1
|
Singh AA, Kharwar A, Dandekar MP. A Review on Preclinical Models of Ischemic Stroke: Insights Into the Pathomechanisms and New Treatment Strategies. Curr Neuropharmacol 2022; 20:1667-1686. [PMID: 34493185 PMCID: PMC9881062 DOI: 10.2174/1570159x19666210907092928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/21/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Stroke is a serious neurovascular problem and the leading cause of disability and death worldwide. The disrupted demand to supply ratio of blood and glucose during cerebral ischemia develops hypoxic shock, and subsequently necrotic neuronal death in the affected regions. Multiple causal factors like age, sex, race, genetics, diet, and lifestyle play an important role in the occurrence as well as progression of post-stroke deleterious events. These biological and environmental factors may be contributed to vasculature variable architecture and abnormal neuronal activity. Since recombinant tissue plasminogen activator is the only clinically effective clot bursting drug, there is a huge unmet medical need for newer therapies for the treatment of stroke. Innumerous therapeutic interventions have shown promise in the experimental models of stroke but failed to translate it into clinical counterparts. METHODS Original publications regarding pathophysiology, preclinical experimental models, new targets and therapies targeting ischemic stroke have been reviewed since the 1970s. RESULTS We highlighted the critical underlying pathophysiological mechanisms of cerebral stroke and preclinical stroke models. We discuss the strengths and caveats of widely used ischemic stroke models, and commented on the potential translational problems. We also describe the new emerging treatment strategies, including stem cell therapy, neurotrophic factors and gut microbiome-based therapy for the management of post-stroke consequences. CONCLUSION There are still many inter-linked pathophysiological alterations with regards to stroke, animal models need not necessarily mimic the same conditions of stroke pathology and newer targets and therapies are the need of the hour in stroke research.
Collapse
Affiliation(s)
- Aditya A. Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, TS 500037, India
| | - Akash Kharwar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, TS 500037, India
| | - Manoj P. Dandekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, TS 500037, India,Address correspondence to this author at the Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, TS 500037, India; Tel: +91-40-23074750; E-mail:
| |
Collapse
|
2
|
Alawneh KZ, Raffee LA, Alshehabat MAM, Haddad H, Jaradat SA. Characterizing and Profiling microRNAs in Dogs Undergoing Induced Ischemic Brain Stroke After Middle Cerebral Artery Occlusion Under Fluoroscopic Guidance. Vasc Health Risk Manag 2021; 17:543-550. [PMID: 34526772 PMCID: PMC8435620 DOI: 10.2147/vhrm.s317861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/27/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Ischemic stroke of the brain is still considered one of the most common causes of disability and death in developed and developing countries in human beings despite advances in medicine and technology. This study was conducted to characterize and profile tens of induced biomarkers (microRNAs) after experimentally inducing regional ischemic stroke of the brain by occluding the middle cerebral artery under fluoroscopic guidance using an autologous blood clot. Patient and Methods A total of six healthy dogs were recruited for this study. The microRNAs were profiled in the blood and urine before and after occluding the middle cerebral artery using genetic techniques. Results The very highly expressed genes were comprised within cluster A, followed by cluster D in both 24 and 48-hour brain samples. Clusters B and C revealed down-regulated genes, while miRNAs remained up-regulated in the 24-hour samples merely in cluster F. Upregulated genes at 48 hours of reperfusion were included in cluster E. On the other hand, changes were observed after a day on the cluster G genes. Exclusive upregulation was notified after 2 days due to the changes in mIR-138. The normalized gene expression in the test sample is witnessed through Fold-Change, which divides the control sample’s normalized gene expression. Moreover, fold-change has emerged as a significant approach for representing fold-regulation. Conclusion The microRNAs expression in blood and urine may have a potential role in the diagnosis, prognosis, and assessment of therapy associated with cerebral artery occlusion under fluoroscopic guidance.
Collapse
Affiliation(s)
- Khaled Z Alawneh
- Department of Diagnostic Radiology and Nuclear Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Liqaa A Raffee
- Department of Accident and Emergency Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Musa Ahmed Mohammed Alshehabat
- Department of Clinical Veterinary Medical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Hazem Haddad
- Haya Biotechnology Center, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Saied A Jaradat
- Princess Haya Biotechnology Center, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
3
|
de Oliveira JL, Ávila M, Martins TC, Alvarez-Silva M, Winkelmann-Duarte EC, Salgado ASI, Cidral-Filho FJ, Reed WR, Martins DF. Medium- and long-term functional behavior evaluations in an experimental focal ischemic stroke mouse model. Cogn Neurodyn 2020; 14:473-481. [PMID: 32655711 DOI: 10.1007/s11571-020-09584-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 02/25/2020] [Accepted: 03/11/2020] [Indexed: 12/16/2022] Open
Abstract
Cerebrovascular accident (CVA) is one of the leading causes of death and disability worldwide, as well as a major financial burden for health care systems. CVA rodent models provide experimental support to determine possible in vivo therapies to reduce brain injury and consequent sequelae. This study analyzed nociceptive, motor, cognitive and mood functions in mice submitted to distal middle cerebral artery (DMCA) occlusion. Male C57BL mice (n = 8) were randomly allocated to control or DMCA groups. Motor function was evaluated with the tests: grip force, rotarod and open field; and nociceptive threshold with von Frey and hot plate assessments. Cognitive function was evaluated with the inhibitory avoidance test, and mood with the tail suspension test. Evaluations were conducted on the seventh- and twenty-eighth-day post DMCA occlusion to assess medium- and long-term effects of the injury, respectively. DMCA occlusion significantly decreases muscle strength and spontaneous locomotion (p < 0.05) both medium- and long term; as well as increases immobility in the tail-suspension test (p < 0.05), suggesting a depressive-type behavior. However, DMCA occlusion did not affect nociceptive threshold nor cognitive functions (p > 0.05). These results suggest that, medium- and long-term effects of DMCA occlusion include motor function impairments, but no sensory dysfunction. Additionally, the injury affected mood but did not hinder cognitive function.
Collapse
Affiliation(s)
- Juçara Loli de Oliveira
- Department of Morphological Sciences, Federal University of Santa Catarina, Santa Catarina, Brazil
| | - Marina Ávila
- Experimental Neuroscience Laboratory (LaNEx) and Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Palhoça, 25 Pedra Branca Avenue, Santa Catarina, Brazil
| | - Thiago Cesar Martins
- Experimental Neuroscience Laboratory (LaNEx) and Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Palhoça, 25 Pedra Branca Avenue, Santa Catarina, Brazil
| | - Marcio Alvarez-Silva
- Stem Cell and Bioengineering Laboratory, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Santa Catarina, Brazil
| | | | - Afonso Shiguemi Inoue Salgado
- Experimental Neuroscience Laboratory (LaNEx) and Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Palhoça, 25 Pedra Branca Avenue, Santa Catarina, Brazil.,Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Santa Catarina, Brazil.,Coordinator of Integrative Physical Therapy Residency, Philadelphia University Center, Londrina, PR Brazil
| | - Francisco José Cidral-Filho
- Experimental Neuroscience Laboratory (LaNEx) and Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Palhoça, 25 Pedra Branca Avenue, Santa Catarina, Brazil.,Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Santa Catarina, Brazil
| | - William R Reed
- Department of Physical Therapy, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL USA
| | - Daniel F Martins
- Experimental Neuroscience Laboratory (LaNEx) and Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Palhoça, 25 Pedra Branca Avenue, Santa Catarina, Brazil.,Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Santa Catarina, Brazil
| |
Collapse
|
4
|
Manolescu BN, Oprea E, Mititelu M, Ruta LL, Farcasanu IC. Dietary Anthocyanins and Stroke: A Review of Pharmacokinetic and Pharmacodynamic Studies. Nutrients 2019; 11:nu11071479. [PMID: 31261786 PMCID: PMC6682894 DOI: 10.3390/nu11071479] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/22/2019] [Accepted: 06/22/2019] [Indexed: 12/15/2022] Open
Abstract
Cerebrovascular accidents are currently the second major cause of death and the third leading cause of disability in the world, according to the World Health Organization (WHO), which has provided protocols for stroke prevention. Although there is a multitude of studies on the health benefits associated with anthocyanin (ACN) consumption, there is no a rigorous systematization of the data linking dietary ACN with stroke prevention. This review is intended to present data from epidemiological, in vitro, in vivo, and clinical studies dealing with the stroke related to ACN-rich diets or ACN supplements, along with possible mechanisms of action revealed by pharmacokinetic studies, including ACN passage through the blood-brain barrier (BBB).
Collapse
Affiliation(s)
- Bogdan Nicolae Manolescu
- Department of Organic Chemistry "C.D. Nenitescu", Faculty of Applied Chemistry and Science of Materials, Polytechnic University of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania.
| | - Eliza Oprea
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Street, 050663 Bucharest, Romania.
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Hygiene, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 6 Traian Vuia, 020956 Bucharest, Romania.
| | - Lavinia L Ruta
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Street, 050663 Bucharest, Romania.
| | - Ileana C Farcasanu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Street, 050663 Bucharest, Romania.
| |
Collapse
|
5
|
Petrovic-Djergovic D, Goonewardena SN, Pinsky DJ. Inflammatory Disequilibrium in Stroke. Circ Res 2017; 119:142-58. [PMID: 27340273 DOI: 10.1161/circresaha.116.308022] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 05/25/2016] [Indexed: 01/01/2023]
Abstract
Over the past several decades, there have been substantial advances in our knowledge of the pathophysiology of stroke. Understanding the benefits of timely reperfusion has led to the development of thrombolytic therapy as the cornerstone of current management of ischemic stroke, but there remains much to be learned about mechanisms of neuronal ischemic and reperfusion injury and associated inflammation. For ischemic stroke, novel therapeutic targets have continued to remain elusive. When considering modern molecular biological techniques, advanced translational stroke models, and clinical studies, a consistent pattern emerges, implicating perturbation of the immune equilibrium by stroke in both central nervous system injury and repair responses. Stroke triggers activation of the neuroimmune axis, comprised of multiple cellular constituents of the immune system resident within the parenchyma of the brain, leptomeninges, and vascular beds, as well as through secretion of biological response modifiers and recruitment of immune effector cells. This neuroimmune activation can directly impact the initiation, propagation, and resolution phases of ischemic brain injury. To leverage a potential opportunity to modulate local and systemic immune responses to favorably affect the stroke disease curve, it is necessary to expand our mechanistic understanding of the neuroimmune axis in ischemic stroke. This review explores the frontiers of current knowledge of innate and adaptive immune responses in the brain and how these responses together shape the course of ischemic stroke.
Collapse
Affiliation(s)
- Danica Petrovic-Djergovic
- From the Departments of Internal Medicine (D.P.-D., S.N.G., D.J.P.) and Molecular and Integrative Physiology (D.J.P.), University of Michigan, Ann Arbor
| | - Sascha N Goonewardena
- From the Departments of Internal Medicine (D.P.-D., S.N.G., D.J.P.) and Molecular and Integrative Physiology (D.J.P.), University of Michigan, Ann Arbor
| | - David J Pinsky
- From the Departments of Internal Medicine (D.P.-D., S.N.G., D.J.P.) and Molecular and Integrative Physiology (D.J.P.), University of Michigan, Ann Arbor.
| |
Collapse
|
6
|
Abstract
Rodents have been widely used in the production of cerebral ischemia models. However, successful therapies have been proven on experimental rodent stroke model, and they have often failed to be effective when tested clinically. Therefore, nonhuman primates were recommended as the ideal alternatives, owing to their similarities with the human cerebrovascular system, brain metabolism, grey to white matter ratio and even their rich behavioral repertoire. The present review is a thorough summary of ten methods that establish nonhuman primate models of focal cerebral ischemia; electrocoagulation, endothelin-1-induced occlusion, microvascular clip occlusion, autologous blood clot embolization, balloon inflation, microcatheter embolization, coil embolization, surgical suture embolization, suture, and photochemical induction methods. This review addresses the advantages and disadvantages of each method, as well as precautions for each model, compared nonhuman primates with rodents, different species of nonhuman primates and different modeling methods. Finally it discusses various factors that need to be considered when modelling and the method of evaluation after modelling. These are critical for understanding their respective strengths and weaknesses and underlie the selection of the optimum model.
Collapse
Affiliation(s)
- Jingjing Fan
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Province Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yi Li
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Province Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xinyu Fu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Province Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Lijuan Li
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Province Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiaoting Hao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shasha Li
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Province Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martions Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Di Lazzaro V, Pellegrino G, Di Pino G, Ranieri F, Lotti F, Florio L, Capone F. Human Motor Cortex Functional Changes in Acute Stroke: Gender Effects. Front Neurosci 2016; 10:10. [PMID: 26858590 PMCID: PMC4731507 DOI: 10.3389/fnins.2016.00010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/11/2016] [Indexed: 02/02/2023] Open
Abstract
The acute phase of stroke is accompanied by functional changes in the activity and interplay of both hemispheres. In healthy subjects, gender is known to impact the functional brain organization. We investigated whether gender influences also acute stroke functional changes. In thirty-five ischemic stroke patients, we evaluated the excitability of the affected (AH) and unaffected hemisphere (UH) by measuring resting and active motor threshold (AMT) and motor-evoked potential amplitude under baseline conditions and after intermittent theta burst stimulation (iTBS) of AH. We also computed an index of the excitability balance between the hemispheres, laterality indexes (LI), to evidence hemispheric asymmetry. AMT differed significantly between AH and UH only in the male group (p = 0.004), not in females (p > 0.200), and both LIAMT and LIRMT were significantly higher in males than in females (respectively p = 0.033 and p = 0.042). LTP-like activity induced by iTBS in AH was more frequent in females. Gender influences the functional excitability changes that take place after human stroke and the level of LTP that can be induced by repetitive stimulation. This knowledge is of high value in the attempt of individualizing to different genders any non-invasive stimulation strategy designed to foster stroke recovery.
Collapse
Affiliation(s)
- Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di RomaRome, Italy; Fondazione Alberto Sordi - Research Institute for AgeingRome, Italy
| | - Giovanni Pellegrino
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di RomaRome, Italy; Multimodal Functional Imaging Laboratory, Montreal Neurological Institute - McGill UniversityMontreal, QC, Canada
| | - Giovanni Di Pino
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di RomaRome, Italy; Fondazione Alberto Sordi - Research Institute for AgeingRome, Italy
| | - Federico Ranieri
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di RomaRome, Italy; Fondazione Alberto Sordi - Research Institute for AgeingRome, Italy
| | - Fiorenza Lotti
- Orthopaedic and Trauma Surgery Unit, Università Campus Bio-Medico di Roma Rome, Italy
| | - Lucia Florio
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di RomaRome, Italy; Fondazione Alberto Sordi - Research Institute for AgeingRome, Italy
| | - Fioravante Capone
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di RomaRome, Italy; Fondazione Alberto Sordi - Research Institute for AgeingRome, Italy
| |
Collapse
|
8
|
|
9
|
Popa-Wagner A, Buga AM, Doeppner TR, Hermann DM. Stem cell therapies in preclinical models of stroke associated with aging. Front Cell Neurosci 2014; 8:347. [PMID: 25404892 PMCID: PMC4217499 DOI: 10.3389/fncel.2014.00347] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/06/2014] [Indexed: 01/01/2023] Open
Abstract
Stroke has limited treatment options, demanding a vigorous search for new therapeutic strategies. Initial enthusiasm to stimulate restorative processes in the ischemic brain by means of cell-based therapies has meanwhile converted into a more balanced view recognizing impediments related to unfavorable environments that are in part related to aging processes. Since stroke afflicts mostly the elderly, it is highly desirable and clinically important to test the efficacy of cell therapies in aged brain microenvironments. Although widely believed to be refractory to regeneration, recent studies using both neural precursor cells and bone marrow-derived mesenchymal stem cells for stroke therapy suggest that the aged rat brain is not refractory to cell-based therapy, and that it also supports plasticity and remodeling. Yet, important differences exist in the aged compared with young brain, i.e., the accelerated progression of ischemic injury to brain infarction, the reduced rate of endogenous neurogenesis and the delayed initiation of neurological recovery. Pitfalls in the development of cell-based therapies may also be related to age-associated comorbidities, e.g., diabetes or hyperlipidemia, which may result in maladaptive or compromised brain remodeling, respectively. These age-related aspects should be carefully considered in the clinical translation of restorative therapies.
Collapse
Affiliation(s)
- Aurel Popa-Wagner
- Department of Psychiatry, Aging and Brain Disorders, University of Medicine Rostock Rostock, Germany ; Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova Craiova, Romania
| | - Ana-Maria Buga
- Department of Psychiatry, Aging and Brain Disorders, University of Medicine Rostock Rostock, Germany ; Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova Craiova, Romania
| | | | - Dirk M Hermann
- Department of Neurology, University Hospital Essen Essen, Germany
| |
Collapse
|
10
|
Jeon JH, Jung HW, Jang HM, Moon JH, Park KT, Lee HC, Lim HY, Sur JH, Kang BT, Ha J, Jung DI. Canine model of ischemic stroke with permanent middle cerebral artery occlusion: clinical features, magnetic resonance imaging, histopathology, and immunohistochemistry. J Vet Sci 2014; 16:75-85. [PMID: 25269716 PMCID: PMC4367152 DOI: 10.4142/jvs.2015.16.1.75] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 09/26/2014] [Indexed: 01/17/2023] Open
Abstract
The purpose of this study was to identify time-related changes in clinical, MRI, histopathologic, and immunohistochemical findings associated with ischemic stroke in dogs. Additionally, the association of cerebrospinal fluid (CSF) and tissue levels of interleukin (IL)-6 with clinical prognosis was assessed. Ischemic stroke was induced by permanent middle cerebral artery occlusion (MCAO) in nine healthy experimental dogs. The dogs were divided into three groups according to survival time and duration of the experimental period: group A (survived only 1 day), group B (1-week experimental period), and group C (2-week experimental period). Neurologic status was evaluated daily. Magnetic resonance imaging (MRI) was performed according to a predetermined schedule. Concentration of IL-6 in CSF was measured serially after ischemic stroke. Postmortem examination was performed for all experimental dogs. During histopathological examination, variable degrees of cavitation and necrosis due to neuronal cytopathic effects, such as pyknotic nuclei and cytoplasmic shrinkage, were observed on the affected side of the cerebral cortex in all dogs. Immunohistochemistry specific for IL-6 showed increased expression in the ischemic lesions. CSF IL-6 concentrations and ischemic lesion volumes 1 day after ischemic stroke were significantly higher in group A compared to groups B and C.
Collapse
Affiliation(s)
- Joon-Hyeok Jeon
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Haast RAM, Gustafson DR, Kiliaan AJ. Sex differences in stroke. J Cereb Blood Flow Metab 2012; 32:2100-7. [PMID: 23032484 PMCID: PMC3519418 DOI: 10.1038/jcbfm.2012.141] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/27/2012] [Accepted: 09/02/2012] [Indexed: 02/08/2023]
Abstract
Sex differences in stroke are observed across epidemiologic studies, pathophysiology, treatments, and outcomes. These sex differences have profound implications for effective prevention and treatment and are the focus of this review. Epidemiologic studies reveal a clear age-by-sex interaction in stroke prevalence, incidence, and mortality. While premenopausal women experience fewer strokes than men of comparable age, stroke rates increase among postmenopausal women compared with age-matched men. This postmenopausal phenomenon, in combination with living longer, are reasons for women being older at stroke onset and suffering more severe strokes. Thus, a primary focus of stroke prevention has been based on sex steroid hormone-dependent mechanisms. Sex hormones affect different (patho)physiologic functions of the cerebral circulation. Clarifying the impact of sex hormones on cerebral vasculature using suitable animal models is essential to elucidate male-female differences in stroke pathophysiology and development of sex-specific treatments. Much remains to be learned about sex differences in stroke as anatomic and genetic factors may also contribute, revealing its multifactorial nature. In addition, the aftermath of stroke appears to be more adverse in women than in men, again based on older age at stroke onset, longer prehospital delays, and potentially, differences in treatment.
Collapse
Affiliation(s)
- Roy A M Haast
- Department of Anatomy, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Deborah R Gustafson
- Section for Psychiatry and Neurochemistry, Neuropsychiatric Epidemiology Unit, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Departments of Neurology and Medicine, State University of New York—Downstate Medical Center, Brooklyn, New York, USA
| | - Amanda J Kiliaan
- Department of Anatomy, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
12
|
Moore TL, Killiany RJ, Pessina MA, Moss MB, Finklestein SP, Rosene DL. Recovery from ischemia in the middle-aged brain: a nonhuman primate model. Neurobiol Aging 2012; 33:619.e9-619.e24. [PMID: 21458887 PMCID: PMC3145025 DOI: 10.1016/j.neurobiolaging.2011.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 01/30/2011] [Accepted: 02/06/2011] [Indexed: 02/08/2023]
Abstract
Studies of recovery from stroke mainly utilize rodent models and focus primarily on young subjects despite the increased prevalence of stroke with age and the fact that recovery of function is more limited in the aged brain. In the present study, a nonhuman primate model of cortical ischemia was developed to allow the comparison of impairments in young and middle-aged monkeys. Animals were pretrained on a fine motor task of the hand and digits and then underwent a surgical procedure to map and lesion the hand-digit representation in the dominant motor cortex. Animals were retested until performance returned to preoperative levels. To assess the recovery of grasp patterns, performance was videotaped and rated using a scale adapted from human occupational therapy. Results demonstrated that the impaired hand recovers to baseline in young animals in 65-80 days and in middle-aged animals in 130-150 days. However, analysis of grasp patterns revealed that neither group recover preoperative finger thumb grasp patterns, rather they develop compensatory movements.
Collapse
Affiliation(s)
- Tara L Moore
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Immunity and inflammation are key elements of the pathobiology of stroke, a devastating illness second only to cardiac ischemia as a cause of death worldwide. While the immune system participates in the brain damage produced by ischemia, the damaged brain, in turn, exerts a powerful immunosuppressive effect that promotes fatal intercurrent infections and threatens the survival of stroke patients. Inflammatory signaling is instrumental in all stages of the ischemic cascade, from the early damaging events triggered by arterial occlusion, to the late regenerative processes underlying post-ischemic tissue repair. Recent developments have revealed that stroke, like multiple sclerosis, engages both innate and adaptive immunity. But, unlike multiple sclerosis, adaptive immunity triggered by newly exposed brain antigens does not have an impact on the acute phase of the damage. Nevertheless, modulation of adaptive immunity exerts a remarkable protective effect on the ischemic brain and offers the prospect of new stroke therapies. However, immunomodulation is not devoid of deleterious side effects, and gaining a better understanding of the reciprocal interaction between the immune system and the ischemic brain is essential to harness the full therapeutic potential of the immunology of stroke.
Collapse
|