1
|
Breivik TJ, Gjermo P, Gundersen Y, Opstad PK, Murison R, Hugoson A, von Hörsten S, Fristad I. Microbiota-immune-brain interactions: A new vision in the understanding of periodontal health and disease. Periodontol 2000 2024; 96:20-41. [PMID: 39233381 PMCID: PMC11579829 DOI: 10.1111/prd.12610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/01/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
This review highlights the significance of interactions between the microbiota, immune system, nervous and hormonal systems, and the brain on periodontal health and disease. Microorganisms in the microbiota, immune cells, and neurons communicate via homeostatic nervous and hormonal systems, regulating vital body functions. By modulating pro-inflammatory and anti-inflammatory adaptive immune responses, these systems control the composition and number of microorganisms in the microbiota. The strength of these brain-controlled responses is genetically determined but is sensitive to early childhood stressors, which can permanently alter their responsiveness via epigenetic mechanisms, and to adult stressors, causing temporary changes. Clinical evidence and research with humans and animal models indicate that factors linked to severe periodontitis enhance the responsiveness of these homeostatic systems, leading to persistent hyperactivation. This weakens the immune defense against invasive symbiotic microorganisms (pathobionts) while strengthening the defense against non-invasive symbionts at the gingival margin. The result is an increased gingival tissue load of pathobionts, including Gram-negative bacteria, followed by an excessive innate immune response, which prevents infection but simultaneously destroys gingival and periodontal tissues. Thus, the balance between pro-inflammatory and anti-inflammatory adaptive immunity is crucial in controlling the microbiota, and the responsiveness of brain-controlled homeostatic systems determines periodontal health.
Collapse
Affiliation(s)
- Torbjørn Jarle Breivik
- Department of Periodontology, Faculty of Dentistry, Institute of Clinical OdontologyUniversity of OsloOsloNorway
- Division for ProtectionNorwegian Defence Research EstablishmentKjellerNorway
| | - Per Gjermo
- Department of Periodontology, Faculty of Dentistry, Institute of Clinical OdontologyUniversity of OsloOsloNorway
| | - Yngvar Gundersen
- Division for ProtectionNorwegian Defence Research EstablishmentKjellerNorway
| | - Per Kristian Opstad
- Division for ProtectionNorwegian Defence Research EstablishmentKjellerNorway
| | - Robert Murison
- Department of Biological and Medical Psychology, Faculty of PsychologyUniversity of BergenBergenNorway
| | - Anders Hugoson
- Department of Periodontology, Institute of OdontologyThe Sahlgrenska Academy at University of Gothenburg and School of Health and WelfareGothenburgSweden
| | - Stephan von Hörsten
- Department for Experimental Therapy, University Hospital Erlangen, Preclinical Experimental CenterFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Inge Fristad
- Department of Clinical Dentistry, Faculty of MedicineUniversity of BergenBergenNorway
| |
Collapse
|
2
|
Wang S, Ko CC, Chung MK. Nociceptor mechanisms underlying pain and bone remodeling via orthodontic forces: toward no pain, big gain. FRONTIERS IN PAIN RESEARCH 2024; 5:1365194. [PMID: 38455874 PMCID: PMC10917994 DOI: 10.3389/fpain.2024.1365194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Orthodontic forces are strongly associated with pain, the primary complaint among patients wearing orthodontic braces. Compared to other side effects of orthodontic treatment, orthodontic pain is often overlooked, with limited clinical management. Orthodontic forces lead to inflammatory responses in the periodontium, which triggers bone remodeling and eventually induces tooth movement. Mechanical forces and subsequent inflammation in the periodontium activate and sensitize periodontal nociceptors and produce orthodontic pain. Nociceptive afferents expressing transient receptor potential vanilloid subtype 1 (TRPV1) play central roles in transducing nociceptive signals, leading to transcriptional changes in the trigeminal ganglia. Nociceptive molecules, such as TRPV1, transient receptor potential ankyrin subtype 1, acid-sensing ion channel 3, and the P2X3 receptor, are believed to mediate orthodontic pain. Neuropeptides such as calcitonin gene-related peptides and substance P can also regulate orthodontic pain. While periodontal nociceptors transmit nociceptive signals to the brain, they are also known to modulate alveolar bone remodeling in periodontitis. Therefore, periodontal nociceptors and nociceptive molecules may contribute to the modulation of orthodontic tooth movement, which currently remains undetermined. Future studies are needed to better understand the fundamental mechanisms underlying neuroskeletal interactions in orthodontics to improve orthodontic treatment by developing novel methods to reduce pain and accelerate orthodontic tooth movement-thereby achieving "big gains with no pain" in clinical orthodontics.
Collapse
Affiliation(s)
- Sheng Wang
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Ching-Chang Ko
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Man-Kyo Chung
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland Baltimore, Baltimore, MD, United States
- Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, United States
| |
Collapse
|
3
|
Szallasi A. Resiniferatoxin: Nature's Precision Medicine to Silence TRPV1-Positive Afferents. Int J Mol Sci 2023; 24:15042. [PMID: 37894723 PMCID: PMC10606200 DOI: 10.3390/ijms242015042] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/27/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Resiniferatoxin (RTX) is an ultrapotent capsaicin analog with a unique spectrum of pharmacological actions. The therapeutic window of RTX is broad, allowing for the full desensitization of pain perception and neurogenic inflammation without causing unacceptable side effects. Intravesical RTX was shown to restore continence in a subset of patients with idiopathic and neurogenic detrusor overactivity. RTX can also ablate sensory neurons as a "molecular scalpel" to achieve permanent analgesia. This targeted (intrathecal or epidural) RTX therapy holds great promise in cancer pain management. Intra-articular RTX is undergoing clinical trials to treat moderate-to-severe knee pain in patients with osteoarthritis. Similar targeted approaches may be useful in the management of post-operative pain or pain associated with severe burn injuries. The current state of this field is reviewed, from preclinical studies through veterinary medicine to clinical trials.
Collapse
Affiliation(s)
- Arpad Szallasi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1083 Budapest, Hungary
| |
Collapse
|
4
|
Psychological stress: neuroimmune roles in periodontal disease. Odontology 2022:10.1007/s10266-022-00768-8. [DOI: 10.1007/s10266-022-00768-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/12/2022] [Indexed: 11/29/2022]
|
5
|
Wang S, Nie X, Siddiqui Y, Wang X, Arora V, Fan X, Thumbigere-Math V, Chung M. Nociceptor Neurons Magnify Host Responses to Aggravate Periodontitis. J Dent Res 2022; 101:812-820. [PMID: 35086367 PMCID: PMC9210118 DOI: 10.1177/00220345211069956] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Periodontitis is a highly prevalent chronic inflammatory disease that progressively destroys the structures supporting teeth, leading to tooth loss. Periodontal tissue is innervated by abundant pain-sensing primary afferents expressing neuropeptides and transient receptor potential vanilloid 1 (TRPV1). However, the roles of nociceptive nerves in periodontitis and bone destruction are controversial. The placement of ligature around the maxillary second molar or the oral inoculation of pathogenic bacteria induced alveolar bone destruction in mice. Chemical ablation of nociceptive neurons in the trigeminal ganglia achieved by intraganglionic injection of resiniferatoxin decreased bone loss in mouse models of experimental periodontitis. Consistently, ablation of nociceptive neurons decreased the number of osteoclasts in alveolar bone under periodontitis. The roles of nociceptors were also determined by the functional inhibition of TRPV1-expressing trigeminal afferents using an inhibitory designer receptor exclusively activated by designer drugs (DREADD) receptor. Noninvasive chemogenetic functional silencing of TRPV1-expressing trigeminal afferents not only decreased induction but also reduced the progression of bone loss in periodontitis. The infiltration of leukocytes and neutrophils to the periodontium increased at the site of ligature, which was accompanied by increased amount of proinflammatory cytokines, such as receptor activator of nuclear factor κΒ ligand, tumor necrosis factor, and interleukin 1β. The extents of increase in immune cell infiltration and cytokines were significantly lower in mice with nociceptor ablation. In contrast, the ablation of nociceptors did not alter the periodontal microbiome under the conditions of control and periodontitis. Altogether, these results indicate that TRPV1-expressing afferents increase bone destruction in periodontitis by promoting hyperactive host responses in the periodontium. We suggest that specific targeting of neuroimmune and neuroskeletal regulation can offer promising therapeutic targets for periodontitis supplementing conventional treatments.
Collapse
Affiliation(s)
- S. Wang
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Program in Neuroscience, Center to Advance Chronic Pain Research, Baltimore, MD, USA
| | - X. Nie
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Program in Neuroscience, Center to Advance Chronic Pain Research, Baltimore, MD, USA
| | - Y. Siddiqui
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Program in Neuroscience, Center to Advance Chronic Pain Research, Baltimore, MD, USA
| | - X. Wang
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - V. Arora
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Program in Neuroscience, Center to Advance Chronic Pain Research, Baltimore, MD, USA
| | - X. Fan
- Department of Microbiology and Immunology, Flow Cytometry Shared Service, University of Maryland School of Medicine, Baltimore, MD, USA
| | - V. Thumbigere-Math
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - M.K. Chung
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Program in Neuroscience, Center to Advance Chronic Pain Research, Baltimore, MD, USA
| |
Collapse
|
6
|
Chang CH, Chang YS, Hsieh YL. Transient receptor potential vanilloid subtype 1 depletion mediates mechanical allodynia through cellular signal alterations in small-fiber neuropathy. Pain Rep 2021; 6:e922. [PMID: 34585035 PMCID: PMC8462592 DOI: 10.1097/pr9.0000000000000922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/22/2021] [Accepted: 02/22/2021] [Indexed: 12/27/2022] Open
Abstract
Transient receptor potential vanilloid subtype 1 (TRPV1) is a polymodal nociceptor that monitors noxious thermal sensations. Few studies have addressed the role of TRPV1 in mechanical allodynia in small-fiber neuropathy (SFN) caused by sensory nerve damage. Accordingly, this article reviews the putative mechanisms of TRPV1 depletion that mediates mechanical allodynia in SFN. The intraepidermal nerve fibers (IENFs) degeneration and sensory neuronal injury are the primary characteristics of SFN. Intraepidermal nerve fibers are mainly C-polymodal nociceptors and Aδ-fibers, which mediated allodynic pain after neuronal sensitization. TRPV1 depletion by highly potent neurotoxins induces the upregulation of activating transcription factor 3 and IENFs degeneration which mimics SFN. TRPV1 is predominately expressed by the peptidergic than nonpeptidergic nociceptors, and these neurochemical discrepancies provided the basis of the distinct pathways of thermal analgesia and mechanical allodynia. The depletion of peptidergic nociceptors and their IENFs cause thermal analgesia and sensitized nonpeptidergic nociceptors respond to mechanical allodynia. These distinct pathways of noxious stimuli suggested determined by the neurochemical-dependent neurotrophin cognate receptors such as TrkA and Ret receptors. The neurogenic inflammation after TRPV1 depletion also sensitized Ret receptors which results in mechanical allodynia. The activation of spinal TRPV1(+) neurons may contribute to mechanical allodynia. Also, an imbalance in adenosinergic analgesic signaling in sensory neurons such as the downregulation of prostatic acid phosphatase and adenosine A1 receptors, which colocalized with TRPV1 as a membrane microdomain also correlated with the development of mechanical allodynia. Collectively, TRPV1 depletion-induced mechanical allodynia involves a complicated cascade of cellular signaling alterations.
Collapse
Affiliation(s)
- Chin-Hong Chang
- Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Ying-Shuang Chang
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Lin Hsieh
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
7
|
Aghazadeh Tabrizi M, Baraldi PG, Baraldi S, Gessi S, Merighi S, Borea PA. Medicinal Chemistry, Pharmacology, and Clinical Implications of TRPV1 Receptor Antagonists. Med Res Rev 2016; 37:936-983. [PMID: 27976413 DOI: 10.1002/med.21427] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/24/2016] [Accepted: 11/01/2016] [Indexed: 12/28/2022]
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is an ion channel expressed on sensory neurons triggering an influx of cations. TRPV1 receptors function as homotetramers responsive to heat, proinflammatory substances, lipoxygenase products, resiniferatoxin, endocannabinoids, protons, and peptide toxins. Its phosphorylation increases sensitivity to both chemical and thermal stimuli, while desensitization involves a calcium-dependent mechanism resulting in receptor dephosphorylation. TRPV1 functions as a sensor of noxious stimuli and may represent a target to avoid pain and injury. TRPV1 activation has been associated to chronic inflammatory pain and peripheral neuropathy. Its expression is also detected in nonneuronal areas such as bladder, lungs, and cochlea where TRPV1 activation is responsible for pathology development of cystitis, asthma, and hearing loss. This review offers a comprehensive overview about TRPV1 receptor in the pathophysiology of chronic pain, epilepsy, cough, bladder disorders, diabetes, obesity, and hearing loss, highlighting how drug development targeting this channel could have a clinical therapeutic potential. Furthermore, it summarizes the advances of medicinal chemistry research leading to the identification of highly selective TRPV1 antagonists and their analysis of structure-activity relationships (SARs) focusing on new strategies to target this channel.
Collapse
Affiliation(s)
- Mojgan Aghazadeh Tabrizi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Pier Giovanni Baraldi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Stefania Baraldi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Stefania Gessi
- Section of Pharmacology, Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Stefania Merighi
- Section of Pharmacology, Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Pier Andrea Borea
- Section of Pharmacology, Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| |
Collapse
|
8
|
Breivik T, Gundersen Y, Murison R, Turner JD, Muller CP, Gjermo P, Opstad K. Maternal Deprivation of Lewis Rat Pups Increases the Severity of Experi-mental Periodontitis in Adulthood. Open Dent J 2015; 9:65-78. [PMID: 25713634 PMCID: PMC4333617 DOI: 10.2174/1874210601509010065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 11/24/2014] [Accepted: 12/11/2014] [Indexed: 11/30/2022] Open
Abstract
Background and Objective: Early life adverse events may influence susceptibility/resistance to chronic inflammatory diseases later in life by permanently dysregulating brain-controlled immune-regulatory systems. We have investigated the impact of infant-mother separation during early postnatal life on the severity of experimental periodontitis, as well as systemic stress and immune responses, in adulthood. Material and Methods: Pups of periodontitis resistant Lewis rats were separated from their mothers for 3 h daily during postnatal days 2-14 (termed maternal deprivation; MD), separated for 15 min daily during the same time period (termed handling; HD), or left undisturbed. As adults, their behaviour was tested in a novel stressful situation, and ligature-induced periodontitis applied for 21 days. Two h before sacrifice all rats were exposed to a gram-negative bacterial lipopolysaccharide (LPS) challenge to induce a robust immune and stress response. Results: Compared to undisturbed controls, MD rats developed significantly more periodontal bone loss as adults, whereas HD rats showed a tendency to less disease. MD and HD rats exhibited depression-like behaviour in a novel open field test, while MD rats showed higher glucocorticoid receptor (Gr) expression in the hippocampus, and HD rats had altered methylation of genes involved in the expression of hippocampal Gr. LPS provoked a significantly lower increase in circulating levels of the cytokine TGF-1β in MD and HD rats, but there were no significant differences in levels of the stress hormone corticosterone. Conclusion: Stressful environmental exposures in very early life may alter immune responses in a manner that influences susceptibility/resistance to periodontitis.
Collapse
Affiliation(s)
- Torbjørn Breivik
- Department of Periodontology, Faculty of Dentistry, University of Oslo, Norway ; Norwegian Defence Research Establishment, Division for Protection, Kjeller, Norway
| | - Yngvar Gundersen
- Norwegian Defence Research Establishment, Division for Protection, Kjeller, Norway
| | - Robert Murison
- Department of Biology and Medical Psychology, Faculty of Psychology, University of Bergen, Norway
| | - Jonathan D Turner
- Institute of Immunology, CRP- Santé/Laboratoire National de Sante, 20A Rue Auguste Lumière, L-1950, Luxembourg
| | - Claude P Muller
- Institute of Immunology, CRP- Santé/Laboratoire National de Sante, 20A Rue Auguste Lumière, L-1950, Luxembourg
| | - Per Gjermo
- Department of Periodontology, Faculty of Dentistry, University of Oslo, Norway
| | - Kristian Opstad
- Norwegian Defence Research Establishment, Division for Protection, Kjeller, Norway
| |
Collapse
|
9
|
Semenoff-Segundo A, Borges ÁH, Bandeca MC, Porto AN, Pedro FLM, Santos RSSD, Tonetto MR, Semenoff TADV. Effect of chronic stress on ligature-induced periodontitis in inbred and noninbred rats: a radiographic study. J Contemp Dent Pract 2014; 15:556-560. [PMID: 25707825 DOI: 10.5005/jp-journals-10024-1578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
AIM The aim was to compare the effect of chronic stress on ligature-induced periodontitis in inbred and noninbred female rats by means of a radiographic study. MATERIALS AND METHODS Adult Lewis (inbred) and Wistar (non-inbred) rats were used and divided into the following groups: Ligature/Stress Lewis Group (LSLG, n = 8); Ligature/Stress Wistar Group (LSWG, n = 8); Ligature Lewis Group (LLG, n = 8) and Ligature Wistar Group (LWG, n = 8). The animals were anesthetized and a silk thread was continuously kept around their second upper right molar. Then, groups LSLG and LSWG were subjected to physical stress test (physical restraint for 12 hours). After 15 days of ligature placement, the animals were euthanized. The right hemimaxilla was kept in formalin solution for 48 hours. Radiographs of the hemimaxillae were obtained using the parallelism technique and subsequently submitted to a standardized radiographic processing. The examiner was blinded to the groups and calibrated. The bone height level was measured and the data were subjected to statistical analysis (ANOVA, Tukey, p < 0.05). RESULTS LSWG showed bone destruction significantly higher than that of LSLG (32.1 ± 1.45 mm and 23.6 mm ± 2.13, respectively). Similarly, LWG showed bone destruction significantly higher than that of LLG (28.6 ± 1.18 mm and 25.2 ± 2.76 mm, respectively). CONCLUSION Inbred rats (Lewis) are less susceptible to the effects of chronic stress than are noninbred rats (Wistar) in relation to ligature-induced periodontitis. CLINICAL SIGNIFICANCE Epidemiological studies have shown a relationship between stress and periodontitis. One of the major difficulties of this type of research is the bias of the exact diagnosis of the patient's emotional state. Inbred lines animals have standards-specific neuroendocrine, this allows answers about the susceptibility of periodontal disease, making knowledge applicable in future clinical trials.
Collapse
Affiliation(s)
- Alex Semenoff-Segundo
- Professor, Department of Master Program in Integrated Dentistry Science, University of Cuiabé (UNIC), Cuiabé, Mato Grosso Brazil
| | - Álvaro Henrique Borges
- Professor, Department of Master Program in Integrated Dentistry Science, University of Cuiabé (UNIC), Cuiabé, Mato Grosso Brazil
| | - Matheus Coelho Bandeca
- Professor, Department of Master Program in Dentistry, CEUMA University - UniCEUMA, São Luis, Maranhao, Brazil, e-mail:
| | - Alessandra Nogueira Porto
- Professor, Department of Master Program in Integrated Dentistry Science, University of Cuiabé (UNIC), Cuiabé, Mato Grosso Brazil
| | - Fébio Luis Miranda Pedro
- Professor, Department of Master Program in Integrated Dentistry Science, University of Cuiabé (UNIC), Cuiabé, Mato Grosso Brazil
| | | | - Mateus Rodrigues Tonetto
- Professor, Department of Master Program in Integrated Dentistry Science, University of Cuiabé (UNIC), Cuiabé, Mato Grosso Brazil
| | | |
Collapse
|
10
|
Effects of long-term exposure of 3,4-methylenedioxymethamphetamine (MDMA; "ecstasy") on neuronal transmitter transport, brain immuno-regulatory systems and progression of experimental periodontitis in rats. Neurochem Int 2014; 72:30-6. [PMID: 24726767 DOI: 10.1016/j.neuint.2014.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 03/05/2014] [Accepted: 04/03/2014] [Indexed: 11/23/2022]
Abstract
The present study was designed to investigate the effects of long-term exposure (4 weeks) to the widely used narcotic drug and putative neurotoxicant 3,4-methylenedioxymetamphetamine (MDMA; "ecstasy") on neuronal transmitter transport and progression of experimental periodontitis in male Wistar rats. The rats were exposed to MDMA (10mg/kg/day i.p.) or saline five days a week for four consecutive weeks. Exposure to MDMA induced a significant reduction in the synaptosomal reuptake of serotonin, while the uptake of dopamine was significantly increased 24h after the last injection of MDMA. In contrast, the synaptosomal uptake of noradrenaline and the vesicular uptake through the vesicular monoamine transporter 2 were not affected. In the experiments of periodontitis development, ligature-induced periodontitis was induced three days prior to MDMA administration. Compared to controls, MDMA-treated rats developed significantly more periodontitis. In conclusion, our results show that long-term exposure to MDMA affects the serotonergic and dopaminergic transport systems in the rat brain and increased the susceptibility to the psychosomatic ailment periodontitis following disturbances of brain immune-regulatory systems. These results are interesting with respect to recent research showing that changes in neurotransmitter signalling may alter the reactivity of brain-controlled immunoregulatory systems controlling pathogenic microorganisms colonizing mucosal surfaces.
Collapse
|
11
|
Breivik T, Gundersen Y, Gjermo P, Opstad PK. Chronic treatment with the glucocorticoid receptor antagonist RU486 inhibits diabetes-induced enhancement of experimental periodontitis. J Periodontal Res 2013; 49:36-44. [PMID: 23586673 DOI: 10.1111/jre.12076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2013] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND OBJECTIVE Chronic hypothalamic-pituitary-adrenal (HPA) axis hyperactivity and excessive glucocorticoid hormone release have been associated with diabetes, altered immune responses and increased susceptibility to periodontitis. In the present study we tested the impact of streptozotocin (STZ)-induced diabetes on ligature-induced periodontitis and the effect of subsequent treatment with the glucocorticoid receptor (GR) antagonist, RU486. MATERIAL AND METHODS A single dose of STZ [45 mg/kg, intraperitoneally (i.p.)] or vehicle was given 10 d before induction of ligature-induced periodontitis and implantation subcutaneously of a drug pellet containing the GR antagonist, RU486, or a placebo pellet. Periodontitis was assessed when the ligatures had been in place for 21 d. Two hours before decapitation all rats received gram-negative bacterial lipopolysaccharide (LPS) (150 μg/kg, i.p.) to induce a robust immune and stress response. RESULTS Compared with control rats, STZ-treated rats developed significantly more periodontal bone loss, and RU486 treatment of STZ -treated rats significantly inhibited this effect. STZ-treated rats also showed significantly higher levels of the HPA axis-derived hormone, corticosterone, as well as of the proinflammatory cytokine, tumor necrosis factor-alpha (TNF-α), but lower levels of the anti-inflammatory cytokines interleukin-10 (IL-10) and transforming growth factor-1beta (TGF-1β) after LPS stimulation. GR blockade had no statistically significant effects on these measurements in diabetic rats, but tended to enhance the levels of TNF-α and TGF-1β, and reduce the levels of IL-10 and blood glucose. CONCLUSION In diabetic subjects, excessive GR activation as a result of chronic high levels of glucocorticoid hormones may alter immune-system responses in a manner that may increase the susceptibility to periodontitis.
Collapse
Affiliation(s)
- T Breivik
- Faculty of Dentistry, Department of Periodontology, University of Oslo, Oslo, Norway; Division of Protection, Norwegian Defence Research Establishment, Kjeller, Norway
| | | | | | | |
Collapse
|
12
|
Breivik T, Gundersen Y, Gjermo P, Taylor SM, Woodruff TM, Opstad PK. Oral treatment with complement factor C5a receptor (CD88) antagonists inhibits experimental periodontitis in rats. J Periodontal Res 2011; 46:643-7. [PMID: 21722134 DOI: 10.1111/j.1600-0765.2011.01383.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND OBJECTIVE The complement activation product 5a (C5a) is a potent mediator of the innate immune response to infection, and may thus also importantly determine the development of periodontitis. The present study was designed to explore the effect of several novel, potent and orally active C5a receptor (CD88) antagonists (C5aRAs) on the development of ligature-induced periodontitis in an animal model. MATERIAL AND METHODS Three different cyclic peptide C5aRAs, termed PMX205, PMX218 and PMX273, were investigated. Four groups of Wistar rats (n = 10 in each group) were used. Starting 3 d before induction of experimental periodontitis, rats either received one of the C5aRas (1-2 mg/kg) in the drinking water or received drinking water only. Periodontitis was assessed when the ligatures had been in place for 14 d. RESULTS Compared with control rats, PMX205- and PMX218-treated rats had significantly reduced periodontal bone loss. CONCLUSION The findings suggest that complement activation, and particularly C5a generation, may play a significant role in the development and progression of periodontitis. Blockade of the major C5a receptor, CD88, with specific inhibitors such as PMX205, may offer novel treatment options for periodontitis.
Collapse
Affiliation(s)
- T Breivik
- Department of Periodontology, Faculty of Dentistry, University of Oslo, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|