centre for Medical Image ComputingDepartment of Computer ScienceUniversity College LondonUK
| | - Anthony N. Price
- Division of Imaging Sciences and Biomedical EngineeringKing's College LondonKing's Health PartnersSt. Thomas' HospitalLondonUK
| | - Mark F. Lythgoe
- Centre for Advanced Biomedical ImagingDivision of Medicine and Institute of Child HealthUniversity College LondonUK
| | - Roger J. Ordidge
- Centre for NeuroscienceUniversity of MelbourneMelbourneAustralia
| | - David L. Thomas
- Department of Brain Repair and RehabilitationUniversity College LondonInstitute of NeurologyQueen SquareLondonUK
| |
Collapse
|
27
|
Long-term left ventricular remodelling in rat model of nonreperfused myocardial infarction: sequential MR imaging using a 3T clinical scanner. J Biomed Biotechnol 2012; 2012:504037. [PMID: 23118511 PMCID: PMC3479400 DOI: 10.1155/2012/504037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 06/11/2012] [Indexed: 11/18/2022] Open
Abstract
Purpose. To evaluate whether 3T clinical MRI with a small-animal coil and gradient-echo (GE) sequence could be used to characterize long-term left ventricular remodelling (LVR) following nonreperfused myocardial infarction (MI) using semi-automatic segmentation software (SASS) in a rat model. Materials and Methods. 5 healthy rats were used to validate left ventricular mass (LVM) measured by MRI with postmortem values. 5 sham and 7 infarcted rats were scanned at 2 and 4 weeks after surgery to allow for functional and structural analysis of the heart. Measurements included ejection fraction (EF), end-diastolic volume (EDV), end-systolic volume (ESV), and LVM. Changes in different regions of the heart were quantified using wall thickness analyses. Results. LVM validation in healthy rats demonstrated high correlation between MR and postmortem values. Functional assessment at 4 weeks after MI revealed considerable reduction in EF, increases in ESV, EDV, and LVM, and contractile dysfunction in infarcted and noninfarcted regions. Conclusion. Clinical 3T MRI with a small animal coil and GE sequence generated images in a rat heart with adequate signal-to-noise ratio (SNR) for successful semiautomatic segmentation to accurately and rapidly evaluate long-term LVR after MI.
Collapse
|
28
|
Campbell-Washburn AE, Price AN, Wells JA, Thomas DL, Ordidge RJ, Lythgoe MF. Cardiac arterial spin labeling using segmented ECG-gated Look-Locker FAIR: Variability and repeatability in preclinical studies. Magn Reson Med 2012; 69:238-47. [DOI: 10.1002/mrm.24243] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 01/16/2012] [Accepted: 02/13/2012] [Indexed: 11/06/2022]
|
29
|
Price AN, Cheung KK, Lim SY, Yellon DM, Hausenloy DJ, Lythgoe MF. Rapid assessment of myocardial infarct size in rodents using multi-slice inversion recovery late gadolinium enhancement CMR at 9.4T. J Cardiovasc Magn Reson 2011; 13:44. [PMID: 21892953 PMCID: PMC3182945 DOI: 10.1186/1532-429x-13-44] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 09/05/2011] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Myocardial infarction (MI) can be readily assessed using late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR). Inversion recovery (IR) sequences provide the highest contrast between enhanced infarct areas and healthy myocardium. Applying such methods to small animals is challenging due to rapid respiratory and cardiac rates relative to T1 relaxation. METHODS Here we present a fast and robust protocol for assessing LGE in small animals using a multi-slice IR gradient echo sequence for efficient assessment of LGE. An additional Look-Locker sequence was used to assess the optimum inversion point on an individual basis and to determine most appropriate gating points for both rat and mouse. The technique was applied to two preclinical scenarios: i) an acute (2 hour) reperfused model of MI in rats and ii) mice 2 days following non-reperfused MI. RESULTS LGE images from all animals revealed clear areas of enhancement allowing for easy volume segmentation. Typical inversion times required to null healthy myocardium in rats were between 300-450 ms equivalent to 2-3 R-waves and ~330 ms in mice, typically 3 R-waves following inversion. Data from rats was also validated against triphenyltetrazolium chloride staining and revealed close agreement for infarct size. CONCLUSION The LGE protocol presented provides a reliable method for acquiring images of high contrast and quality without excessive scan times, enabling higher throughput in experimental studies requiring reliable assessment of MI.
Collapse
Affiliation(s)
- Anthony N Price
- UCL Centre for Advanced Biomedical Imaging, Department of Medicine and UCL Institute of Child Health, University College London, UK
| | - King K Cheung
- UCL Centre for Advanced Biomedical Imaging, Department of Medicine and UCL Institute of Child Health, University College London, UK
| | - Shiang Y Lim
- The Hatter Cardiovascular Institute, University College London Hospital and Medical School, London, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London Hospital and Medical School, London, UK
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London Hospital and Medical School, London, UK
| | - Mark F Lythgoe
- UCL Centre for Advanced Biomedical Imaging, Department of Medicine and UCL Institute of Child Health, University College London, UK
| |
Collapse
|