1
|
Zheng HH, Wang LQ, Hou CY, Song YP, Liu S, Zheng LL, Ma SJ, Chen HY. Construction and characterization of a gE/gI/TK-gene-deleted recombinant pseudorabies virus variant expressing the GP5 of the highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) and NADC30-like PRRSV. Microb Pathog 2025; 203:107522. [PMID: 40180235 DOI: 10.1016/j.micpath.2025.107522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/21/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) and pseudorabies (PR) are still the major problems of the worldwide pork industry. Previous studies showed that PR virus (PRV) and PRRS virus (PRRSV) commercial vaccines available in China could not provide complete protection against PRV variants and currently prevalent PRRSV strains. In the present study, a recombinant pseudorabies virus rPRV-GP5/HP-GP5/NA expressing the GP5 of the highly pathogenic PRRSV (HP-PRRSV) and NADC30-like PRRSV was constructed by transfecting the transfer plasmid pG-GP5/HP-GP5/NA-EGFP into ST cells inoculated with gE/gI/TK-gene-deleted rPRV NY-gE-/gI-/TK- using homologous recombination and CRISPR/Cas9 gene editing technique. The recombinant virus rPRV-GP5/HP was also constructed. The expression of the GP5 protein was confirmed by Western blot and indirect immunofluorescence assay. These two viruses were similar to the parental virus rPRV-gE-/gI-/TK- in terms of growth curve, morphogenesis and virus plaque sizes, and proliferated in different cell types. The animal test results showed that ELISA antibodies against PRRSV could be detected in piglets immunized with these two recombinant viruses, and the antibody levels were slightly lower than those of commercial vaccines, but these two recombinant viruses elicited high levels of PRV ELISA antibody and neutralizing antibody, as is the case with commercial vaccine. These two recombinant viruses could provide some protection against virulent PRRSV and PRV, and could effectively inhibit virus proliferation in tissues. These findings provide insights that these two viruses need to be optimally engineered as promising bivalent vaccine candidates against PRV and PRRSV for the control and eradication of the variant PRV and currently prevalent PRRSV. IMPORTANT: Porcine reproductive and respiratory syndrome virus (PRRSV) and porcine pseudorabies virus (PRV) can infect pigs of all ages with high mortality. Due to the appearance of the PRRSV variant (HP-PRRSV and NADC30-Like-PRRSV) and the outbreak of PRV variant in China, the current commercial vaccines available cannot provide complete protection against PRV variants and prevalent PRRSV strains, which causes a major economic loss in pig industry worldwide. Therefore, safe and effective new vaccines are urgently developed to simultaneously control and even eradicate the two viruses. This study intends to use the modified attenuated PRV strain as the carrier and the main antigen gene ORF5 of PRRSV as the exogenous gene to construct the recombinant virus strain, and further validate the protective effect of recombinant strains in vitro and in vivo against the challenge of PRRSV and PRV, which is expected to become a candidate vaccine strain.
Collapse
Affiliation(s)
- Hui-Hua Zheng
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, China; College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang, 311300, China
| | - Lin-Qing Wang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, China; Henan Seed Industry Development Center, Department of Life Science, Zhengzhou Normal University, Zhengzhou, 450044, Henan Province, China
| | - Cheng-Yao Hou
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, China
| | - Ya-Peng Song
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, China
| | - Shi Liu
- Henan Seed Industry Development Center, 116 Longyuan Road Street, Zhengzhou, 450046, Henan Province, China
| | - Lan-Lan Zheng
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, China
| | - Shi-Jie Ma
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, China.
| | - Hong-Ying Chen
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, China.
| |
Collapse
|
2
|
Jian Y, Lu C, Shi Y, Kong X, Song J, Wang J. Genetic evolution analysis of PRRSV ORF5 gene in five provinces of Northern China in 2024. BMC Vet Res 2025; 21:242. [PMID: 40176022 PMCID: PMC11966811 DOI: 10.1186/s12917-025-04679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 03/17/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome (PRRS) was first discovered in North America in 1987, and since then it has been spread widely all over the world. The prevalence of PRRS has caused significantly economic losses to pig industry in many countries. OBJECTIVES Investigate the prevalence and genetic evolution of porcine reproductive and respiratory syndrome virus (PRRSV) in five provinces of northern China. METHODS 190 samples suspected of PRRS were collected from 28 pig farms in five provinces of northern China. The PRRSV ORF7 and ORF5 gene were detected by RT-PCR, and the ORF5 gene were sequenced for the homology and genetic evolution analysis. RESULTS The positive samples of ORF7 gene were 50, and its positive rate was 26.32%. The positive samples of ORF5 gene were 48, and its positive rate was 25.26%. The sequenced results of the ORF5 gene showed that 48 positive samples all belonged to PRRSV-2. Among them, 26 samples were NADC34-like strains, 17 samples were NADC30-like strains, and 5 samples were classical strains. The amino acid sequence analysis of PRRSV GP5 indicated that there was a deletion at the 37th amino acid in 4 NADC30-like strains. The amino acids of the transmembrane region 1 in all positive strains are relatively conserved, and multiple amino acid mutations were observed in the signal peptide, transmembrane region 2, and B cell epitope. The amino acid mutations were different in different strains and regions. The above results demonstrated that the complexity and diversity of PRRSV genetics. CONCLUSION The strains from lineage 1 became the dominant strains in five provinces of northern China in 2024. The positive rate of NADC34-like strains was the highest in Heilongjiang Province and the NADC30-like strains were the most prevalent in these regions. The genetic evolution of PRRSV presented a complex trend. This study provided the data support for understanding PRRSV variation and for PRRS prevention and control in five provinces of northern China.
Collapse
Affiliation(s)
- Yanyin Jian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Chun Lu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yuan Shi
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Xiangyu Kong
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Jun Song
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Jintao Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| |
Collapse
|
3
|
Li H, Zhang W, Qiao Y, Wang W, Zhang W, Wang Y, Yi J, Zhang H, Ma Z, Chen C. Genome and Pathogenicity Analysis of an NADC30-like PRRSV Strain in China's Xinjiang Province. Viruses 2025; 17:379. [PMID: 40143307 PMCID: PMC11945328 DOI: 10.3390/v17030379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) possesses an inherent ability to adapt to environmental transformations and undergo evolutionary changes, which has imposed significant economic pressure on the global pig industry. Given the potential for recombination among PRRSV genomes and variations in pathogenicity, newly emerging PRRSV isolates are of considerable clinical importance. In this study, we successfully isolated a novel strain named XJ-Z5 from PRRSV-positive samples collected in Xinjiang province in 2022. Through comprehensive genomic sequencing, phylogenetic analysis, and recombination analysis, we confirmed that this strain belongs to the NADC30-like recombinant PRRSV. During pathogenicity tests in piglets, this strain exhibited moderate virulence, causing symptoms such as reduced appetite, persistent fever, and weight loss; however, no mortality cases were observed. Tests conducted at various time points detected the presence of PRRSV nucleic acid in nasal swabs, rectal swabs, tissue samples, and blood, with the highest viral loads found in lung tissue and blood. Serum biochemical tests indicated significant impairment of liver and kidney function. PRRSV antibodies began to appear gradually after 10 days post infection. Hematoxylin and eosin staining revealed substantial pathological changes in lung tissue and lymph nodes. This study enhances our understanding of the epidemiology of PRRSV and underscores the importance of ongoing monitoring and research in light of the challenges posed by the continuous evolution of viral strains. Furthermore, the research emphasizes the urgency of the rapid genomic analysis of emerging viral strains. Through these comprehensive research and monitoring strategies, we aimed to curb the spread of PRRSV more effectively and thus reduce the huge economic losses it caused to the pig industry.
Collapse
Affiliation(s)
- Honghuan Li
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China; (H.L.); (Y.Q.); (W.W.); (W.Z.); (J.Y.); (H.Z.)
| | - Wei Zhang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China;
- Tecon Bio-Pharmaceuticals Co., Ltd., Urumqi 830011, China
| | - Yanjie Qiao
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China; (H.L.); (Y.Q.); (W.W.); (W.Z.); (J.Y.); (H.Z.)
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China;
| | - Wenxing Wang
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China; (H.L.); (Y.Q.); (W.W.); (W.Z.); (J.Y.); (H.Z.)
| | - Wenxiang Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China; (H.L.); (Y.Q.); (W.W.); (W.Z.); (J.Y.); (H.Z.)
| | - Yueli Wang
- College of Medicine, Shihezi University, Shihezi 832008, China;
| | - Jihai Yi
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China; (H.L.); (Y.Q.); (W.W.); (W.Z.); (J.Y.); (H.Z.)
- Collaborative Innovation Center for Sheep Health Breeding and Zoonosis Prevention and Control, Shihezi 832003, China
| | - Huan Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China; (H.L.); (Y.Q.); (W.W.); (W.Z.); (J.Y.); (H.Z.)
- Collaborative Innovation Center for Sheep Health Breeding and Zoonosis Prevention and Control, Shihezi 832003, China
| | - Zhongchen Ma
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China; (H.L.); (Y.Q.); (W.W.); (W.Z.); (J.Y.); (H.Z.)
- Collaborative Innovation Center for Sheep Health Breeding and Zoonosis Prevention and Control, Shihezi 832003, China
| | - Chuangfu Chen
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China; (H.L.); (Y.Q.); (W.W.); (W.Z.); (J.Y.); (H.Z.)
- Collaborative Innovation Center for Sheep Health Breeding and Zoonosis Prevention and Control, Shihezi 832003, China
| |
Collapse
|
4
|
Lv C, Yang Z, Lan X, Liang F, Kong W, Wang R, Zhao M. Research Progress on the GP3 Protein of Porcine Reproductive and Respiratory Syndrome Virus. Animals (Basel) 2025; 15:430. [PMID: 39943200 PMCID: PMC11815881 DOI: 10.3390/ani15030430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a highly contagious immunosuppressive disease caused by the porcine reproductive and respiratory syndrome virus (PRRSV) that is characterized by a highly variable gene sequence and a high rate of recombination, thereby contributing to difficulties in the clinical prevention and control of this virus. Glycosylated protein 3 (GP3) is the most glycosylated protein in PRRSV, and is closely associated with the composition of PRRSV virus particles, infection, and immune evasion. This review summarizes the structural features, genetic evolutionary patterns, glycosylation of GP3 and its interactions with other PRRSV and host proteins, associations with PRRSV infection and virulence, and immunomodulatory roles. Additionally, it provides an overview of research progress on monoclonal antibodies and vaccines targeting GP3. This study aims to provide a theoretical foundation for better understanding the structure and function of GP3, of the mechanisms of PRRSV infection, and the development of novel vaccines.
Collapse
Affiliation(s)
- Chen Lv
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528225, China; (C.L.); (Z.Y.); (X.L.); (F.L.)
| | - Zhiyu Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528225, China; (C.L.); (Z.Y.); (X.L.); (F.L.)
| | - Xiaolin Lan
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528225, China; (C.L.); (Z.Y.); (X.L.); (F.L.)
| | - Fang Liang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528225, China; (C.L.); (Z.Y.); (X.L.); (F.L.)
| | - Weili Kong
- Gladstone Institutes of Virology and Immunology, University of California, San Francisco, CA 94158, USA;
| | - Ruining Wang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China;
| | - Mengmeng Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528225, China; (C.L.); (Z.Y.); (X.L.); (F.L.)
| |
Collapse
|
5
|
Yang Y, Yao L, Wang X, Dong X, Wang G, Yu Y. Recombinant characteristics and pathogenicity of a novel PRRSV variant in weaned piglets derived from recombination of three clinical epidemic strains. Front Vet Sci 2024; 11:1496316. [PMID: 39735589 PMCID: PMC11681622 DOI: 10.3389/fvets.2024.1496316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/11/2024] [Indexed: 12/31/2024] Open
Abstract
Introduction The recent emergence of PRRSV strains NADC30 and NADC34, along with their recombination with HP-PRRSV-like strains, has added complexity to PRRS control strategies on swine farms. Given the high variability and recombination potential of PRRSV, continuous monitoring of the virus's clinical epidemiology is essential for effective prevention and control. Methods This study isolated a PRRSV variant, designated SDVD-NMG2023, from approximately 65-day-old pigs, showing a mortality rate of around 15% within the herd. The whole-genome, ORF5, and NSP2 sequences of the SDVD-NMG2023 isolate were aligned with 42 reference strains using MEGA software. Recombination analysis was performed using SimPlot software and RDP software. Pathogenicity analysis of SDVD-NMG2023 was conducted in four-week-old SPF Yorkshire piglets. Results Phylogenetic and molecular evolutionary analyses revealed a natural recombination event involving the NADC30, NADC34, and JXA1 strains. Piglets infected with SDVD-NMG2023 exhibited mild clinical symptoms, including elevated rectal temperatures in two out of five piglets, as well as cough, mild anorexia, weight stunting, interstitial pneumonia, and thymic atrophy in all cases. Discussion The findings indicate that the novel crossbred PRRSV isolate SDVD-NMG2023, derived from three prevalent clinical strains, may induce more unusual clinical presentations compared to those associated with HP-PRRS, albeit still impacting the health of the herd by causing immunosuppression. This study provides critical insights into the emergence of multi-strain PRRSV recombination, particularly between NADC30/34-like and HP-PRRSV-like strains, supporting a more strategic and comprehensive approach to PRRS prevention and control.
Collapse
Affiliation(s)
- Yalin Yang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Longshuai Yao
- Shandong Provincial Key Laboratory of Zoonoses, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Xinyuan Wang
- Shandong Provincial Key Laboratory of Zoonoses, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Xinrong Dong
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Gang Wang
- Shandong Provincial Key Laboratory of Zoonoses, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Ying Yu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
6
|
Huang B, Xu T, Luo Z, Deng L, Jian Z, Lai S, Ai Y, Zhou Y, Ge L, Xu Z, Zhu L. Prevalence and genetic diversity of PRRSV in Sichuan province of China from 2021 to 2023: Evidence of an ongoing epidemic transition. Virology 2024; 600:110213. [PMID: 39265448 DOI: 10.1016/j.virol.2024.110213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/11/2024] [Accepted: 08/29/2024] [Indexed: 09/14/2024]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) significantly impacts the global swine industry. Sichuan province, a key pig breeding center in China, has limited data on the molecular epidemiology of PRRS Virus (PRRSV). To address this, 1618 suspected PRRSV samples were collected from 2021 to 2023, with a prevalence rate of 39.74% (643/1618). Phylogenetic analysis showed PRRSV-2 as dominant (95.65%, 615/643), with PRRSV-1 at 4.35% (28/643). PRRSV-2 strains were further classified into NADC30-like (74.18%), NADC34-like (11.98%), C-PRRSV (5.44%), and HP-PRRSV (4.04%). The significant change in the proportions of different lineages indicates genomic divergence. NADC30-like strains exhibited significant amino acid mutations in ORF5, aiding immune evasion. Recombination analysis revealed complex patterns, primarily involving NADC30-like strains. This study highlights the genomic divergence of PRRSV in Sichuan, with NADC30-like strains becoming predominant and emerging strains like NADC34-like showing potential for further spread.
Collapse
Affiliation(s)
- Bingzhou Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tong Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhipeng Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lishuang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhijie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Siyuan Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Yanru Ai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Yuancheng Zhou
- Key Laboratory of Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 611130, China; Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 611130, China
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, 611130, China.
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, 611130, China.
| |
Collapse
|
7
|
Zhang W, Wang X, Zhang H, Pan Y, Ma W, Xu Y, Tian Z, Xia C, Fu L, Wang Y. Comparison of pathogenicity and host responses of emerging porcine reproductive and respiratory syndrome virus variants in piglets. J Virol 2024; 98:e0154223. [PMID: 39445829 PMCID: PMC11575335 DOI: 10.1128/jvi.01542-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/15/2024] [Indexed: 10/25/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly variable virus with genetic diversity. This study comparatively examines the pathogenicity and immunological impact of two emergent PRRSV strains, SD53 and HuN4, in piglets. Our results indicate that SD53 strain induces milder clinical syndromes and less severe tissue damage than HuN4, despite similar replication rates. Hematological tests showed less perturbations in peripheral blood cell profiles after SD53 infection, suggesting a less systemic impact. The neutrophil-to-lymphocyte ratio was notably lower in SD53-infected piglets, suggesting a less intense inflammatory reaction. Moreover, SD53 infection led to lower levels of pro-inflammatory cytokines, further supporting a less pronounced inflammatory profile. Both strains induced the production of PRRSV-specific antibodies. However, transcriptomic analysis of lung and lymph node tissues from infected piglets disclosed a more moderate up-regulation of core genes, including ISGs, in the SD53 group. Further analysis indicated that SD53 primarily enhanced immune-related signaling, particularly in T cell response modules, while HuN4 caused a more robust pro-inflammatory reaction and a dampening of T cell functionality. Flow cytometry analyses confirmed these findings, showing higher CD4/CD8 ratios and increased CD4+ T cell percentages in SD53-infected piglets, implying a more robust T cell response. Collectively, these findings broaden our comprehension of PRRSV pathogenesis and may inform the development of future therapeutic or prophylactic strategies for controlling PRRSV infections more effectively. IMPORTANCE The high mutation rate of porcine reproductive and respiratory syndrome virus (PRRSV) poses significant challenges to its accurate diagnosis and the implementation of effective control measures. This research explores the pathogenic profiles of two emerging PRRSV stains: the NADC30-like strain SD53 and the highly pathogenic strain HuN4. Our investigation reveals that SD53 initiates distinct immunopathological responses in vivo compared with those provoked by HuN4. By conducting a transcriptome analysis of differential gene expression in the lungs and lymph nodes of infected piglets, we unveil the intricate molecular mechanisms underlying the contrasting pathogenicity of these two strains. The comprehensive insights yielded by this study are instrumental in advancing our understanding of the dominant NADC30-like PRRSV strain, which has become increasingly prevalent in China's swine industry.
Collapse
Affiliation(s)
- Wenli Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, China
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xinrong Wang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - He Zhang
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yu Pan
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wenjie Ma
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Chongqing Academy of Animal Science, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| | - Yunfei Xu
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhijun Tian
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changyou Xia
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lizhi Fu
- Chongqing Academy of Animal Science, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| | - Yue Wang
- College of Veterinary Medicine, Southwest University, Chongqing, China
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| |
Collapse
|
8
|
Zhao YY, Ma X, Chen XM, Song YP, Zheng LL, Ma SJ, Chen HY. Molecular detection and genetic characteristics of porcine reproductive and respiratory syndrome virus in central China. Microb Pathog 2024; 197:107024. [PMID: 39426634 DOI: 10.1016/j.micpath.2024.107024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 09/27/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Porcine reproductive and respiratory syndrome caused by porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically devastating viral diseases in the global pork industry. To further clarify the epidemic characteristics of the virus, 365 clinical samples were collected from diseased pigs suffering from abortion and respiratory disease from 2018 to 2023 on 63 pig farms in Henan and Shanxi provinces, and screened for the presence of PRRSV using reverse transcription-polymerase chain reaction (RT-PCR). A total of 62 clinical samples (62/365, 16.99 %) were positive for PRRSV, and subsequently, full-length ORF5 gene sequences of 29 PRRSV strains and the complete genome sequence of one PRRSV HeN-HC isolate were obtained and analyzed. Phylogenetic analysis based on the ORF5 gene showed that 22 of the 29 PRRSV2 strains belonged to sublineage 1.8 (NADC30-like), 5 belonged to sublineage 8.5 (HP-PRRSV), and 2 belonged to sublineage 5.1 (VR-2332-like), indicating that both HP-PRRSV and NADC30-like strains were mainly circulating in Henan and Shanxi provinces. Compared to VR-2332 strain, different types of amino acid mutations were found in the GP5 protein of these 29 strains, and the amino acid deletions were displayed in the Nsp2 protein of the HeN-HC isolate, leading to the variation of protein structures. It is noteworthy that recombination events were identified in the HeN-Ping and HeN-B strains. In addition, a total of 60, 094 pig serum samples from Henan province were collected, and the positive rate of specific antibodies against PRRSV was 86.37 % from 2019 to 2022, and 86.66 %, 84.85 %, 87.54 % and 86.30 % in 2019, 2020, 2021 and 2022, respectively. Overall, this study provides valuable insights into the molecular epidemiology and evolution of PRRSV circulating in central China.
Collapse
Affiliation(s)
- You-Yi Zhao
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, People's Republic of China
| | - Xiao Ma
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, People's Republic of China
| | - Xi-Meng Chen
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, People's Republic of China
| | - Ya-Peng Song
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, People's Republic of China
| | - Lan-Lan Zheng
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, People's Republic of China; International Joint Research Center of National Animal Immunology, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, People's Republic of China
| | - Shi-Jie Ma
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, People's Republic of China; International Joint Research Center of National Animal Immunology, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, People's Republic of China.
| | - Hong-Ying Chen
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, People's Republic of China; International Joint Research Center of National Animal Immunology, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, People's Republic of China.
| |
Collapse
|
9
|
Zhao M, Zhang X, Yu L, Kong W. Editorial: Pathogenic mechanism of porcine viral disease. Front Vet Sci 2024; 11:1488296. [PMID: 39376924 PMCID: PMC11457704 DOI: 10.3389/fvets.2024.1488296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Affiliation(s)
- Mengmeng Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Animal Science and Technology, Foshan University, Foshan, China
| | - Xuelian Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Animal Science and Technology, Foshan University, Foshan, China
| | - Lingxue Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Weili Kong
- University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
10
|
Lv C, Zheng Y, Liu K, Li G, Luo Q, Zhang H, Sha H, Wang R, Kong W, Zhao M. Genetic variation and recombination analysis of PRRSV-2 GP3 gene in China from 1996 to 2023. Front Microbiol 2024; 15:1435373. [PMID: 39220042 PMCID: PMC11362850 DOI: 10.3389/fmicb.2024.1435373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has become widespread in China particularly the highly pathogenic porcine reproductive and respiratory syndromes (HP-PRRSV), NADC30, and NADC34 strains, and has posed a threat to the swine industry for over 20 years. To monitor genetic variation in PRRSV-2 GP3 strains in China, we analyzed 618 strains isolated between 1996 to 2023 and constructed phylogenetic trees. Additionally, 60 selected strains were used to analyze nucleotide and amino acid homology. PRRSV GP3 gene exhibited nucleotide identity ranging from 78.2% to 100.0% and amino acid similarity ranging from 74.9% to 99.6%. The GP3 gene in the 60 selected strains consisted of 254 amino acids, and amino acid mutations in the strains primarily occurred in B-cell epitopes, T-cell epitopes, and highly variable regions. The glycosylation sites of the strains used for amino acid sequence comparisons remained unaltered, except for the N29 site in the GD20220303-2022 strain. PRRSV-2 strains in China belong to lineages 1, 3, 5, and 8. Recombination analysis detected two recombination events, involving lineages 1 and 8. In conclusion, this study investigated multiple strains of the PRRSV-2 GP3 gene to explore the prevalence and genetic diversity of the GP3 gene in China from a gene family perspective. The results of the analyses provide a basis for clinical prevention strategies and vaccine development.
Collapse
Affiliation(s)
- Chen Lv
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yajie Zheng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Kexin Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Gan Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Qin Luo
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hang Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Huiyang Sha
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Ruining Wang
- Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Weili Kong
- University of California, San Francisco, San Francisco, CA, United States
| | - Mengmeng Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
11
|
Liu Z, Li C, Hu Y, Fang S, Li X, Zhang C, Huang L, Qian J, Wang G, Fan A, Zhang J, Geri L. Protective evaluation of the commercialized porcine reproductive and respiratory syndrome virus vaccines in piglets challenged by NADC34-like strain. Front Microbiol 2024; 15:1422335. [PMID: 38989029 PMCID: PMC11233820 DOI: 10.3389/fmicb.2024.1422335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024] Open
Abstract
In China, the porcine reproductive and respiratory syndrome virus (PRRSV) has undergone several variations over the decades and contributed to the diversity of the clinical epidemic PRRSV strains. This has complicated the prevention and control of PRRS. In particular, the efficacy of the currently available commercial vaccines against the highly pathogenic NADC34-like strains is unclear. Therefore, the objective of this study was to evaluate the protection efficacy of three commercial PRRS modified-live virus (MLV) vaccines derived from classical PRRS VR2332 MLV and R98 MLV against challenge with a heterologous NADC34-like PRRSV strain, JS2021NADC34, which has high pathogenicity in pigs. PRRSV- and antibody-free piglets were immunized with the PRRS VR2332 MLV vaccine or either of two R98 MLV vaccines (from different manufacturers) and were challenged with the JS2021NADC34 strain 28 days after immunization. Rectal temperature, clinical symptoms, viremia and viral shedding from the nose, gross lesions in the thymus and lungs, microscopic lesions and viral distribution in the lungs, as well as the humoral immune response and mortality rates were recorded over a 14-day post-challenge period. The results showed that PRRS VR2332 MLV had better efficacy against the JS2021NADC34 challenge than PRRS R98 MLV, with vaccinated piglets in the former group showing transient and mild symptoms, mild pathological lesions in the lungs, mild thymic atrophy, and low viral levels in sera and nasal swabs, as well as better growth performance and a 100% survival rate. In contrast, two PRRS R98 MLVs exhibited limited efficacy against the JS2021NADC34 challenge, with the piglets in two R98 groups showing obvious clinical symptoms and pathological changes in the lungs and thymus; moreover, there were two deaths caused by PRRS in two R98 groups, respectively. Despite this, the mortality rate was lower than that of the unvaccinated piglets that were challenged with JS2021NADC34. The cumulative results demonstrate that PRRS VR2332 MLV was partly effective against the highly pathogenic PRRSV NADC34-like strain based on the observations over the 14-day post-challenge period. Thus, it might be a viable option among the commercially available vaccines for control of NADC34-like virus infections in swine herds.
Collapse
Affiliation(s)
- Zhicheng Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province (2023B1212060040), Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chaosi Li
- Boehringer Ingelheim Animal Health (Shanghai) Co., Ltd., Shanghai, China
| | - Yulong Hu
- Boehringer Ingelheim Animal Health (Shanghai) Co., Ltd., Shanghai, China
| | - Shuhe Fang
- Boehringer Ingelheim Animal Health (Shanghai) Co., Ltd., Shanghai, China
| | - Xiangdong Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Chunhong Zhang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province (2023B1212060040), Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Lv Huang
- Boehringer Ingelheim Animal Health (Shanghai) Co., Ltd., Shanghai, China
| | - Jie Qian
- Boehringer Ingelheim Animal Health (Shanghai) Co., Ltd., Shanghai, China
| | - Gang Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Aihua Fan
- Boehringer Ingelheim Animal Health (Shanghai) Co., Ltd., Shanghai, China
| | - Jianfeng Zhang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province (2023B1212060040), Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Letu Geri
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
12
|
Ouyang Y, Du Y, Zhang H, Guo J, Sun Z, Luo X, Mei X, Xiao S, Fang L, Zhou Y. Genetic Characterization and Pathogenicity of a Recombinant Porcine Reproductive and Respiratory Syndrome Virus Strain in China. Viruses 2024; 16:993. [PMID: 38932283 PMCID: PMC11209116 DOI: 10.3390/v16060993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Since it was first reported in 2013, the NADC30-like PRRSV has been epidemic in China. Hubei Province is known as China's key hog-exporting region. To understand the prevalence and genetic variation of PRRSV, herein, we detected and analyzed 317 lung tissue samples from pigs with respiratory disease in Hubei Province, and demonstrated that the NADC30-like strain was the second-most predominant strain during 2017-2018, following the highly pathogenic PRRSV (HP-PRRSV). Additionally, we isolated a new NADC30-like PRRSV strain, named CHN-HB-2018, which could be stably passaged in Marc-145 cells. Genetic characterization analysis showed that compared with the NADC30 strain, the CHN-HB-2018 strain had several amino acid variations in glycoprotein (GP) 3, GP5, and nonstructural protein 2 (NSP2). Moreover, the CHN-HB-2018 strain showed a unique 5-amino acid (aa) deletion in NSP2, which has not previously been reported. Gene recombination analysis identified the CHN-HB-2018 strain as a potentially recombinant PRRSV of the NADC30-like strain and HP-PRRSV. Animal experiments indicated that the CHN-HB-2018 strain has a mild pathogenicity, with no mortality and only mild fever observed in piglets. This study contributes to defining the evolutionary characteristics of PRRSV and its molecular epidemiology in Hubei Province, and provides a potential candidate strain for PRRSV vaccine development.
Collapse
Affiliation(s)
- Yan Ouyang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.O.); (Y.D.); (H.Z.); (J.G.); (Z.S.); (X.L.); (X.M.); (S.X.); (L.F.)
- College of Agriculture, Hubei Three Gorges Polytechnic, Yichang 443000, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yingbing Du
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.O.); (Y.D.); (H.Z.); (J.G.); (Z.S.); (X.L.); (X.M.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Hejin Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.O.); (Y.D.); (H.Z.); (J.G.); (Z.S.); (X.L.); (X.M.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jiahui Guo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.O.); (Y.D.); (H.Z.); (J.G.); (Z.S.); (X.L.); (X.M.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Zheng Sun
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.O.); (Y.D.); (H.Z.); (J.G.); (Z.S.); (X.L.); (X.M.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xiuxin Luo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.O.); (Y.D.); (H.Z.); (J.G.); (Z.S.); (X.L.); (X.M.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xiaowei Mei
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.O.); (Y.D.); (H.Z.); (J.G.); (Z.S.); (X.L.); (X.M.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.O.); (Y.D.); (H.Z.); (J.G.); (Z.S.); (X.L.); (X.M.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.O.); (Y.D.); (H.Z.); (J.G.); (Z.S.); (X.L.); (X.M.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yanrong Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.O.); (Y.D.); (H.Z.); (J.G.); (Z.S.); (X.L.); (X.M.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
13
|
Lin Y, Zhou L, Xiao C, Li Z, Liu K, Li B, Shao D, Qiu Y, Ma Z, Wei J. Development and biological characterization of an infectious cDNA clone of NADC34-like PRRSV. Front Microbiol 2024; 15:1359970. [PMID: 38800747 PMCID: PMC11123230 DOI: 10.3389/fmicb.2024.1359970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Porcine Reproductive and Respiratory Syndrome virus (PRRSV) causes high abortion rates in gestating sows and stillbirths, as well as high piglet mortality, seriously jeopardizing the pig industry in China and worldwide. Methods In this study, an infectious clone containing the full-length genome of NADC34-like PRRSV was constructed for the first time using reverse genetic techniques. The gene was amplified segmentally onto a plasmid, transfected into BHK-21 cells, and the transfected supernatant was harvested and transfected into PAM cells, which showed classical cytopathic effects (CPE). Results The virus rJS-KS/2021 was successfully rescued which could be demonstrated by Western Blot and indirect immunofluorescence assays. Its growth curve was similar to the original strain. Replace the 5'UTR and 3'UTR of rJS-KS/2021 with 5'UTR and 3'UTR of HP-PRRSV (strain SH1) also failed to propagate on MARC-145. Discussion In this study, an infectious clone of NADC34-like was constructed by reverse genetics, replacing the UTR and changing the cellular tropism of the virus. These findings provide a solid foundation for studying the recombination of different PRRSVs and the adaption of PRRSVs on MARC-145 in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
14
|
Jiao S, Zhang J, Wang J, Ma X, Li G, Li J, Cui Z, Li D, Li P, Zeng Q, Liu Z, Lu Z, Sun P. Whole-genome analysis of the recombination and evolution of newly identified NADC30-like porcine reproductive and respiratory syndrome virus strains circulated in Gansu province of China in 2023. Front Vet Sci 2024; 11:1372032. [PMID: 38681852 PMCID: PMC11047440 DOI: 10.3389/fvets.2024.1372032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) remains one of the major threats to swine industry, resulting in huge economic losses worldwide. Currently, PRRSV has diversified into multiple lineages with characteristics of extensive recombination in China. In this research, three virus strains were isolated and four virus whole genome sequences were generated and analyzed from clinical samples collected in Gansu province of China in 2023. The four virus strains were designated GSTS4-2023, GSLX2-2023, GSFEI2-2023 and GSBY4-2023. Phylogenetic analysis based on ORF5 sequences showed that GSTS4-2023, GSLX2-2023, GSFEI2-2023 and GSBY4-2023 shared 91.7, 91.2, 93.2 and 92.9% homology with NADC30 strain respectively, and belonged to lineage 1 of PRRSV-2. In addition, one amino acid deletion was observed at position 33 in ORF5 of GSTS4-2023, GSLX2-2023 and GSFEI2-2023. Moreover, amino acid alignment of the four strains showed a typical discontinuous 131-amino acid (aa) deletion in NSP2 for NADC30-like virus strains. Recombination analysis revealed that all four strains originated from NADC30 (lineage 1), with their minor parents coming from JXA1-like strains (lineage 8), VR-2332-like strains (lineage5) and QYYZ-like strains (lineage3). Finally, the three isolated virus strains, GSTS4-2023, GSLX2-2023 and GSFEI2-2023 showed relatively low levels of replication in cell culture. Our findings provide important implications for the field epidemiology of PRRSV.
Collapse
Affiliation(s)
- Shoude Jiao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Jing Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Jian Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Xueqing Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Guoxiu Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Jiaoyang Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Zhanding Cui
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Dong Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Pinghua Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Qiaoying Zeng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Zaixin Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Zengjun Lu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Pu Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
15
|
Wu Z, Chang T, Wang D, Zhang H, Liu H, Huang X, Tian Z, Tian X, Liu D, An T, Yan Y. Genomic surveillance and evolutionary dynamics of type 2 porcine reproductive and respiratory syndrome virus in China spanning the African swine fever outbreak. Virus Evol 2024; 10:veae016. [PMID: 38404965 PMCID: PMC10890815 DOI: 10.1093/ve/veae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/06/2023] [Accepted: 02/07/2024] [Indexed: 02/27/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) poses a serious threat to the pig industry in China. Our previous study demonstrated that PRRSV persists with local circulations and overseas imports in China and has formed a relatively stable epidemic pattern. However, the sudden African swine fever (ASF) outbreak in 2018 caused serious damage to China's pig industry structure, which resulted in about 40 per cent of pigs being slaughtered. The pig yields recovered by the end of 2019. Thus, whether the ASF outbreak reframed PRRSV evolution with changes in pig populations and further posed new threats to the pig industry becomes a matter of concern. For this purpose, we conducted genomic surveillance and recombination, NSP2 polymorphism, population dynamics, and geographical spread analysis of PRRSV-2, which is dominant in China. The results showed that the prevalence of ASF had no significant effects on genetic diversities like lineage composition, recombination patterns, and NSP2 insertion and deletion patterns but was likely to lead to changes in PRRSV-2 recombination frequency. As for circulation of the two major sub-lineages of Lineage 1, there was no apparent transmission of NADC30-like among provinces, while NADC34-like had obvious signs of inter-provincial transmission and foreign importation during the ASF epidemic. In addition, two suspected vaccine recombinant epidemic strains suggest a slight safety issue of vaccine use. Herein, the interference of ASF to the PRRSV-2 evolutionary pattern was evaluated and vaccine safety was analyzed, in order to monitor the potential threat of PRRSV-2 to China's pig industry in the post-epidemic era of ASF.
Collapse
Affiliation(s)
- Zhiyong Wu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150069, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Shijingshan District, Beijing 100049, China
- National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
| | - Tong Chang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150069, China
| | - Decheng Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
| | - Hongliang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150069, China
| | - Haizhou Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
| | - Xinyi Huang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150069, China
| | - Zhijun Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150069, China
| | - Xiaoxiao Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150069, China
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
| | - Tongqing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150069, China
| | - Yi Yan
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
| |
Collapse
|
16
|
Zhang W, Ma W, Pan Y, Wang X, Wang M, Zhang H, Gao J, Zhang H, Tian Z, Li C, Chen H, Xia C, Wang Y. Characterization of Rongchang piglets after infection with type 2 porcine reproductive and respiratory syndrome virus strains differing in pathogenicity. Front Microbiol 2023; 14:1283039. [PMID: 37920268 PMCID: PMC10618352 DOI: 10.3389/fmicb.2023.1283039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) affects the production and health of pigs and causes severe economic losses to the swine industry worldwide. Different pig breeds have been reported to have different levels of susceptibility to PRRSV, and different PRRSV strains may also influence the infectivity and pathogenicity of the virus. In this study, the susceptibility of Rongchang pigs (a prominent local pig breed in China) to PRRSV infection was thoroughly investigated. Rongchang piglets were exposed to two PRRSV strains: HuN4 (highly pathogenic PRRSV) and SD53-1603 (moderately virulent NADC30-like PRRSV). We observed that Rongchang pigs infected with HuN4 displayed significant clinical manifestations, including fever, reduced body weight, and interstitial pneumonia lesions. Routine blood tests revealed that HuN4-infected pigs exhibited slightly decreased levels of red blood cells, hemoglobin, reticulocytes, and a notable increase in monocytes than control pigs. Additionally, the Rongchang pigs exhibiting severe clinical signs presented a higher neutrophil-to-lymphocyte ratio and a lower lymphocyte-to-monocyte ratio. In contrast, SD53-1603 infection did not cause considerable harm to Rongchang pigs, only resulting in slightly elevated leukocytes and lymphocytes. Furthermore, these two PRRSV strains elicited divergent cytokine responses, such that SD53-1603 infection induced higher levels of TNF-α and IFN-γ, whereas HuN4 infection upregulated IL-1β. These dissimilarities in clinical symptoms, pathological changes, viremia, cytokine expression, and routine blood indices between HuN4 and SD53-1603 infections are critical in understanding the mechanisms of PRRSV infection and developing rational prevention and control strategies against PRRSV.
Collapse
Affiliation(s)
- Wenli Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wenjie Ma
- State Key Laboratory for Animal Disease Control and Prevention, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yu Pan
- State Key Laboratory for Animal Disease Control and Prevention, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xinrong Wang
- State Key Laboratory for Animal Disease Control and Prevention, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mengjie Wang
- State Key Laboratory for Animal Disease Control and Prevention, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - He Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Junxin Gao
- State Key Laboratory for Animal Disease Control and Prevention, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongliang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhijun Tian
- State Key Laboratory for Animal Disease Control and Prevention, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changwen Li
- State Key Laboratory for Animal Disease Control and Prevention, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changyou Xia
- State Key Laboratory for Animal Disease Control and Prevention, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yue Wang
- State Key Laboratory for Animal Disease Control and Prevention, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- College of Veterinary Medicine, Southwest University, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| |
Collapse
|
17
|
Lee MA, Jayaramaiah U, You SH, Shin EG, Song SM, Ju L, Kang SJ, Hyun BH, Lee HS. Molecular Characterization of Porcine Reproductive and Respiratory Syndrome Virus in Korea from 2018 to 2022. Pathogens 2023; 12:757. [PMID: 37375447 DOI: 10.3390/pathogens12060757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an endemic disease in the Republic of Korea. Surveillance of PRRS virus (PRRSV) types is critical to tailor control measures. This study collected 5062 serum and tissue samples between 2018 and 2022. Open reading frame 5 (ORF5) sequences suggest that subgroup A (42%) was predominant, followed by lineage 1 (21%), lineage 5 (14%), lineage Korea C (LKC) (9%), lineage Korea B (LKB) (6%), and subtype 1C (5%). Highly virulent lineages 1 (NADC30/34/MN184) and 8 were also detected. These viruses typically mutate or recombine with other viruses. ORF5 and non-structural protein 2 (NSP2) deletion patterns were less variable in the PRRSV-1. Several strains belonging to PRRSV-2 showed differences in NSP2 deletion and ORF5 sequences. Similar vaccine-like isolates to the PRRSV-1 subtype 1C and PRRSV-2 lineage 5 were also found. The virus is evolving independently in the field and has eluded vaccine protection. The current vaccine that is used in Korea offers only modest or limited heterologous protection. Ongoing surveillance to identify the current virus strain in circulation is necessary to design a vaccine. A systemic immunization program with region-specific vaccinations and stringent biosecurity measures is required to reduce PRRSV infections in the Republic of Korea.
Collapse
Affiliation(s)
- Min-A Lee
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Usharani Jayaramaiah
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Su-Hwa You
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Eun-Gyeong Shin
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Seung-Min Song
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Lanjeong Ju
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Seok-Jin Kang
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Bang-Hun Hyun
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Hyang-Sim Lee
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| |
Collapse
|
18
|
Zhang H, Luo Q, Zheng Y, Sha H, Li G, Kong W, Huang L, Zhao M. Genetic Variability and Recombination of the NSP2 Gene of PRRSV-2 Strains in China from 1996 to 2021. Vet Sci 2023; 10:vetsci10050325. [PMID: 37235408 DOI: 10.3390/vetsci10050325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/18/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most serious infectious diseases that detrimentally affects the pig industry worldwide. The disease, which is typically difficult to control, is an immunosuppressive disease caused by the porcine reproductive and respiratory syndrome virus (PRRSV), the genome of which (notably the NSP2 gene) undergoes rapid mutation. In this study, we sought to determine the genetic variation in the PRRSV-2 NSP2 gene in China from 1996 to 2021. Strain information was obtained from the GenBank database and analyzed from a molecular epidemiological perspective. We compared the nucleotide and amino acid homologies of the NSP2 sequences of different PRRSV-2 lineages, and examined phylogenetic relationships based on an analysis of the NSP2 sequences of 122 strains. The results revealed that NADC-30-like strains, which are represented by lineage 1, and HP-PRRSV strains, which are represented by lineage 8, were the most prevalent in China from 1996 to 2021. Close similarities were detected in the genetic evolution of lineages 3, 5, and 8. For nucleotide and amino acid sequence comparisons, we selected representative strains from each lineage, and for the NSP2 among different PRRSV-2 strains, we accordingly detected homologies of 72.5-99.8% and 63.9-99.4% at the nucleotide and amino acid levels, respectively, thereby indicating certain differences in the degrees of NSP2 amino acid and nucleotide variation. Based on amino acid sequence comparisons, we identified deletions, insertions, and substitutions at multiple sites among the NSP2 sequences of PRRSV-2 strains. Recombination analysis revealed the occurrence of five recombinant events among the 135 selected PRRSV-2 strains, and that there is a high probability of recombination of lineage 1 strains. The findings of this study enabled us to gain an in-depth understanding of the prevalence of PRRSV in China over the past 25 years and will contribute to providing a theoretical basis for evolution and epidemiology of the spread of PRRSV.
Collapse
Affiliation(s)
- Hang Zhang
- School of Life Science and Engineering, Foshan University, Foshan 528000, China
| | - Qin Luo
- School of Life Science and Engineering, Foshan University, Foshan 528000, China
| | - Yajie Zheng
- School of Life Science and Engineering, Foshan University, Foshan 528000, China
| | - Huiyang Sha
- School of Life Science and Engineering, Foshan University, Foshan 528000, China
| | - Gan Li
- School of Life Science and Engineering, Foshan University, Foshan 528000, China
| | - Weili Kong
- Gladstone Institutes of Virology and Immunology, University of California, San Francisco, CA 94158, USA
| | - Liangzong Huang
- School of Life Science and Engineering, Foshan University, Foshan 528000, China
| | - Mengmeng Zhao
- School of Life Science and Engineering, Foshan University, Foshan 528000, China
| |
Collapse
|
19
|
Zhou L, Yu J, Zhou J, Long Y, Xiao L, Fan Y, Yang D, Zhang B, Zhang Z, Liu J. A novel NADC34-like porcine reproductive and respiratory syndrome virus 2 with complex genome recombination is highly pathogenic to piglets. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 112:105436. [PMID: 37094706 DOI: 10.1016/j.meegid.2023.105436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 04/26/2023]
Abstract
The NADC34-like porcine reproductive and respiratory syndrome virus 2 (PRRSV-2) first emerged in China in 2017 and has the potential to become the dominant PRRSV strain in China. Here, a novel PRRSV-2, SCcd2020, was isolated from diseased piglets in Sichuan province, southwest China in 2020. The complete viral genome was determined and analyzed. An ORF5-based phylogenetic analysis showed that SCcd2020 clustered with NADC34-like strains, whereas the genome sequence clustered the isolate with NADC30-like viruses and it contains a discontinuous 131-aa deletion in NSP2 when compared to NADC30 strain. Notably, recombination analyses indicated that SCcd2020 is a multiple recombinant virus from NADC30-like, NADC34-like and JXA1-like strains, which is the first description of Chinese domestic HP-PRRSV involving the recombination event of an NADC34-like strain. Importantly, an animal challenge study in 4-week-old piglets showed that SCcd2020 causes high fever and severe hemorrhagic pneumonia with pulmonary consolidation and edema, and it has a high mortality rate (60%), which indicated that SCcd2020 is a highly pathogenic PRRSV strain. The study reports the emergence of a novel highly pathogenic NADC34-like recombinant strain, and it highlights the importance of monitoring newly emerging PRRSV strains in China.
Collapse
Affiliation(s)
- Long Zhou
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Jifeng Yu
- Sichuan Animal Science Academy, Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Chengdu 610066, China
| | - Jun Zhou
- Sichuan Boce Testing Technology Co., Ltd., Chengdu 610023, China
| | - Yaoping Long
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Lu Xiao
- Sichuan Animal Science Academy, Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Chengdu 610066, China
| | - Yandi Fan
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Danjiao Yang
- Institute of Animal Science of Ganzi Tibetan Autonomous Prefecture of Sichuan Province, Kangding 626000, China
| | - Bin Zhang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Zhidong Zhang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China.
| | - Jie Liu
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China.
| |
Collapse
|
20
|
Li J, Meng K, Wang Y, Wang Z, Peng J, Ren S, Zhang Y, Guo L, Liu F, Lv T, Jiao J, Liu Y, Chen Z, Sun W, Yang G, Yu J, Wu J. Comparison of the cross-protection of PPRSV sublineage 8.7 MLV vaccines against the recombinant NADC30-like strain. Vet Microbiol 2023; 281:109724. [PMID: 37001388 DOI: 10.1016/j.vetmic.2023.109724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/06/2023] [Accepted: 03/12/2023] [Indexed: 03/14/2023]
Abstract
The emergence of recombinant porcine reproductive and respiratory syndrome virus (PRRSV) has caused a substantial threat to the swine industry in recent years. However, the protective efficacy of different sublineage 8.7 PRRSV modified-live virus (MLV) vaccines against emerging strains were still obscure. In this study, a broad epidemiological investigation of PRRSV showed the prevalence of NADC30-like strain increased in Shandong Province, China from 2018 to 2020. Through piglet trial for vaccination and challenge with recombinant NADC30-like SDlz1601 strain, CH-1R MLV vaccine showed better protective effect than JXA1-R and TJM-F92 MLV vaccines in terms of clinical score and pathological observation. Moreover, all three MLV vaccines could reduce virus loads in the serum of piglets. This study provides valuable insights into the prevalence of the NADC30-like strain and the protective effect of PRRS MLV vaccines against recombinant NADC30-like strains, which could help to improve the prevention and control of PRRSV infections.
Collapse
Affiliation(s)
- Jianda Li
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Kai Meng
- Shandong Key Laboratory of Poultry Diseases Diagnosis and Immunology, Poultry Breeding Engineering Technology Center of Shandong Province, Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan 250023, China
| | - Yu Wang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China; College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Zhao Wang
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Jun Peng
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Sufang Ren
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yuyu Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China; School of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Lihui Guo
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Fei Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Tingting Lv
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China; School of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jian Jiao
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yanyan Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zhi Chen
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Wenbo Sun
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Guiwen Yang
- School of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jiang Yu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| | - Jiaqiang Wu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China; School of Life Sciences, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
21
|
Development of a Multiplex Crystal Digital RT-PCR for Differential Detection of Classical, Highly Pathogenic, and NADC30-like Porcine Reproductive and Respiratory Syndrome Virus. Animals (Basel) 2023; 13:ani13040594. [PMID: 36830384 PMCID: PMC9951750 DOI: 10.3390/ani13040594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) type 1 (European genotype) and PRRSV type 2 (North American genotype) are prevalent all over the world. Nowadays, the North American genotype PRRSV (NA-PRRSV) has been widely circulating in China and has caused huge economic losses to the pig industry. In recent years, classical PRRSV (C-PRRSV), highly pathogenic PRRSV (HP-PRRSV), and NADC30-like PRRSV (NL-PRRSV) have been the most common circulating strains in China. In order to accurately differentiate the circulating strains of NA-PRRSV, three pairs of specific primers and corresponding probes were designed for the Nsp2 region of C-PRRSV, HP-PRRSV, and NL-PRRSV. After optimizing the annealing temperature, primer concentration, and probe concentration, a multiplex real-time quantitative RT-PCR (qRT-PCR) and a multiplex Crystal digital RT-PCR (cdRT-PCR) for the differential detection of C-PRRSV, HP-PRRSV, and NL-PRRSV were developed. The results showed that the two assays illustrated high sensitivity, with a limit of detection (LOD) of 3.20 × 100 copies/μL for the multiplex qRT-PCR and 3.20 × 10-1 copies/μL for the multiplex cdRT-PCR. Both assays specifically detected the targeted viruses, without cross-reaction with other swine viruses, and indicated excellent repeatability, with coefficients of variation (CVs) of less than 1.26% for the multiplex qRT-PCR and 2.68% for the multiplex cdRT-PCR. Then, a total of 320 clinical samples were used to evaluate the application of these assays, and the positive rates of C-PRRSV, HP-PRRSV, and NL-PRRSV by the multiplex qRT-PCR were 1.88%, 21.56%, and 9.69%, respectively, while the positive rates by the multiplex cdRT-PCR were 2.19%, 25.31%, and 11.56%, respectively. The high sensitivity, strong specificity, excellent repeatability, and reliability of these assays indicate that they could provide useful tools for the simultaneous and differential detection of the circulating strains of C-PRRSV, HP-PRRSV, and NL-PRRSV in the field.
Collapse
|
22
|
Variations in the NSP4 gene of the type 2 porcine reproductive and respiratory syndrome virus isolated in China from 1996 to 2021. Virus Genes 2023; 59:109-120. [PMID: 36383275 PMCID: PMC9667009 DOI: 10.1007/s11262-022-01957-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/05/2022] [Indexed: 11/17/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has continuously mutated since its first isolation in China in 1996, leading to difficulties in infection prevention and control. Infections caused by PRRSV-2 strains are the main epidemic strains in China, as determined by phylogenetic analysis. In this study, we focused on the prevalence and genetic variations of the non-structural protein 4 (NSP4) from PRRSV-2 over the past 20 years in China. The fundamental biological properties of the NSP4 were predicted, and an analysis and comparison of NSP4 homology at the nucleotide and amino acid levels was conducted using 123 PRRSV-2 strains. The predicted molecular weight of the NSP4 protein was determined to be 21.1 kDa, and it was predicted to be a stable hydrophobic protein that lacks a signal peptide. NSP4 from different strains exhibited a high degree of amino acid (85.8-100%) and nucleotide sequence homology (81.0-100%). Multiple amino acid substitutions were identified in NSP4 among 15 representative PRRSV-2 strains. Phylogenetic analysis showed that the lineage 8 and 1 strains, the most prevalent strains in China, were indifferent clades with a long genetic distance. This analysis will help fully elucidate the parameters of the PRRSV NSP4 epidemic in China to lay a foundation for adequate understanding of the function of NSP4. Genetic information results from the accumulation of conserved and non-conserved sequences. The high conservation of the NSP4 gene determines the most basic life traits and functions of PRRSV. Analyzing the spatial structure of NSP4 protein and studying the genetic evolution of NSP4 not only provide the theoretical basis for how NSP4 participates in the regulation of the innate response of the host but also provide a target for genetic manipulation and a reasonable target molecule and structure for new drug molecules.
Collapse
|
23
|
Xia W, Chen Y, Ding X, Liu X, Lu H, Guo C, Zhang H, Wu Z, Huang J, Fan Z, Yu S, Sun H, Zhu S, Wu Z. Rapid and Visual Detection of Type 2 Porcine Reproductive and Respiratory Syndrome Virus by Real-Time Fluorescence-Based Reverse Transcription Recombinase-Aided Amplification. Viruses 2022; 14:v14112526. [PMID: 36423135 PMCID: PMC9699348 DOI: 10.3390/v14112526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most important diseases that has brought significant economic losses to the swine industry worldwide. Rapid and accurate PRRS virus (PRRSV) detection is one of the key factors for PRRS prevention and control. This study developed a real-time fluorescence-based reverse transcription recombinase-aided amplification (RF-RT-RAA) method for type 2 PRRSV (PRRSV-2) detection. The RF-RT-RAA assay could be performed at 42 °C for 20 min with the optimal primers and a probe. RF-RT-RAA results could be monitored using real-time fluorescence read-out or visually observed with the naked eye using a portable blue light transilluminator. The method had a strong specificity; no cross-reaction was identified with the detected common swine viruses. Moreover, the technique yielded high sensitivity with the lowest detection limit of 101 copies/μL and exhibited good repeatability and reproductively with the coefficients of variation (CV) less than 10%. Eighty-seven clinical samples were tested using RF-RT-RAA and a commercial PRRSV-2 RT-qPCR detection kit. The coincidence rate was 100% between RF-RT-RAA (real-time fluorescence read-out) and RT-qPCR, and 97.7% between RF-RT-RAA (visually observed) and RT-qPCR. The RF-RT-RAA assay provides a new method for rapid and visual detection of PRRSV-2.
Collapse
Affiliation(s)
- Wenlong Xia
- Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224007, China
- Correspondence: (W.X.); (Z.W.)
| | - Yao Chen
- Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Xue Ding
- Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Xiaoming Liu
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Huipeng Lu
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Changming Guo
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Hua Zhang
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China
- Jiangsu Province Engineering Research Center of Tumor Targeted Nano Diagnostic and Therapeutic Materials, Yancheng Teachers University, Yancheng 224007, China
| | - Zhijun Wu
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China
- Jiangsu Province Engineering Research Center of Tumor Targeted Nano Diagnostic and Therapeutic Materials, Yancheng Teachers University, Yancheng 224007, China
| | - Jing Huang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Zhongjun Fan
- Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Shupei Yu
- Yancheng Animal Husbandry and Veterinary Station, Yancheng 224001, China
| | - Huaichang Sun
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Shanyuan Zhu
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Zhi Wu
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
- Correspondence: (W.X.); (Z.W.)
| |
Collapse
|
24
|
Yang S, Zhang D, Ji Z, Zhang Y, Wang Y, Chen X, He Y, Lu X, Li R, Guo Y, Shen Q, Ji L, Wang X, Li Y, Zhang W. Viral Metagenomics Reveals Diverse Viruses in Tissue Samples of Diseased Pigs. Viruses 2022; 14:v14092048. [PMID: 36146854 PMCID: PMC9500892 DOI: 10.3390/v14092048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022] Open
Abstract
The swine industry plays an essential role in agricultural production in China. Diseases, especially viral diseases, affect the development of the pig industry and threaten human health. However, at present, the tissue virome of diseased pigs has rarely been studied. Using the unbiased viral metagenomic approach, we investigated the tissue virome in sick pigs (respiratory symptoms, reproductive disorders, high fever, diarrhea, weight loss, acute death and neurological symptoms) collected from farms of Anhui, Jiangsu and Sichuan Province, China. The eukaryotic viruses identified belonged to the families Anelloviridae, Arteriviridae, Astroviridae, Flaviviridae, Circoviridae and Parvoviridae; prokaryotic virus families including Siphoviridae, Myoviridae and Podoviridae occupied a large proportion in some samples. This study provides valuable information for understanding the tissue virome in sick pigs and for the monitoring, preventing, and treating of viral diseases in pigs.
Collapse
Affiliation(s)
- Shixing Yang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Dianqi Zhang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Zexuan Ji
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yuyang Zhang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yan Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Xu Chen
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yumin He
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Xiang Lu
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Rong Li
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yufei Guo
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Quan Shen
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Likai Ji
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Xiaochun Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yu Li
- College of Animal Sciences and Techologies, Anhui Agricultural University, Hefei 230036, China
| | - Wen Zhang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
- Correspondence:
| |
Collapse
|
25
|
Wang X, Zhang K, Mo Q, Chen G, Lv J, Huang J, Pang Y, Wang H, Liu W, Huang K, Min X, Ren T, Ouyang K, Chen Y, Huang W, Wei Z. The Emergence and Pathogenesis of Recombinant Viruses Associated with NADC34-like Strains and the Predominant Circulating Strains of Porcine Reproductive and Respiratory Syndrome Virus in Southern China. Viruses 2022; 14:v14081695. [PMID: 36016319 PMCID: PMC9416154 DOI: 10.3390/v14081695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Since its recent appearance in China, the NADC30-like strains of porcine reproductive and respiratory syndrome virus 2 (PRRSV-2) have caused an expanding epidemic, and this has further expanded the genetic diversity of PRRSV. In this study, three NADC30-like strains—GXFCG20210401, GXQZ20210403 and GXNN20210506—were isolated from pig serum samples obtained in Guangxi, and their genomes were sequenced. A comparative analysis of the whole genomes showed that the three strains were most similar to NADC30 (88.3–88.7%). In particular, the non-structural protein coding regions (nsp1, nsp4-5, nsp7-8 and nsp9) showed the highest similarities to JXA1, and the ORF2a-ORF5 regions showed the highest similarities to NADC34. The three strains had same discontinuous deletions of 111+1+19 amino acids in the nsp2 region, which were similar to the NADC30-like strains. Phylogenetic tree analysis based on the ORF5 gene showed that the three PRRSV isolates were divided into lineage 1.5 along with the representative NADC34-like strains, but they were classified as NADC30-like strains with respect to the whole genome and nsp2 evolutionary trees. Recombinant analysis revealed complex recombination patterns in the genomes of the three strains, which likely originated from multiple recombination events among JXA1-like, NADC30-like and NADC34-like strains. The results from animal experiments showed that the GXQZ20210403 strain was 20% lethal to piglets and caused more severe clinical reactions than GXFCG20210401, and both recombinant strains were similar in terms of pathogenicity to the previously reported NADC34 strains. This study demonstrates that NADC34-like strains of PRRSV have been circulating in the southern provinces of China and have exchanged genomes with several other indigenous strains. In addition, differences in recombination patterns may cause different clinical pathogenicity and indicate the importance of the surveillance and preventive control of recombinant strains.
Collapse
|
26
|
Porcine reproductive and respiratory syndrome virus reinfection causes the distribution of porcine interleukin-4 in close proximity to B lymphocytes within lymphoid follicles and a reduction in B and T lymphocytes. Vet Microbiol 2022; 272:109498. [PMID: 35793585 DOI: 10.1016/j.vetmic.2022.109498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/15/2022] [Accepted: 06/25/2022] [Indexed: 11/22/2022]
Abstract
Interleukin 4 (IL-4) plays a major role in T-lymphocyte development and is thought to be a central regulator as a cofactor in resting B-lymphocyte proliferation. Primary infection with porcine reproductive and respiratory syndrome virus (PRRSV) induces minimal IL-4 production, whereas an IL-4 response occurs in the peripheral blood of piglets reinfected by PRRSV. The locations and interaction partners for the massive volume of IL-4 triggered by PRRSV reinfection remain unclear. This study aimed to investigate the characteristics of IL-4 secretion and location changes in peripheral immune organs induced by PRRSV infection and reinfection. Our results show that PRRSV reinfection induced higher levels of IL-4 mRNA and protein expression in the peripheral immune organs (e.g., lymph node and spleen) and peripheral blood compared with PRRSV primary infection. Importantly, we found that, following PRRSV reinfection, an obvious large-scale migration of IL-4 occurred in the lymph nodes. During PRRSV primary infection, IL-4 was mainly concentrated around the lymphoid follicles and paracortical regions of the lymph node and also located in the marginal area and periarterial lymphatic sheath region of the spleen. During PRRSV reinfection, the now abundant IL-4 gathered into the lymphoid follicles of the lymph node and spleen. Notably, IL-4 changed its location state from scattered and sparse during primary infection to clinging to B lymphocytes in the lymphoid follicles during reinfection. During reinfection, IL-4 was often co-localized with T and B lymphocytes; furthermore, the percentages of several T lymphocyte subsets, N protein-specific antibody levels, and viral load in the peripheral blood or lymph tissues underwent remarkable variation. Another important finding of this study was that the numbers of B lymphocytes and T lymphocytes in the lymphoid nodes were significantly reduced after PRRSV infection or reinfection, presumably due to PRRSV-induced acute bone marrow failure and autophagy in thymic epithelial cells. This study revealed the characteristics of IL-4 migration and distribution in the peripheral lymph organs induced by PRRSV reinfection and provides valuable clues for further exploration of the interactions between IL-4, B lymphocytes, and T lymphocytes during PRRSV infection and reinfection.
Collapse
|
27
|
Recombination between the Fostera MLV-like Strain and the Strain Belonging to Lineage 1 of Porcine Reproductive and Respiratory Syndrome Virus in Korea. Viruses 2022; 14:v14061153. [PMID: 35746625 PMCID: PMC9229315 DOI: 10.3390/v14061153] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens in the swine industry worldwide. In Korea, Fostera PRRS commercial modified live virus (MLV) vaccines have been used since 2014 to control the PRRSV infection. In this study, two PRRSV-2 strains (20D160-1 and 21R2-63-1) were successfully isolated, and their complete genomic sequences were determined. Genetic analysis showed that the two isolates have recombination events between the P129-like strain derived from the Fostera PRRS MLV vaccine and the strain of lineage 1. The 20D160-1 indicated that partial ORF2 to partial ORF4 of the minor parental KNU-1902-like strain, which belongs to Korean lineage C (Kor C) of lineage 1, was inserted into the major parental P129-like strain. The 21R2-63-1 revealed that partial ORF1b of the P129-like strain was inserted into the backbone of the NADC30-like strain. This study is the first to report natural recombinant strains between Fostera PRRS MLV-like strain and the field strain in Korea. These results may have significant implications for MLV evolution and the understanding of PRRSV genetic diversity, while highlighting the need for continuous surveillance of PRRSV.
Collapse
|
28
|
Phylogenetic analysis of porcine reproductive and respiratory syndrome virus in Vietnam, 2021. Virus Genes 2022; 58:361-366. [PMID: 35589912 PMCID: PMC9119219 DOI: 10.1007/s11262-022-01912-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/05/2022] [Indexed: 11/23/2022]
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) causes more economic losses in the swine industry than any other virus. This study aimed to investigate the genetic diversity of PRRSV to assist in evaluating the effectiveness of PRRS vaccines. Twenty-eight samples from clinical cases were collected from 19 farms in seven provinces of Vietnam in 2021. Full-length PRRSV ORF5 genes from the 19 samples were amplified, sequenced, and compared to the corresponding sequences of referenced PRRSV strains from Genbank. The genetic analysis showed that 12 isolates were the highly pathogenic PRRSV subtype (HP—PRRSV) lineage 8, sublineage 8.7; six isolates were the classical North American PRRSV subtype (US-PRRSV), NADC-like group, lineage 1, sublineage 1.4, which were reported in Vietnam for the first time; and the final isolate was a vaccine-like strain. The field isolates of HP-PRRSV had relatively higher genetic diversity with US-PRRSV vaccine strains (84.0–94.5%) than HP-PRRSV vaccine strains (95.3–98.6%). Meanwhile, the six NADC-like isolates had low nucleotide similarity with US-PRRSV and HP-PRRSV vaccine strains (83.4–85.4% and 83.2–84.0%, respectively). Many amino acid substitutions were found in antigenic regions of GP5 involved in response to early antibody production, neutralizing antibodies, and viral immune evasion between these field strains and PRRSV vaccine strains. These findings provide insights into the molecular characteristics, genetic diversity, antigenicity, and evolution of PRRSV strains in Vietnam and postulate a compelling explanation for the limitations of current vaccination efforts.
Collapse
|
29
|
Cao Z, Chen J, Li L, Liu J, Tong W, Zhou Y, Tong G, Wang G, Gao F. A rescued NADC30-like virus by reverse genetic manipulation exhibits moderate virulence and a promising application perspective. Virus Res 2022; 316:198801. [PMID: 35550390 DOI: 10.1016/j.virusres.2022.198801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 12/15/2022]
Abstract
NADC30-like porcine reproductive and respiratory syndrome virus (PRRSV), which is highly homologous to the NADC30 strain isolated in the United States. The NADC30-like PRRSV was first reported in 2014 in China, where it spread and gradually caused an epidemic. Currently, growing research has shown that NADC30-like strains have greater propensity to recombine with other PRRSV strains, particularly the PPRSV vaccine virus used clinically, making the prevention and control of PRRSV highly complex. To carry out an in-depth molecular biology and virulence analysis, a full-length infectious clone of the NADC30-like strain was successfully constructed and rescued by reverse genetic manipulation. The rescued virus, rZJqz, was indistinguishable from its parental virus, ZJqz21, based on virological characteristics. Further animal experiments demonstrated that rZJqz retained similar pathogenicity and induced the typical clinical symptoms and viral shedding observed in the ZJqz21 challenge model. Together, these results provide a useful tool for further study of the biological characteristics and pathogenicity of NADC30-like strains. Moreover, these findings also provide a solid foundation for studying the recombination of different PRRSVs and developing new and effective universal vaccines in the future.
Collapse
Affiliation(s)
- Zhengda Cao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Shandong Agricultural University, Shandong, 271018, China
| | - Jinxia Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Liwei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jiachen Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Wu Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Yanjun Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Guihua Wang
- Shandong Agricultural University, Shandong, 271018, China.
| | - Fei Gao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
30
|
Fang K, Liu S, Li X, Chen H, Qian P. Epidemiological and Genetic Characteristics of Porcine Reproductive and Respiratory Syndrome Virus in South China Between 2017 and 2021. Front Vet Sci 2022; 9:853044. [PMID: 35464348 PMCID: PMC9024240 DOI: 10.3389/fvets.2022.853044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/21/2022] [Indexed: 11/26/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) remains a major threat to the swine industry in China and has caused enormous losses every year. To monitor the epidemiological and genetic characteristics of PRRSV in South China, 6,795 clinical samples from diseased pigs were collected between 2017 and 2021, and 1,279 (18.82%) of them were positive for PRRSV by RT-PCR detecting the ORF5 gene. Phylogenetic analysis based on 479 ORF5 sequences revealed that a large proportion of them were highly-pathogenic PRRSVs (409, 85.39%) and PRRSV NADC30-like strains (66, 13.78%). Furthermore, 93.15% of these highly-pathogenic strains were found to be MLV-derived. We next recovered 11 PRRSV isolates from the positive samples and generated the whole genome sequences of them. Bioinformatic analysis showed that seven isolates were MLV-derived. Besides, six isolates were found to be recombinant strains. These eleven isolates contained different types of amino acid mutations in their GP5 and Nsp2 proteins compared to those of the PRRSVs with genome sequences publicly available in GenBank. Taken together, our findings contribute to understanding the prevalent status of PRRSV in South China and provide useful information for PRRS control especially the use of PRRSV MLV vaccines.
Collapse
Affiliation(s)
- Kui Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shudan Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiangmin Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- *Correspondence: Ping Qian
| |
Collapse
|
31
|
Jiang D, Zhang L, Zhu G, Zhang P, Wu X, Yao X, Luo Y, Yang Z, Ren M, Wang X, Chen S, Wang Y. The Antiviral Effect of Isatis Root Polysaccharide against NADC30-like PRRSV by Transcriptome and Proteome Analysis. Int J Mol Sci 2022; 23:ijms23073688. [PMID: 35409050 PMCID: PMC8998840 DOI: 10.3390/ijms23073688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 01/25/2023] Open
Abstract
(1) Background: In recent years, the porcine reproductive and respiratory syndrome virus (PRRSV) has become a virulent pathogen that has caused devastating diseases and economic losses worldwide in the swine industry. IRPS has attracted extensive attention in the field of virology. However, it is not clear that IRPS has an antiviral effect on PRRSV at gene and protein levels. (2) Methods: We used transcriptomic and proteomic analysis to investigate the antiviral effect of IRPS against PRRSV. Additionally, a microbiome was used to explore the effects of IRPS on gut microbes. (3) Results: IRPS significantly extenuated the pulmonary pathological lesions and inflammatory response. We used transcriptomic and proteomic analysis to investigate the antiviral effect of IRPS against PRRSV. In the porcine model, 1669 differentially expressed genes (DEGs) and 370 differentially expressed proteins (DEPs) were identified. Analysis of the DEG/DEP-related pathways indicated immune-system and infectious-disease (viral) pathways, such as the NOD-like receptor (NLR) signaling pathway, toll-like receptor (TLR) signaling pathway, and Influenza A-associated signaling pathways. It is noteworthy that IRPS can inhibit NLR-dependent gene expression, then reduce the inflammatory damage. IRPS could exert beneficial effects on the host by regulating the structure of intestinal flora. (4) Conclusions: The antiviral effect of IRPS on PRRSV can be directly achieved by omics techniques. Specifically, the antiviral mechanism of IPRS can be better elucidated by screening target genes and proteins using transcriptome and proteome sequencing, and then performing enrichment and classification according to DEGs and DEPs.
Collapse
Affiliation(s)
- Dike Jiang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (D.J.); (G.Z.); (P.Z.); (X.Y.); (Y.L.); (Z.Y.); (M.R.)
| | - Ling Zhang
- College of Veterinary Medicine, Jilin University, Changchun 130012, China;
| | - Guangheng Zhu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (D.J.); (G.Z.); (P.Z.); (X.Y.); (Y.L.); (Z.Y.); (M.R.)
| | - Pengfei Zhang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (D.J.); (G.Z.); (P.Z.); (X.Y.); (Y.L.); (Z.Y.); (M.R.)
| | - Xulong Wu
- Branch of Animal Husbandry and Veterinary Medicine, Chengdu Agricultural College, Chengdu 611130, China;
| | - Xueping Yao
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (D.J.); (G.Z.); (P.Z.); (X.Y.); (Y.L.); (Z.Y.); (M.R.)
| | - Yan Luo
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (D.J.); (G.Z.); (P.Z.); (X.Y.); (Y.L.); (Z.Y.); (M.R.)
| | - Zexiao Yang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (D.J.); (G.Z.); (P.Z.); (X.Y.); (Y.L.); (Z.Y.); (M.R.)
| | - Meishen Ren
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (D.J.); (G.Z.); (P.Z.); (X.Y.); (Y.L.); (Z.Y.); (M.R.)
| | - Xinping Wang
- College of Veterinary Medicine, Jilin University, Changchun 130012, China;
- Correspondence: (X.W.); (Y.W.)
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong 999077, China;
| | - Yin Wang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (D.J.); (G.Z.); (P.Z.); (X.Y.); (Y.L.); (Z.Y.); (M.R.)
- Correspondence: (X.W.); (Y.W.)
| |
Collapse
|
32
|
Li L, Chen J, Cao Z, Cao Y, Guo Z, Tong W, Zhou Y, Li G, Jiang Y, Liu C, Yu L, Qiao S, Liu J, Tong G, Gao F. Recombinant Bivalent Live Vectored Vaccine Against Classical Swine Fever and HP-PRRS Revealed Adequate Heterogeneous Protection Against NADC30-Like Strain. Front Microbiol 2022; 12:822749. [PMID: 35069517 PMCID: PMC8767063 DOI: 10.3389/fmicb.2021.822749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/13/2021] [Indexed: 11/20/2022] Open
Abstract
The recombinant bivalent live vectored vaccine rPRRSV-E2 has been proved to be a favorable genetic engineering vaccine against classical swine fever (CSF) and highly pathogenic porcine reproductive and respiratory syndrome (HP-PRRS). NADC30-like strains have recently emerged in China and caused severe disease, and it is necessary to evaluate the vaccine candidate for the currently circulating viruses. This study established a good challenge model to evaluate the candidate rPRRSV-E2 vaccine in preventing infection with a representative NADC30-like strain (ZJqz21). It was shown that the challenge control piglets displayed clinical signs typical of PRRSV, including a persistent fever, dyspnea, moderate interstitial pneumonia, lymph node congestion, and viremia. In contrast, the rPRRSV-E2 vaccination significantly alleviated the clinical signs, yielded a high level of antibodies, provided adequate protection against challenge with ZJqz21, and inhibited viral shedding and the viral load in target tissues. Our results demonstrated that the recombinant bivalent live vectored vaccine strain rPRRSV-E2 can provide efficient protection against the challenge of heterologous circulating NADC30-like strain and could be a promising vaccine candidate for the swine industry.
Collapse
Affiliation(s)
- Liwei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jinxia Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhengda Cao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yunlei Cao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ziqiang Guo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wu Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yanjun Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Guoxin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yifeng Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Changlong Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Lingxue Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Sina Qiao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jiachen Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Fei Gao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
33
|
Synergistic Pathogenicity by Coinfection and Sequential Infection with NADC30-like PRRSV and PCV2 in Post-Weaned Pigs. Viruses 2022; 14:v14020193. [PMID: 35215787 PMCID: PMC8877551 DOI: 10.3390/v14020193] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus (PCVs) are two major viruses that affect pigs. Coinfections between PRRSV and PCV2 are frequently reported in most outbreaks, with clinical presentations involving dyspnea, fever, reduced feed intake, weight loss, and death in fattening pigs. The NADC30-like PRRSV and PCV2d are the main circulating virus strains found in China. This study determines the impact of NADC30-like PRRSV and PCV2d mono-infection and coinfection on the immune system, organ pathology, and viral shedding in five-week-old post-weaned pigs. Pigs were randomly divided into six groups: PBS, PRRSV, PCV2, PRRSV-PCV2 coinfection (co), and PRRSV-PCV2 or PCV2-PRRSV sequential infections. Fever, dyspnea, decreased feed intake, weight loss, and pig deaths occurred in groups infected with PRRSV, Co-PRRSV-PCV2, and PRRSV-PCV2. The viral load was higher in Co-PRRSV-PCV2, PRRSV-PCV2, and PCV2-PRRSV than those mono-infected with PRRSV or PCV2. Additionally, cytokines (IFN-γ, TNF-α, IL-4, and IL-10) produced by pigs under Co-PRRSV-PCV2 and PRRSV-PCV2 groups were more intense than the other groups. Necropsy findings showed hemorrhage, emphysema, and pulmonary adhesions in the lungs of pigs infected with PRRSV. Smaller alveoli and widened lung interstitium were found in the Co-PRRSV-PCV2 and PRRSV-PCV2 groups. In conclusion, PRRSV and PCV2 coinfection and sequential infection significantly increased viral pathogenicity and cytokine responses, resulting in severe clinical signs, lung pathology, and death.
Collapse
|
34
|
Chen Y, Shi K, Liu H, Yin Y, Zhao J, Long F, Lu W, Si H. Development of a multiplex qRT-PCR assay for detection of African swine fever virus, classical swine fever virus and porcine reproductive and respiratory syndrome virus. J Vet Sci 2021; 22:e87. [PMID: 34854269 PMCID: PMC8636662 DOI: 10.4142/jvs.2021.22.e87] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND African swine fever virus (ASFV), classical swine fever virus (CSFV), and porcine reproductive and respiratory syndrome virus (PRRSV) are still prevalent in many regions of China. Co-infections make it difficult to distinguish their clinical symptoms and pathological changes. Therefore, a rapid and specific method is needed for the differential detection of these pathogens. OBJECTIVES The aim of this study was to develop a multiplex real-time quantitative reverse transcription polymerase chain reaction (multiplex qRT-PCR) for the simultaneous differential detection of ASFV, CSFV, and PRRSV. METHODS Three pairs of primers and TaqMan probes targeting the ASFV p72 gene, CSFV 5' untranslated region, and PRRSV ORF7 gene were designed. After optimizing the reaction conditions, including the annealing temperature, primer concentration, and probe concentration, multiplex qRT-PCR for simultaneous and differential detection of ASFV, CSFV, and PRRSV was developed. Subsequently, 1,143 clinical samples were detected to verify the practicality of the assay. RESULTS The multiplex qRT-PCR assay could specifically and simultaneously detect the ASFV, CSFV, and PRRSV with a detection limit of 1.78 × 100 copies for the ASFV, CSFV, and PRRSV, but could not amplify the other major porcine viruses, such as pseudorabies virus, porcine circovirus type 1 (PCV1), PCV2, PCV3, foot-and-mouth disease virus, porcine parvovirus, atypical porcine pestivirus, and Senecavirus A. The assay had good repeatability with coefficients of variation of intra- and inter-assay of less than 1.2%. Finally, the assay was used to detect 1,143 clinical samples to evaluate its practicality in the field. The positive rates of ASFV, CSFV, and PRRSV were 25.63%, 9.36%, and 17.50%, respectively. The co-infection rates of ASFV+CSFV, ASFV+PRRSV, CSFV+PRRSV, and ASFV+CSFV+PRRSV were 2.45%, 2.36%, 1.57%, and 0.17%, respectively. CONCLUSIONS The multiplex qRT-PCR developed in this study could provide a rapid, sensitive, specific diagnostic tool for the simultaneous and differential detection of ASFV, CSFV, and PRRSV.
Collapse
Affiliation(s)
- Yating Chen
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Kaichuang Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China.,Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China.
| | - Huixin Liu
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Yanwen Yin
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Jing Zhao
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Feng Long
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Wenjun Lu
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China.
| |
Collapse
|
35
|
Evolutionary Patterns of Codon Usage in Major Lineages of Porcine Reproductive and Respiratory Syndrome Virus in China. Viruses 2021; 13:v13061044. [PMID: 34072978 PMCID: PMC8228872 DOI: 10.3390/v13061044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/16/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is economically important and characterized by its extensive variation. The codon usage patterns and their influence on viral evolution and host adaptation among different PRRSV strains remain largely unknown. Here, the codon usage of ORF5 genes from lineages 1, 3, 5, and 8, and MLV strains of type 2 PRRSV in China was analyzed. A compositional property analysis of ORF5 genes revealed that nucleotide C is most frequently used at the third position of codons, accompanied by rich GC3s. The effective number of codon (ENC) and codon pair bias (CPB) values indicate that all ORF5 genes have low codon bias and the differences in CPB scores among four lineages are almost not significant. When compared with host codon usage patterns, lineage 1 strains show higher CAI and SiD values, with a high similarity to pig, which might relate to its predominant epidemic propensity in the field. The CAI, RCDI, and SiD values of ORF5 genes from different passages of MLV JXA1R indicate no relation between attenuation and CPB or codon adaptation decrease during serial passage on non-host cells. These findings provide a novel way of understanding the PRRSV's evolution, related to viral survival, host adaptation, and virulence.
Collapse
|
36
|
Porcine Reproductive and Respiratory Syndrome Virus: Immune Escape and Application of Reverse Genetics in Attenuated Live Vaccine Development. Vaccines (Basel) 2021; 9:vaccines9050480. [PMID: 34068505 PMCID: PMC8150910 DOI: 10.3390/vaccines9050480] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 01/16/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), an RNA virus widely prevalent in pigs, results in significant economic losses worldwide. PRRSV can escape from the host immune response in several processes. Vaccines, including modified live vaccines and inactivated vaccines, are the best available countermeasures against PRRSV infection. However, challenges still exist as the vaccines are not able to induce broad protection. The reason lies in several facts, mainly the variability of PRRSV and the complexity of the interaction between PRRSV and host immune responses, and overcoming these obstacles will require more exploration. Many novel strategies have been proposed to construct more effective vaccines against this evolving and smart virus. In this review, we will describe the mechanisms of how PRRSV induces weak and delayed immune responses, the current vaccines of PRRSV, and the strategies to develop modified live vaccines using reverse genetics systems.
Collapse
|
37
|
Zhou L, Ge X, Yang H. Porcine Reproductive and Respiratory Syndrome Modified Live Virus Vaccine: A "Leaky" Vaccine with Debatable Efficacy and Safety. Vaccines (Basel) 2021; 9:vaccines9040362. [PMID: 33918580 PMCID: PMC8069561 DOI: 10.3390/vaccines9040362] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) caused by the PRRS virus (PRRSV) is one of the most economically important diseases, that has significantly impacted the global pork industry for over three decades, since it was first recognized in the United States in the late 1980s. Attributed to the PRRSV extensive genetic and antigenic variation and rapid mutability and evolution, nearly worldwide epidemics have been sustained by a set of emerging and re-emerging virus strains. Since the first modified live virus (MLV) vaccine was commercially available, it has been widely used for more than 20 years, for preventing and controlling PRRS. On the one hand, MLV can induce a protective immune response against homologous viruses by lightening the clinical signs of pigs and reducing the virus transmission in the affected herd, as well as helping to cost-effectively increase the production performance on pig farms affected by heterologous viruses. On the other hand, MLV can still replicate in the host, inducing viremia and virus shedding, and it fails to confer sterilizing immunity against PRRSV infection, that may accelerate viral mutation or recombination to adapt the host and to escape from the immune response, raising the risk of reversion to virulence. The unsatisfied heterologous cross-protection and safety issue of MLV are two debatable characterizations, which raise the concerns that whether it is necessary or valuable to use this leaky vaccine to protect the field viruses with a high probability of being heterologous. To provide better insights into the immune protection and safety related to MLV, recent advances and opinions on PRRSV attenuation, protection efficacy, immunosuppression, recombination, and reversion to virulence are reviewed here, hoping to give a more comprehensive recognition on MLV and to motivate scientific inspiration on novel strategies and approaches of developing the next generation of PRRS vaccine.
Collapse
|
38
|
Jiang R, Zhang P, Wu X, Wang Y, Rehman T, Yao X, Luo Y, Yang Z. Expression of antimicrobial peptide Cecropin P1 in Saccharomyces cerevisiae and its antibacterial and antiviral activity in vitro. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2020.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
39
|
Zhao J, Zhu L, Huang J, Yang Z, Xu L, Gu S, Huang Y, Zhang R, Sun X, Zhou Y, Xu Z. Genetic characterization of a novel recombined porcine reproductive and respiratory syndrome virus 2 among Nadc30-like, Jxa1-like and TJ-like strains. Vet Med Sci 2020; 7:697-704. [PMID: 33277984 PMCID: PMC8136965 DOI: 10.1002/vms3.402] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 02/03/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically devastating viral diseases in the global pig industry, including China. Recently, we successfully isolated a porcine reproductive and respiratory syndrome virus (PRRSV) from lung tissue and peripheral blood of piglets at a farm from Dujiangyan in Sichuan, China, and named it the DJY-19 strain. The full-length genome sequence of DJY-19 shared 86.8%-94.1% nucleotide similarity with NADC30-like and NADC30 PRRSV strains. We compared the open reading frame (ORF) 5 gene of DJY-19 with 34 PRRSV strains from Genbank. Phylogenetic analysis showed that DJY-19 clustered with NADC30 strains, characterized by a predicted 131-amino-acid deletion in the nonstructural protein (NSP) 2. The results of homology analysis showed that the homology between DJY-19 and NADC30 (JN654459.1) strains was the highest (95.9%), whereas homology with other domestic strains was lower (80.9%-92.6%). Furthermore, we identified four recombination breakpoints in the DJY-19 genome; they separated the DJY-19 genome into four regions. The 8106-9128 nucleotide (nt) region of DIY-19 was highly similar to the TJ strain, and the 12106-12580 nt region of DIY-19 was highly similar to the JXA1-R strain. Our findings demonstrate that DJY-19 arose from the recombination of North America NADC30 strain and TJ strain and JXA1-R in China. The application of multiple attenuated vaccine strains has led to complex recombination of PRRSV strains in China. This study provides a theoretical basis for making a more reasonable PRRS virus control and prevention strategy.
Collapse
Affiliation(s)
- Jun Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- College of Veterinary Medicine, Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jianbo Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zexiao Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lei Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sirui Gu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Rubo Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiangang Sun
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuancheng Zhou
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
40
|
Guo Z, Chen XX, Li X, Qiao S, Deng R, Zhang G. Prevalence and genetic characteristics of porcine reproductive and respiratory syndrome virus in central China during 2016-2017: NADC30-like PRRSVs are predominant. Microb Pathog 2019; 135:103657. [PMID: 31398529 DOI: 10.1016/j.micpath.2019.103657] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/26/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
Abstract
NADC30-like strains of porcine reproductive and respiratory syndrome virus (PRRSV) were firstly reported in China in 2013. Since then, these strains have been epidemic in more than 13 provinces/regions. During 2016-2017, a total of 18 PRRSV isolates were obtained from 52 clinical samples in Henan province. Based on comparative and phylogenetic analyses of ORF5 and partial Nsp2 genes, 83.3% (15/18) isolates belonged to NADC30-like strains, and the ORF5 shared 87.4%-95.5% nucleotide identity with NADC30/JL580 and 84.2%-89.9% with JXA1/CH-1a, respectively. The genetic variation analysis showed that extensive amino acid substitutions happened in the significant regions of ORF5 including major linear antigenic epitopes (27-30aa, 37-45aa, 52-61aa) and the potential N-glycosylation sites (32-35aa). 16.7% (3/18) isolates were very close to HP-PRRSV derived attenuated strains. Moreover, these three isolates shared common residues at the positions 33D, 59 N, 164R, 196R in ORF5 and 303D, 399T, 575V, 598R, 604G in Nsp2, which were thought to be unique to modified live vaccines (MLVs) or their derivatives. Therefore, they were probably the revertants from MLVs. Our studies showed that the HP-PRRSV strains seemed to be gradually disappearing and NADC30-like strains had become the main causative agents of PRRS in central China. Comparing with HP-PRRSVs, the ORF5 of NADC30-like PRRSV strains displayed extensive amino acid mutations which may be related with immune evasion. Furthermore, the circulation of MLV derivatives in the fields made the diagnosis and control of PRRSV more complicated.
Collapse
Affiliation(s)
- Zhenhua Guo
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, PR China
| | - Xin-Xin Chen
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, PR China
| | - Xiang Li
- Department of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650100, PR China
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, PR China
| | - Ruiguang Deng
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, PR China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, PR China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China.
| |
Collapse
|
41
|
Fluorescence resonance energy transfer combined with asymmetric PCR for broad and sensitive detection of porcine reproductive and respiratory syndrome virus 2. J Virol Methods 2019; 272:113710. [PMID: 31351984 DOI: 10.1016/j.jviromet.2019.113710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 07/24/2019] [Accepted: 07/24/2019] [Indexed: 11/21/2022]
Abstract
With its ever-increasing viral genetic diversity, accurate diagnosis of porcine reproductive and respiratory syndrome virus (PRRSV) infection is indispensable for PRRSV control. Here, a sensitive graphene oxide (GO)-based FRET method was developed to detect PRRSV-2 based on the ability of GO to quench fluorophore by fluorescence resonance energy transfer (FRET). Using primers and a fluorophore-labeled ssDNA probe targeting a conserved region between the PRRSV M gene and 3'UTR, asymmetric PCR specifically amplified viral ssDNA that could anneal with probe to generate dsDNA only in the presence of virus. Upon exonuclease III treatment to release the probe fluorophore, which degrades dsDNA with blunt ends or recessed 3´-termini, the ssDNA annealed with other probe to generate enhanced fluorescence. This GO-based FRET assay specifically detected both classical and highly pathogenic PRRSV, with analytical sensitivity approaching 10 copies/μL, similar to that of real-time PCR but greater than that of conventional reverse transcription PCR (RT-PCR). Consistent with real-time RT-PCR detection, the assay developed here exhibited high diagnostic sensitivity for virus detection of sera from experimentally and naturally infected pigs. Thus, this novel GO-based FRET assay combined with asymmetric PCR detection is sensitive and specific and will be valuable for future PRRSV diagnosis.
Collapse
|
42
|
Cao S, Cong F, Tan M, Ding G, Liu J, Li L, Zhao Y, Liu S, Xiao Y. 14-3-3ε acts as a proviral factor in highly pathogenic porcine reproductive and respiratory syndrome virus infection. Vet Res 2019; 50:16. [PMID: 30819256 PMCID: PMC6394020 DOI: 10.1186/s13567-019-0636-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/15/2019] [Indexed: 02/06/2023] Open
Abstract
The highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) emerged in 2006 in China and caused great economic losses for the swine industry because of the lack of an effective vaccine. 14-3-3 proteins are generating significant interest as potential drug targets by allowing the targeting of specific pathways to elicit therapeutic effects in human diseases. In a previous study, 14-3-3s were identified to interact with non-structural protein 2 (NSP2) of PRRSV. In the present study, the specific subtype 14-3-3ε was confirmed to interact with NSP2 and play a role in the replication of the HP-PRRSV TA-12 strain. Knockdown of 14-3-3ε in Marc-145 cells and porcine alveolar macrophages (PAMs) caused a significant decrease in TA-12 replication, while stable overexpression of 14-3-3ε caused a significant increase in the replication of TA-12 and low pathogenic PRRSV (LP-PRRSV) CH-1R. The 14-3-3 inhibitor difopein also decreased TA-12 and CH-1R replication in Marc-145 cells and PAMs. These findings are consistent with 14-3-3ε acting as a proviral factor and suggest that 14-3-3ε siRNA and difopein are therapeutic candidates against PRRSV infection.
Collapse
Affiliation(s)
- Shengliang Cao
- Department of Fundamental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Fangyuan Cong
- Department of Fundamental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Min Tan
- Department of Fundamental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Guofei Ding
- Department of Fundamental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Jiaqi Liu
- Department of Fundamental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Li Li
- Department of Fundamental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Yuzhong Zhao
- Department of Fundamental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Sidang Liu
- Department of Fundamental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Yihong Xiao
- Department of Fundamental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China. .,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China. .,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
43
|
Kwon T, Yoo SJ, Park JW, Kang SC, Park CK, Lyoo YS. Genomic characteristics and pathogenicity of natural recombinant porcine reproductive and respiratory syndrome virus 2 harboring genes of a Korean field strain and VR-2332-like strain. Virology 2019; 530:89-98. [PMID: 30798067 PMCID: PMC7172094 DOI: 10.1016/j.virol.2019.01.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 01/03/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS), an economically-important disease caused by PRRS virus (PRRSV), has become endemic to most pig-producing countries. Point mutation and recombination are responsible for genetic heterogeneity, resulting in circulation of genetically-diverse strains. However, no natural recombinant PRRSV has yet been identified in Korea. Here, we successfully isolated natural recombinant PRRSV-2 (KU-N1202) using cell culture, investigated its genomic characteristics, and further evaluated its pathogenicity. KU-N1202 is a recombinant strain between Korean MN184-like and VR-2332-like strains. Specifically, ORF5 to partial ORF7 of the VR-2332-like strain was inserted into the backbone of a CP07-626-2-like strain. KU-N1202 induced mild-to-moderate clinical signs and mild histopathological changes with low viral loads in challenged pigs. Contact pigs showed minimal clinical signs and lower viral loads than those in the challenge group. This study demonstrates the genomic characteristics and pathogenicity of natural recombinant PRRSV-2, illustrating the potential importance of recombination in the field. A natural recombinant PRRSV-2 virus (KU-N1202) was isolated using cell culture. The virus harbored the genes from field strain and VR-2332-like strain. KU-N1202 induced mild-to-moderate clinical signs with low viral loads in challenged pig. Contact pigs showed minimal clinical signs with relatively low viral loads.
Collapse
Affiliation(s)
- Taeyong Kwon
- College of Veterinary Medicine Konkuk University, Seoul 05029, Republic of Korea
| | - Sung J Yoo
- College of Veterinary Medicine Konkuk University, Seoul 05029, Republic of Korea
| | - Jun Woo Park
- College of Veterinary Medicine Konkuk University, Seoul 05029, Republic of Korea
| | | | - Choi-Kyu Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Young S Lyoo
- College of Veterinary Medicine Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
44
|
Liang W, Zhao T, Peng Z, Sun Y, Stratton CW, Zhou D, Tang X, Tian Y, Chen H, Wu B. Epidemiological and genetic characteristics of porcine reproductive and respiratory syndrome virus circulating in central and South China in 2016. Acta Trop 2019; 190:83-91. [PMID: 30423311 DOI: 10.1016/j.actatropica.2018.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/29/2018] [Accepted: 11/06/2018] [Indexed: 11/25/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a leading cause of reproductive failure in sows and respiratory disorders in all ages of pigs; PRRSV is one of the most serious threats to the global pig industry. Continuously monitoring the epidemiological and genetic characteristics of PRRSV epidemic strains is beneficial for PRRSV prevention and control. In this study, we detected PRRSV from different types of porcine samples collected from 257 pig farms in Central (Henan Province) and South China (Fujian, Guangdong, and Guangxi Provinces) in 2016. Of the 1047 samples collected, 530 (50.62%) were positive for PRRSV by RT-PCR. The positive rates of virus detection for each of the geographical regions were higher than 44.25%. These findings suggest that the prevalence of PRRSV continues to be a major problem for the pig industry in China. Phylogenetic analysis showed that PRRSV2 was still the prevalent species in Central and South China, and highly pathogenic PRRSV (HP-PRRSV) was the predominate PRRSV type. However, the emergence and circulation of novel PRRSV strains such as the GM2-like strains and NADC30-like strains is worrisome and should receive more attention. In terms of different geographical regions, HP-PRRSV strains were the predominate PRRSV strains circulating in South China, while both HP-PRRSV strains and NADC30-like strains appeared to be the predominate PRRSV strains in Central China (Henan Province). These findings demonstrate that PRRSV types circulating in different regions in China are some different. In addition, a number of amino acid mutation types including amino acid changes and deletions were observed in both the GP5 and Nsp2 proteins. Our study provides important information on the epidemiological and genetic characteristics of PRRSV strains currently circulating in China.
Collapse
|
45
|
Independent evolution of porcine reproductive and respiratory syndrome virus 2 with genetic heterogeneity in antigenic regions of structural proteins in Korea. Arch Virol 2018; 164:213-224. [PMID: 30317394 DOI: 10.1007/s00705-018-4048-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/05/2018] [Indexed: 10/28/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an economically important pathogen that affects the global swine industry. The continuous evolution of this virus has made control and prevention difficult, which emphasizes the importance of monitoring currently circulating PRRSV strains. In this study, we investigated the genetic characteristics of whole structural genes of 35 PRRSV-2 isolates that circulated between 2012 and 2017 in Korea. Genetic and phylogenetic analysis demonstrated that a recently identified PRRSV-2 shared a relatively low level of nucleotide sequence identity that ranged from 86.2% to 92.8%; however, they were clustered into four distinct Korean field clades, except KU-N1702, in ORF2-7-based phylogeny. KU-N1702 was closely related to the NADC30-like strains that were identified in the USA and China. Amino acid sequence analysis showed that the GP5 neutralizing epitope was conserved among the KU viruses. In contrast, the viruses had genetic mutations in key residues for viral neutralization within GP5 and M. For minor structural proteins, neutralizing epitopes, aa 41-55 of GP2, 61-75 of GP3, and 51-65 of GP4, were variable among the KU viruses. Bioinformatics demonstrated diversifying evolution within the GP2 and GP4 neutralizing epitopes and the emergence of a novel glycosylation site within the GP3 and GP4 neutralizing epitopes. Taken together, these data provide evidence that Korean PRRSV-2 evolved independently in Korea, with genetic heterogeneity in antigenic regions of structural proteins.
Collapse
|
46
|
Liu Y, Hu Y, Chai Y, Liu L, Song J, Zhou S, Su J, Zhou L, Ge X, Guo X, Han J, Yang H. Identification of Nonstructural Protein 8 as the N-Terminus of the RNA-Dependent RNA Polymerase of Porcine Reproductive and Respiratory Syndrome Virus. Virol Sin 2018; 33:429-439. [PMID: 30353315 PMCID: PMC6235764 DOI: 10.1007/s12250-018-0054-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/30/2018] [Indexed: 01/05/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a member within the family Arteriviridae of the order Nidovirales. Replication of this positive-stranded RNA virus within the host cell involves expression of viral replicase proteins encoded by two ORFs, namely ORF1a and ORF1b. In particular, translation of ORF1b depends on a -1-ribosomal frameshift strategy. Thus, nonstructural protein 9 (nsp9), the first protein within ORF1b that specifies the function of the viral RNA-dependent RNA polymerase, is expressed as the C-terminal extension of nsp8, a small nsp that is encoded by ORF1a. However, it has remained unclear whether the mature form of nsp9 in virus-infected cells still retains nsp8, addressing which is clearly critical to understand the biological function of nsp9. By taking advantage of specific antibodies to both nsp8 and nsp9, we report the following findings. (1) In infected cells, PRRSV nsp9 was identified as a major product with a size between 72 and 95 kDa (72-95 KDa form), which exhibited the similar mobility on the gel to the in vitro expressed nsp8-9ORF1b, but not the ORF1b-coded portion (nsp9ORF1b). (2) The antibodies to nsp8, but not to nsp7 or nsp10, could detect a major product that had the similar mobility to the 72-95 KDa form of nsp9. Moreover, nsp9 could be co-immunoprecipitated by antibodies to nsp8, and vice versa. (3) Neither nsp4 nor nsp2 PLP2 was able to cleave nsp8-nsp9 in vitro. Together, our studies provide experimental evidence to suggest that nsp8 is an N-terminal extension of nsp9. Our findings here paves way for further charactering the biological function of PRRSV nsp9.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Yunhao Hu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Yue Chai
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Liping Liu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Jiangwei Song
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Shaochuan Zhou
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Jia Su
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Jun Han
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China.
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
47
|
Viral communities associated with porcine respiratory disease complex in intensive commercial farms in Sichuan province, China. Sci Rep 2018; 8:13341. [PMID: 30190594 PMCID: PMC6127300 DOI: 10.1038/s41598-018-31554-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/22/2018] [Indexed: 01/08/2023] Open
Abstract
Porcine respiratory disease complex (PRDC), a common piglet disease, causes substantive economic losses in pig farming. To investigate the viral diversity associated with PRDC, the viral communities in serum and nasal swabs from 26 PRDC-affected piglets were investigated using metagenomics. By deep sequencing and de novo assembly, 17 viruses were identified in two pooled libraries (16 viruses from serum, nine from nasal swabs). Porcine circovirus (PCV)-2, porcine reproductive and respiratory syndrome virus (PRRSV) and pseudorabies virus, all commonly associated with PRDC, were identified in the two pooled samples by metagenomics, but most viruses comprised small linear and circular DNAs (e.g. parvoviruses, bocaviruses and circoviruses). PCR was used to compare the detection rates of each virus in the serum samples from 36 PRDC-affected piglets versus 38 location-matched clinically healthy controls. The average virus category per sample was 6.81 for the PRDC-affected piglets and 4.09 for the controls. Single or co-infections with PCV-2 or PRRSV had very high detection rates in the PRDC-affected piglets. Interestingly, porcine parvovirus (PPV)-2, PPV-3, PPV-6 and torque teno sus virus 1a were significantly associated with PRDC. These results illustrate the complexity of viral communities in the PRDC-affected piglets and highlight the candidate viruses associated with it.
Collapse
|
48
|
Zhou L, Kang R, Zhang Y, Ding M, Xie B, Tian Y, Wu X, Zuo L, Yang X, Wang H. Whole Genome Analysis of Two Novel Type 2 Porcine Reproductive and Respiratory Syndrome Viruses with Complex Genome Recombination between Lineage 8, 3, and 1 Strains Identified in Southwestern China. Viruses 2018; 10:v10060328. [PMID: 29914134 PMCID: PMC6024730 DOI: 10.3390/v10060328] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/09/2018] [Accepted: 06/10/2018] [Indexed: 11/16/2022] Open
Abstract
Recombination among porcine reproductive and respiratory syndrome viruses (PRRSVs) is thought to contribute to the emergence of new PRRSV variants. In this study, two newly emerged PRRSV strains, designated SCcd16 and SCya17, are isolated from lung tissues of piglets in Southwestern China. Genome comparative analysis reveals that SCcd16/SCya17 exhibit 93.1%/93.2%, 86.9%/87.0%, 85.3%/85.7%, and 83.6%/82.0% nucleotide similarity to PRRSVs JXA1, VR-2332, QYYZ and NADC30, respectively. They only exhibit 44.8%/45.1% sequence identity with LV (PRRSV-1), indicating that both emergent strains belong to the PRRSV-2 genotype. Genomic sequence alignment shows that SCcd16 and SCya17 have the same discontinuous 30-amino acid (aa) deletion in Nsp2 of the highly pathogenic Chinese PRRSV strain JXA1, when compared to strain VR-2332. Notably, SCya17 shows a unique 5-nt deletion in its 3’-UTR. Phylogenetic analysis shows that both of the isolates are classified in the QYYZ-like lineage based on ORF5 genotyping, whereas they appear to constitute an inter-lineage between JXA1-like and QYYZ-like lineages based on their genomic sequences. Furthermore, recombination analyses reveal that the two newly emerged PRRSV isolates share the same novel recombination pattern. They have both likely originated from multiple recombination events between lineage 8 (JXA1-like), lineage 1 (NADC30-like), and lineage 3 (QYYZ-like) strains that have circulated in China recently. The genomic data from SCcd16 and SCya17 indicate that there is on going evolution of PRRSV field strains through genetic recombination, leading to outbreaks in the pig populations in Southwestern China.
Collapse
Affiliation(s)
- Long Zhou
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, 29# Wangjiang Road, Chengdu 610064, China.
| | - Runmin Kang
- Sichuan Animal Science Academy, Sichuan Provincial Key laboratory of Animal Breeding and Genetics, Chengdu 610066, China.
| | - Yi Zhang
- Sichuan Provincial Center for Animal Disease Control and Prevention, Wuhou District, Chengdu 610041, China.
| | - Mengdie Ding
- Sichuan Provincial Center for Animal Disease Control and Prevention, Wuhou District, Chengdu 610041, China.
| | - Bo Xie
- Chengdu Chia Tai Agro-industry & Food Co., Ltd., Animal Healthy Disease Service, Gongping Town, Wenjiang District, Chengdu 610081, China.
| | - Yiming Tian
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, 29# Wangjiang Road, Chengdu 610064, China.
| | - Xuan Wu
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, 29# Wangjiang Road, Chengdu 610064, China.
| | - Lei Zuo
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, 29# Wangjiang Road, Chengdu 610064, China.
| | - Xin Yang
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, 29# Wangjiang Road, Chengdu 610064, China.
| | - Hongning Wang
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, 29# Wangjiang Road, Chengdu 610064, China.
| |
Collapse
|
49
|
Gao F, Jiang Y, Li G, Zhou Y, Yu L, Li L, Tong W, Zheng H, Zhang Y, Yu H, Shan T, Yang S, Liu H, Zhao K, Tong G. Porcine reproductive and respiratory syndrome virus expressing E2 of classical swine fever virus protects pigs from a lethal challenge of highly-pathogenic PRRSV and CSFV. Vaccine 2018; 36:3269-3277. [PMID: 29724508 DOI: 10.1016/j.vaccine.2018.04.079] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/13/2018] [Accepted: 04/23/2018] [Indexed: 12/25/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) and classical swine fever (CSF) are economically significant diseases that affect the swine industry worldwide. However, the current vaccination strategy, which uses two single live attenuated vaccines, can result in interference for each other. In addition, the universally used CSFV vaccine C-strain does not allow for differentiation of infected and vaccinated animals. In this study, rPRRSV-E2, PRRS virus (PRRSV) expressing CSF virus (CSFV) E2, was constructed by reverse genetics. The E2 gene of CSFV was inserted between ORF1b and ORF2 in the genome of the PRRS vaccine virus, HuN4-F112. A copy of transcriptional regulatory sequence 6 was inserted at the 3' terminal of the exogenous gene to produce CSFV E2 as a unique subgenomic mRNA transcript. The rPRRSV-E2 was stable for at least 25 serial cell passages. Single-shot intramuscular immunization of rPRRSV-E2 into pigs induced PRRSV-specific and CSFV-specific antibodies and fully protected pigs from lethal challenge with highly-pathogenic PRRSV and CSFV. These results demonstrate that a novel strategy for recombinant PRRSV production is effective, and suggest that rPRRSV-E2 is a promising live, virus-vectored vaccine against PRRS and a marker vaccine against CSF.
Collapse
Affiliation(s)
- Fei Gao
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Yifeng Jiang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Guoxin Li
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Yanjun Zhou
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Lingxue Yu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Liwei Li
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Wu Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Hao Zheng
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Yujiao Zhang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Hai Yu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Tongling Shan
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Shen Yang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Huan Liu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Kuan Zhao
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Guangzhi Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
50
|
Wang HM, Liu YG, Tang YD, Liu TX, Zheng LL, Wang TY, Liu SG, Wang G, Cai XH. A natural recombinant PRRSV between HP-PRRSV JXA1-like and NADC30-like strains. Transbound Emerg Dis 2018. [DOI: 10.1111/tbed.12852] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- H.-M. Wang
- State Key Laboratory of Veterinary Biotechnology; Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences; Harbin China
| | - Y.-G. Liu
- State Key Laboratory of Veterinary Biotechnology; Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences; Harbin China
| | - Y.-D. Tang
- State Key Laboratory of Veterinary Biotechnology; Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences; Harbin China
| | - T.-X. Liu
- State Key Laboratory of Veterinary Biotechnology; Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences; Harbin China
| | - L.-L. Zheng
- State Key Laboratory of Veterinary Biotechnology; Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences; Harbin China
| | - T.-Y. Wang
- State Key Laboratory of Veterinary Biotechnology; Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences; Harbin China
| | - S.-G. Liu
- State Key Laboratory of Veterinary Biotechnology; Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences; Harbin China
| | - G. Wang
- State Key Laboratory of Veterinary Biotechnology; Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences; Harbin China
| | - X.-H. Cai
- State Key Laboratory of Veterinary Biotechnology; Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences; Harbin China
| |
Collapse
|