1
|
Marew L, Meheret F, Asmare B. Effect of Processed Coffee Husk on Feed Intake, Nutrient Digestibility, Body Weight Changes and Economic Feasibility of Bonga Sheep Fed on Natural Pasture Hay as a Basal Diet. Vet Med Sci 2024; 10:e70118. [PMID: 39529208 PMCID: PMC11554547 DOI: 10.1002/vms3.70118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/10/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Ethiopia is one of the world's coffee producers, generating about 192,000 metric tonnes of coffee husks annually as by-products. The material can be used for ruminant diets to improve the nutrient utilisation of animals. However, coffee husk has toxic compounds, which can be minimised through different processing methods. Though the above techniques can minimise the toxicity level of coffee husk and increase the bioavailability of nutrients, there is scanty information on the comparative efficacy of these techniques, especially in ruminant nutrition. OBJECTIVE The study was conducted to examine the effect of processed coffee husk on feed intake, nutrient digestibility, body weight changes and profitability of Bonga rams based on natural pasture hay. METHODS In the experiment, 24 rams were used, and the rams were grouped into six blocks based on initial body weight (mean BW 21.5 ± 1.01 kg). The rams were quarantined for 21 days, and each ram was randomly assigned to one of the experimental feed treatments in a randomised complete block design (RCBD). The experimental treatment feeds include 400 g conventional concentrate mix (CM) containing Noug seed cake and wheat bran (T1); 200 g boiled coffee husk + 200 g CM (T2); 200 g roasted coffee husk + 200 g CM (T3) and 200 g raw coffee husk + 200 g CM (T4). The CM was made in the ratio of 1:1. The data collected from the 90-day experimental period were: dry matter and nutrient intakes, initial body weight, final body weight and body weight changes. After the growth experiment, a 7-day digestibility trial was followed by collecting faeces using a harness bag. The data were managed using Microsoft (MS) Excel 2010 and analysed using R software (v. 4.3.2). The chemical compositions of the CM had maximum crude protein (22%), followed by boiled coffee husk (14.74%), which was higher than natural pasture hay (6.91%) and raw coffee husk (12.4%). RESULTS The total dry matter intake (p < 0.05), metabolisable energy, and total nutrient intakes of rams were significantly (p < 0.001) maximised when rams fed on boiled coffee husk (T2) than raw (T4) and roasted (T4) coffee husk, except for NDF and organic matter intakes. The apparent digestibility of nutrients and feed conversion efficiency were maximised for rams assigned to T2. There was maximum daily body weight gain (p < 0.001) when rams were supplemented with boiled coffee husk (T2). Also, body weight changes of rams were significantly (p < 0.001) higher for rams supplementation with boiled coffee husk. CONCLUSION Therefore, the boiled coffee husk as an alternative feed resource can be replaced by about half of the commercial CM without adverse effects of anti-nutritional factors and enhance the income of smallholder farmers in the coffee crop-livestock production system.
Collapse
Affiliation(s)
- Lidya Marew
- Department of Animal Sciences, College of Agriculture and Environmental SciencesBahir Dar UniversityBahir DarEthiopia
| | - Fentahun Meheret
- Department of Animal Sciences, College of Agriculture and Environmental SciencesBahir Dar UniversityBahir DarEthiopia
| | - Bimrew Asmare
- Department of Animal Sciences, College of Agriculture and Environmental SciencesBahir Dar UniversityBahir DarEthiopia
| |
Collapse
|
2
|
Zhang X, Su P, Wang W, Yang W, Ge Y, Jiang K, Huang J. Optimized carbonization of coffee shell via response surface methodology: A circular economy approach for environmental remediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123018. [PMID: 38016590 DOI: 10.1016/j.envpol.2023.123018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/11/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023]
Abstract
The disposal of coffee shell waste on farmland, is a common practice that can causing the environmental and waste valuable resources. Carbonization has been identified as an effective method for transforming coffee shells into useful products that mitigate environmental pollution. Through the response surface methodology, the carbonization conditions of the coffee shells were optimized and its potential as a biochar-based slow-release urea fertilizer was explored. Experiments were conducted on coffee shell performance under varying carbonization conditions such as temperature (600-1000 °C), time (1-5 h), and heating rate (5-20 °C/min). The results indicated that the ideal urea adsorption was 56.3 mg/g, achieved under carbonization conditions of 2.83 h, 809 °C, and 15.3 °C/min. The optimal nutrient release rate within seven days was 45.4% under carbonization conditions of 3.19 h, 813 °C, and 15.0 °C/min. The infrared spectroscopy analysis indicates that carbonization conditions influenced the absorption peak intensity of coffee shell biochar, while the functional group types remain unchanged. The biochar exhibits diverse functional groups and abundant pores, making it a promising candidate for use as a biochar-based fertilizer material. Overall, the findings demonstrate an effective waste management approach that significantly reduces environmental pollutants while remediating pollution.
Collapse
Affiliation(s)
- Xia Zhang
- Faculty of Mechanical and Electrical Engineering, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Panjie Su
- Faculty of Mechanical and Electrical Engineering, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Weichao Wang
- Faculty of Mechanical and Electrical Engineering, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Wencai Yang
- Faculty of Mechanical and Electrical Engineering, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Yuanyuan Ge
- Faculty of Mechanical and Electrical Engineering, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Kuaile Jiang
- College of Tropical Crops, Yunnan Agricultural University, Puer, Yuannan, 665000, China
| | - Junwei Huang
- Faculty of Mechanical and Electrical Engineering, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
| |
Collapse
|
3
|
Divyashri G, Tulsi NP, Murthy TPK, Shreyas S, Kavya R, Jaishree IK. Valorization of coffee bean processing waste for bioethanol production: comparison and evaluation of mass transfer effects in fermentations using free and encapsulated cells of Saccharomyces cerevisiae. Bioprocess Biosyst Eng 2024; 47:169-179. [PMID: 38195720 DOI: 10.1007/s00449-023-02961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/09/2023] [Indexed: 01/11/2024]
Abstract
Coffee husk, an agricultural waste abundant in carbohydrates and nutrients, is typically discarded through landfills, mixed with animal fodder, or incinerated. However, in alignment with sustainable development principles, researchers worldwide are exploring innovative methods to harness the value of coffee husk, transforming it into profitable products. One such avenue is the biotechnological approach to bioethanol production from agricultural wastes, offering an eco-friendly alternative to mitigate the adverse effects of fossil fuels. This study delves into the feasibility of utilizing coffee husk as a substrate for bioethanol production, employing and comparing various hydrolysis methods. The enzymatic hydrolysis method outshone thermochemical and thermal approaches, yielding 1.84 and 3.07 times more reducing sugars in the hydrolysate, respectively. In examining bioethanol production, a comparison between free and encapsulated cells in enzyme hydrolysate revealed that free-cell fermentation faced challenges due to cell viability issues. Under specific fermentation conditions, bioethanol yield (0.59 and 0.83 g of bioethanol/g of reducing sugar) and productivity (0.1 and 0.12 g/L h) were achieved for free and encapsulated cells, respectively. However, it was noted that bioethanol production by encapsulated cells was more significantly influenced by internal mass transfer effects, as indicated by the Thiele modulus and effectiveness factor. In conclusion, our findings underscore the potential of coffee husk as a valuable substrate for bioethanol production, showcasing its viability in contributing to sustainable and eco-friendly practices.
Collapse
Affiliation(s)
- G Divyashri
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bangalore, 560 054, India.
| | - N P Tulsi
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bangalore, 560 054, India
| | - T P Krishna Murthy
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bangalore, 560 054, India
| | - S Shreyas
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bangalore, 560 054, India
| | - R Kavya
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bangalore, 560 054, India
| | - I K Jaishree
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bangalore, 560 054, India
| |
Collapse
|
4
|
Divyashri G, Krishna Murthy TP, Ragavan KV, Sumukh GM, Sudha LS, Nishka S, Himanshi G, Misriya N, Sharada B, Anjanapura Venkataramanaiah R. Valorization of coffee bean processing waste for the sustainable extraction of biologically active pectin. Heliyon 2023; 9:e20212. [PMID: 37809968 PMCID: PMC10559994 DOI: 10.1016/j.heliyon.2023.e20212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
The dry method of coffee processing generates a significant amount of coffee husk, an agricultural waste for which currently there is a lack of profitable use, and their disposal constitutes a major environmental problem. Pectin was extracted from coffee husk using citric acid solution (pH 1.5) by microwave-assisted extraction method, followed by using ice-cold ethanol. The coffee husk pectin (CHP) with a yield of 40.2% was characterized using SEM, FT-IR, and XRD techniques. The CHP exhibited significant in-vitro antioxidant activity as measured by using 2,2-diphenyl-1-picrylhydrazyl; (IC50 value of 395.1 ± 0.42 μg/mL), ferrous reducing antioxidant capacity (A700 nm = 0.55 ± 0.08), 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging (42.02 ± 0.38%) and ascorbic acid auto-oxidation inhibition (92.01 ± 0.28%) assays. CHP demonstrated antibacterial activity against Escherichia coli and Bacillus cereus with an inhibition diameter of 20 ± 1.01 mm and 18 ± 0.84 mm, respectively. Interestingly, CHP showed a significant anti-inflammatory effect by negatively modulating the expressions of TNF-α and TGF- β in LPS-stimulated macrophage cell lines. Collectively, our findings suggest that the coffee husk is a potential source of commercial pectin, microwave-assisted extraction has a great potency on the commercial pectin extraction from the coffee husk and CHP demonstrates significant biological activity.
Collapse
Affiliation(s)
- Gangaraju Divyashri
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, 560 054, Karnataka, India
| | | | | | | | - Lingam Sadananda Sudha
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, 560 054, Karnataka, India
| | - Srikanth Nishka
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, 560 054, Karnataka, India
| | - Gupta Himanshi
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, 560 054, Karnataka, India
| | - Nafisa Misriya
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, 560 054, Karnataka, India
| | - Bannappa Sharada
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, 560 054, Karnataka, India
| | - Raghu Anjanapura Venkataramanaiah
- Faculty of Allied health Sciences, BLDE (Deemed-to-be-university), Vijaypura, 586 103, India
- Department of Food Chemistry, Faculty of Engineering and Technology, Jain Deemed-to-be University, Bengaluru, 562 112, Karnataka, India
| |
Collapse
|
5
|
Prasad SK, Bhat SS, Koskowska O, Sangta J, Ahmad SF, Nadeem A, Sommano SR. Naringin from Coffee Inhibits Foodborne Aspergillus fumigatus via the NDK Pathway: Evidence from an In Silico Study. Molecules 2023; 28:5189. [PMID: 37446851 DOI: 10.3390/molecules28135189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
In the tropics, coffee has been one of the most extensively cultivated economic crops, especially Arabica coffee (Coffea arabica L.). The coffee pulp, which includes phytochemicals with a proven antifungal action, is one of the most insufficiently utilized and neglected byproducts of coffee refining. In the current experiment, we carried out in silico screening of the isolated Arabica coffee phytochemicals for antifungal activity against Aspergillus fumigatus: a foodborne fungus of great public health importance. As determined by the molecular docking interactions of the library compounds indicated, the best interactions were found to occur between the nucleoside-diphosphate kinase protein 6XP7 and the test molecules Naringin (-6.771 kcal/mol), followed by Epigallocatechin gallate (-5.687 kcal/mol). Therefore, Naringin was opted for further validation with molecular dynamic simulations. The ligand-protein complex RMSD indicated a fairly stable Naringin-NDK ligand-protein complex throughout the simulation period (2-16 Å). In ADME and gastrointestinal absorbability testing, Naringin was observed to be orally bioavailable, with very low intestinal absorption and a bioavailability score of 0.17. This was further supported by the boiled egg analysis data, which clearly indicated that the GI absorption of the Naringin molecule was obscure. We found that naringin could be harmful only when swallowed at a median lethal dose between 2000 and 5000 mg/kg. In accordance with these findings, the toxicity prediction reports suggested that Naringin, found especially in citrus fruits and tomatoes, is safe for human consumption after further investigation. Overall, Naringin may be an ideal candidate for developing anti-A. fumigatus treatments and food packaging materials. Thus, this study addresses the simultaneous problems of discarded coffee waste management and antifungal resistance to available medications.
Collapse
Affiliation(s)
- Shashanka K Prasad
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru 570 015, India
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Smitha S Bhat
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru 570 015, India
| | - Olga Koskowska
- Department of Vegetable and Medicinal Plants, Institute of Horticulture Sciences, Warsaw University of Life Sciences-SGGW, 16602-787 Warsaw, Poland
| | - Jiraporn Sangta
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50100, Thailand
- Interdisciplinary Program in Biotechnology, Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sarana Rose Sommano
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50100, Thailand
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
6
|
Lee YG, Cho EJ, Maskey S, Nguyen DT, Bae HJ. Value-Added Products from Coffee Waste: A Review. Molecules 2023; 28:molecules28083562. [PMID: 37110796 PMCID: PMC10146170 DOI: 10.3390/molecules28083562] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Coffee waste is often viewed as a problem, but it can be converted into value-added products if managed with clean technologies and long-term waste management strategies. Several compounds, including lipids, lignin, cellulose and hemicelluloses, tannins, antioxidants, caffeine, polyphenols, carotenoids, flavonoids, and biofuel can be extracted or produced through recycling, recovery, or energy valorization. In this review, we will discuss the potential uses of by-products generated from the waste derived from coffee production, including coffee leaves and flowers from cultivation; coffee pulps, husks, and silverskin from coffee processing; and spent coffee grounds (SCGs) from post-consumption. The full utilization of these coffee by-products can be achieved by establishing suitable infrastructure and building networks between scientists, business organizations, and policymakers, thus reducing the economic and environmental burdens of coffee processing in a sustainable manner.
Collapse
Affiliation(s)
- Yoon-Gyo Lee
- Bio-Energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Eun-Jin Cho
- Bio-Energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Shila Maskey
- Bio-Energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Dinh-Truong Nguyen
- School of Biotechnology, Tan Tao University, Duc Hoa 82000, Long An, Vietnam
| | - Hyeun-Jong Bae
- Bio-Energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| |
Collapse
|
7
|
Andrade N, Peixoto JAB, Oliveira MBPP, Martel F, Alves RC. Can coffee silverskin be a useful tool to fight metabolic syndrome? Front Nutr 2022; 9:966734. [PMID: 36211502 PMCID: PMC9534380 DOI: 10.3389/fnut.2022.966734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/02/2022] [Indexed: 12/03/2022] Open
Abstract
Coffee is one of the most consumed products in the world, and its by-products are mainly discarded as waste. In order to solve this problem and in the context of a sustainable industrial attitude, coffee by-products have been studied concerning their chemical and nutritional features for a potential application in foodstuffs or dietary supplements. Under this perspective, coffee silverskin, the main by-product of coffee roasting, stands out as a noteworthy source of nutrients and remarkable bioactive compounds, such as chlorogenic acids, caffeine, and melanoidins, among others. Such compounds have been demonstrating beneficial health properties in the context of metabolic disorders. This mini-review compiles and discusses the potential health benefits of coffee silverskin and its main bioactive components on metabolic syndrome, highlighting the main biochemical mechanisms involved, namely their effects upon intestinal sugar uptake, glucose and lipids metabolism, oxidative stress, and gut microbiota. Even though additional research on this coffee by-product is needed, silverskin can be highlighted as an interesting source of compounds that could be used in the prevention or co-treatment of metabolic syndrome. Simultaneously, the valorization of this by-product also responds to the sustainability and circular economy needs of the coffee chain.
Collapse
Affiliation(s)
- Nelson Andrade
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, Porto, Portugal
- *Correspondence: Nelson Andrade
| | - Juliana A. Barreto Peixoto
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - M. Beatriz P. P. Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Porto, Portugal
| | - Rita C. Alves
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Rita C. Alves
| |
Collapse
|
8
|
Macías-Garbett R, Sosa-Hernández JE, Iqbal HMN, Contreras-Esquivel JC, Chen WN, Melchor-Martínez EM, Parra-Saldívar R. Combined Pulsed Electric Field and Microwave-Assisted Extraction as a Green Method for the Recovery of Antioxidant Compounds with Electroactive Potential from Coffee Agro-Waste. PLANTS 2022; 11:plants11182362. [PMID: 36145763 PMCID: PMC9505628 DOI: 10.3390/plants11182362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 12/03/2022]
Abstract
Coffee agro-waste is a potential source of polyphenols with antioxidant activity and application in the food and cosmetic trades. The usage of these byproducts persists as a challenge in the industrial landscape due to their high content of purported toxic substances hindering management. This study presents a green extractive process using pulsed electric field (PEF) and microwave assisted extraction (MAE) to recover polyphenols from coffee parchment and two varieties of pulp, posing quick processing times and the use of water as the only solvent. The performance of this process with regard to the bioactivity was assessed through the Folin-Ciocalteu assay, total flavonoid content, DPPH, ABTS and FRAP antioxidant tests. The phenolic composition of the extracts was also determined through HPLC-MS and quantified through HPLC-DAD. When compared to treatment controls, PEF + MAE treated samples presented enhanced yields of total phenolic content and radical scavenging activity in all analyzed residues (Tukey test significance: 95%). The chromatographic studies reveal the presence of caffeic acid on the three analyzed by-products. The HPLC-DAD caffeic acid quantification validated that a combination of MAE + PEF treatment in yellow coffee pulp had the highest caffeic acid concentration of all studied extraction methods.
Collapse
Affiliation(s)
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | | | - Wei Ning Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Elda M. Melchor-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
- Correspondence: (E.M.M.-M.); (R.P.-S.)
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
- Correspondence: (E.M.M.-M.); (R.P.-S.)
| |
Collapse
|
9
|
Mavria A, Tsouko E, Protonotariou S, Papagiannopoulos A, Georgiadou M, Selianitis D, Pispas S, Mandala I, Koutinas AA. Sustainable Production of Novel Oleogels Valorizing Microbial Oil Rich in Carotenoids Derived from Spent Coffee Grounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10807-10817. [PMID: 36008363 DOI: 10.1021/acs.jafc.2c03478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sustainable food systems that employ renewable resources without competition with the food chain are drivers for the bioeconomy era. This study reports the valorization of microwave-pretreated spent coffee grounds (SCGs) to produce oleogels rich in bioactive compounds. Microbial oil rich in carotenoids (MOC) was produced under batch fermentation of Rhodosporidium toruloides using SCG enzymatic hydrolysates. Candelilla wax (CLW) could structure MOC and sunflower oil at a 3.3-fold lower concentration than that of carnauba wax (CBW). MOC-based oleogels with 10% CBW and 3% CLW showed an elastic-dominant and gel-like structure (tan δ ≪ 1), providing gelation and oil binding capacity (>95%). Dendritic structures of CBW-based oleogels and evenly distributed rod-like crystals of CLW-based ones were observed via polarized light microscopy. MOC-based oleogels exhibited similar Fourier-transform infrared spectroscopy spectra. X-ray diffractograms of oleogels were distinguished by the oil type that presented β'-type polymorphism. MOC-based oleogels could be applied in confectionary products and spreads as substitutes for trans fatty acids, reformulating fat-containing food products.
Collapse
Affiliation(s)
- Aikaterini Mavria
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Erminta Tsouko
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Styliani Protonotariou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Aristeidis Papagiannopoulos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Maria Georgiadou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Dimitrios Selianitis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Ioanna Mandala
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Apostolis A Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| |
Collapse
|
10
|
Gebreeyessus GD. Towards the sustainable and circular bioeconomy: Insights on spent coffee grounds valorization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155113. [PMID: 35427619 DOI: 10.1016/j.scitotenv.2022.155113] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Discovered in Ethiopia, coffee became a popular beverage in Asia, Europe, Latin America, Australia, Africa and the North America as a drink after water and the largest goods after petroleum. However, the coffee industry generates a huge biomass as its byproducts of which the spent coffee grounds (SCG) is concerning, especially in the production chain away from the farm. Therefore, the valorization and revalorization of the SCG has a huge impact on the socioeconomic and environmental sustainability of the industry, up to the realization of the circular bioeconomy. With the advancing biorefinery concept, even an almost complete recovery of the SCG is reported at an experimental level. Such kind of studies increased with time following the action of the Sustainable Development Goals by the United Nations Development Program promulgated in 2015. The current review highlights on the background, socioeconomic, environmental contexts of coffee production and the SCG valorization and revalorization studies. Refereeing to 154 screened articles published in over 30 years' time, the SCG revalorization efforts and its integrated biorefinery as a green management approach are uniquely addressed. Plenty of studies have reported the production of bio-products from the SCG, such as the derivation of adsorbents, biochar, bioethanol, biogas, biodiesel, bio-oil, compost, construction material aggregates, cosmetics, electricity and food ingredients. In conclusion, the recovery potential of the SCG is promising and can substantially contribute to a sustainable and green bioeconomy. Nevertheless, the recovery of bioactive materials through SCG fermentation is still lacking. Most studies are conducted on a lab scale, which needs to be piloted and commissioned. Furthermore, the link between climate change and variability vis-à-vis the sustainable management of the SCG remains unaddressed.
Collapse
Affiliation(s)
- Getachew Dagnew Gebreeyessus
- Department of Urban Environmental Management, Kotebe University of Education, P.O. Box 31248, Addis Ababa, Ethiopia; Africa Center of Excellence for Water Management at Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia.
| |
Collapse
|
11
|
Morpho-Physiological Traits, Phytochemical Composition, and Antioxidant Activity of Canephora Coffee Leaves at Various Stages. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2022. [DOI: 10.3390/ijpb13020011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Coffee leaves contain a wide range of leaf compounds, which vary by growth stage. Recently, the importance of coffee leaf metabolites with beneficial phytochemicals has been widely identified. This research investigated Canephora coffee’s morphological and physiological development and analyzed the phytochemical composition of the main leaf stage. Canephora coffee leaves were harvested and classified into the following five growth stages: S1 (leaf age of 1–4 days), S2 (leaf age of 5–8 days), S3 (leaf age of 9–14 days), S4 (leaf age of 15–20 days), and S5 (leaf age of 21–27 days). The antioxidant activity, total phenol content, flavonoids, and tannin content of coffee leaves at different stages were observed. The results indicated that the highest values for the leaf area, dry weight, greenness, chlorophyll content, and carotenoid content were found at the last stage (S5). The specific leaf area (SLA) differences had higher values in the S3 and S1 growth stages. The youngest leaf phase (S1) was less green, more yellow, and brighter in color than the mature phase. By comparing the assays, it was found that a significant increase in the antioxidant activity and the contents of phenolic compounds, flavonoids, and tannins were observed in the S1 and S2 growth stages.
Collapse
|
12
|
Carbon Dots from Coffee Grounds: Synthesis, Characterization, and Detection of Noxious Nitroanilines. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10030113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Coffee ground (CG) waste is generated in huge amounts all over the world, constituting a serious environmental issue owing to its low biodegradability. Therefore, processes that simultaneously aim for its valorization while reducing its environmental impact are in great demand. In the current approach, blue luminescent carbon dots (C-dots) were produced in good chemical yields from CGs following hydrothermal carbonization methods under an extended set of reaction parameters. The remarkable fluorescent properties of the synthesized C-dots (quantum yields up to 0.18) allied to their excellent water dispersibility and photostability prompted their use for the first time as sensing elements for detection of noxious nitroanilines (NAs) in aqueous media. Very high levels of NA detection were achieved (e.g., limit of detection of 68 ppb for p-nitroaniline), being the regioisomeric selectivity attributed to its higher hyperpolarizability and dipole moment. Through ground–state and time-resolved fluorescence assays, a static fluorescence quenching mechanism was established. 1H NMR titration data also strongly suggested the formation of ground–state complexes between C-dots and NAs.
Collapse
|
13
|
Agudelo-Escobar LM, Cabrera SE, Avignone Rossa C. A Bioelectrochemical System for Waste Degradation and Energy Recovery From Industrial Coffee Wastewater. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.814987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
The primary production of coffee involves the extensive use of water resources, since it is not only used for irrigation of coffee plantations, but it is also required in large volumes for the processing of the coffee berry to obtain high quality green beans. It is calculated that for every kg of dry coffee grain produced, up to 40 L of water are consumed, and its disposal represents a significant environmental problem, since most coffee growers are small producers with no access to efficient technologies for wastewater treatment. This situation leads to these liquid wastes to be discarded untreated in natural water sources, generating environmental pollution and public health problems. Bioelectrochemical Systems (BES) have been proposed as an alternative to conventional wastewater treatments, either as a primary bioremediation strategy or for secondary wastewater treatment systems. Among BES, microbial fuel cells (MFCs) are designed to exploit the metabolic capability of andophilic microorganisms to degrade the organic matter present in the waste. Anodophilic microorganisms use electrodes as terminal electron acceptors, generating a flow of electrons that can be used in the generation of electricity. In this work, we evaluated the ability of native microbial communities to degrade the organic matter present in wastewater from the coffee agroindustry and its electrogenic potential for the co-generation of electricity was evaluated using an MFC device developed by the authors. Wastewater samples obtained at different stages of the coffee wet process were used as inoculum and feedstocks. The system was operated in fed-batch, in both open and closed-circuit conditions, for 60 days. The degree of decontamination or bioremediation of the wastewater was assessed by measurements of physicochemical parameters. For the characterization of the native microbial community, microscopic and molecular techniques were used and the electrogenic potential was established by assessing the electrochemical performance of the system. With the proposed bioelectrochemical system, a reduction of up to 70% of the initial content of organic matter of the residual water from the coffee benefit was achieved, and open circuit voltages of up to 400 mV were recorded, comparable to those reported for conventional air breathing cathode MFC.
Collapse
|
14
|
Bio-Wastes as Aggregates for Eco-Efficient Boards and Panels: Screening Tests of Physical Properties and Bio-Susceptibility. INFRASTRUCTURES 2022. [DOI: 10.3390/infrastructures7030026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Screening tests were developed or adapted from RILEM recommendations, standards and past studies, and carried out to characterize some agro-industrial wastes and to assess their feasibility as aggregates for eco-efficient building composites. Spent coffee grounds, grape and olive press waste and hazelnut shells were used, as well as maritime pine chips as control material. Particle size distribution, loose bulk density, thermal conductivity and hygroscopicity properties were analysed. The selected bio-wastes did not show good thermal insulation properties if compared with some bio-wastes already studied and used for thermal insulation composites. Values of loose bulk density and thermal conductivity were between 325.6–550.5 kg/m3 and 0.078–0.107 W/(m·K); moisture buffering values higher than 2.0 g/(m2·%RH). Biological susceptibility to mould and termites were also tested, using not yet standardized methods. The low resistance to biological attack confirms one of the greatest drawbacks of using bio-wastes for building products. However, final products properties may be changed by adding other materials, pre-treatments of the wastes and the production process.
Collapse
|
15
|
New sustainable perspectives for “Coffee Wastewater” and other by-products: A critical review. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
16
|
Hung Y, Lee F, Lin C. Classification of coffee bean categories based upon analysis of fatty acid ingredients. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ying‐Che Hung
- Mechatronic Engineering Institute Huafan University New Taipei Taiwan
| | - Fu‐Shin Lee
- Mechatronic Engineering Institute Huafan University New Taipei Taiwan
| | - Chen‐I Lin
- College of Mechanical and Electrical Engineering Wuyi University Wuyishan China
| |
Collapse
|
17
|
Gemechu FG. Embracing nutritional qualities, biological activities and technological properties of coffee byproducts in functional food formulation. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Barcelos MCS, Ramos CL, Kuddus M, Rodriguez-Couto S, Srivastava N, Ramteke PW, Mishra PK, Molina G. Enzymatic potential for the valorization of agro-industrial by-products. Biotechnol Lett 2020; 42:1799-1827. [DOI: 10.1007/s10529-020-02957-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
|
19
|
Assessment of Environmental Impact of the Gayo Arabica Coffee Production by Wet Process using Life Cycle Assessment. ACTA UNIVERSITATIS CIBINIENSIS. SERIES E: FOOD TECHNOLOGY 2019. [DOI: 10.2478/aucft-2019-0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Increasement of demand for gayo arabica coffee has influenced the coffee industry, either in increasing the coffee production and also in increasing the usage of coffee machinery and equipment significantly. However, combustion of oil fuels result the emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) which increase the effect of greenhouse gases from the coffee production process. This study aimed to analyze the direct impact of gayo coffee production towards environment using the Life Cycle Assessment (LCA) method, including several stages such as (1) the goal and scope definition, (2) the inventory analysis, (3) the impact assessment, and (4) the interpretation. Results of this study showed that the energy needed to process 1000 kg of coffee was 7.67 MJ, while the produced liquid waste was 5 953.2 kg. The value of the global warming impact on the coffee life cycle was 56 807 165.63 CO2eq.
Collapse
|
20
|
Parascanu MM, Sánchez P, Soreanu G, Valverde JL, Sanchez-Silva L. Mexican biomasses valorization through pyrolysis process: Environmental and costs analysis. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 95:171-181. [PMID: 31351602 DOI: 10.1016/j.wasman.2019.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 06/10/2023]
Abstract
Biomasses valorization by pyrolysis is a good option for reducing environmental problems. In this study, the environmental performance of three Mexican biomass valorizations (castor husk, coffee pulp and Pinus sawdust) by the pyrolysis was compared. The environmental impacts of all equipment involved in pyrolysis were evaluated. In addition, the financial viability of pyrolysis technology of coffee pulp was studied. The biomass with the lowest impact for all the selected categories was the Pinus sawdust, followed by castor husk and coffee pulp. The GWP category had values greater than 700 kg CO2eq for all the biomass studied. GWP category is caused by the emissions, mainly due to the high amounts of CH4 and CO2 released for all the studied biomasses. Furthermore, the equipment with the greatest impact are the separator, the pyrolyzer and the cyclone. Finally, it was observed that even the least favorable biomass with the environment is viable from a financial point of view.
Collapse
Affiliation(s)
- M M Parascanu
- University of Castilla-La Mancha, Department of Chemical Engineering, Avda. Camilo José Cela, 12, 13071 Ciudad Real, Spain
| | - P Sánchez
- University of Castilla-La Mancha, Department of Chemical Engineering, Avda. Camilo José Cela, 12, 13071 Ciudad Real, Spain
| | - G Soreanu
- Technical University "Gheorghe Asachi" of Iasi, Department of Environmental Engineering and Management, 73 D. Mangeron Blvd, 700050 Iasi, Romania
| | - J L Valverde
- University of Castilla-La Mancha, Department of Chemical Engineering, Avda. Camilo José Cela, 12, 13071 Ciudad Real, Spain
| | - L Sanchez-Silva
- University of Castilla-La Mancha, Department of Chemical Engineering, Avda. Camilo José Cela, 12, 13071 Ciudad Real, Spain.
| |
Collapse
|
21
|
Sarno M, Iuliano M. Active biocatalyst for biodiesel production from spent coffee ground. BIORESOURCE TECHNOLOGY 2018; 266:431-438. [PMID: 29990760 DOI: 10.1016/j.biortech.2018.06.108] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
Physical adsorption preserving activity and support reusability was used to directly bond lipase from Thermomyces lanuginosus on citric acid (CA) modified Fe3O4/Au magnetic nanoparticles. A new faster approach has been used for CA ligand exchange, which ensures an high payload of stable enzyme. The immobilized lipase was tested for the biodiesel production from spent coffee ground in a solvent free system. It retains, after 60 days, more than 90% of its initial activity. Biodiesel yield of 51.7%, after 3 h of synthesis, which increases up to ∼100% after 24 h indicating an enzymatic fast kinetic, was measured. No significant decrease, during the first three cycles of use, of the lipase activity occurs. The biodiesel presents an ester content of 98.4 ± 0.23 in agreement with the EN14214. The iodine value of 76.67 (g iodine/100 g) is in agreement with the European standard.
Collapse
Affiliation(s)
- Maria Sarno
- Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II, 132 - 84084 Fisciano, SA, Italy; NANO_MATES Research Centre, University of Salerno, via Giovanni Paolo II, 132 - 84084 Fisciano, SA, Italy.
| | - Mariagrazia Iuliano
- Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II, 132 - 84084 Fisciano, SA, Italy
| |
Collapse
|
22
|
Valorizing coffee pulp by-products as anti-inflammatory ingredient of food supplements acting on IL-8 release. Food Res Int 2018; 112:129-135. [PMID: 30131119 DOI: 10.1016/j.foodres.2018.06.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/07/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022]
Abstract
Coffee is the second traded food commodity in the world. Beyond roasted seeds, the most part of the original fruit -and in particular pulp- is discarded as waste, with severe environmental and economic consequences in many developing countries. Our research focused on developing an eco-friendly extraction protocol of phytocomplexes from coffee pulp and evaluating their bioactivity and beneficial effects to human health as food supplements. Antioxidant activity assays (Folin-Ciocalteu and DPPH assays) were adopted to select the most effective extraction technique and results show antioxidant activity of coffee pulp extracts. After analysis of cytotoxicity on human epithelial gastric cells, measurements of IL-8 release of treated or pre-treated cells were performed. Results showed that the use of soft technical equipment and sustainable solvents (i.e. maceration process, aqueous extraction) can extract phytocomplexes with antioxidant properties. Moreover, IL-8 measurements showed impairment of this chemokine release at concentrations that may be reached in vivo in the gastrointestinal tract, following consumption of reasonable amount of extract. Pre-treatments analysis demonstrated the ability of coffee pulp extracts to prevent IL-8 release by gastric epithelial cells. Chemical evaluation performed by liquid chromatography mass spectrometry showed that quinic acid derivatives are abundant in coffee pulp extract together with procyanidins derivatives: those compounds might be responsible for the high biological activity. This evidence supports future applications of coffee pulp extracts as food supplement with high added value, starting from a waste that can be valorized through simple yet efficient extraction methods.
Collapse
|
23
|
Freitas AC, Antunes MB, Rodrigues D, Sousa S, Amorim M, Barroso MF, Carvalho A, Ferrador SM, Gomes AM. Use of coffee by-products for the cultivation of Pleurotus citrinopileatus
and Pleurotus salmoneo-stramineus
and its impact on biological properties of extracts thereof. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13778] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Ana C. Freitas
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado; Escola Superior de Biotecnologia; Universidade Católica Portuguesa; Rua Arquiteto Lobão Vital 172, 4200-374 Porto Portugal
| | - Mariana B. Antunes
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado; Escola Superior de Biotecnologia; Universidade Católica Portuguesa; Rua Arquiteto Lobão Vital 172, 4200-374 Porto Portugal
- Bioinvitro, Biotecnologia Lda; Rua Eng.° José Rodrigo Carvalho, 95 4480-484 Árvore, Vila do Conde Portugal
| | - Dina Rodrigues
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado; Escola Superior de Biotecnologia; Universidade Católica Portuguesa; Rua Arquiteto Lobão Vital 172, 4200-374 Porto Portugal
| | - Sérgio Sousa
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado; Escola Superior de Biotecnologia; Universidade Católica Portuguesa; Rua Arquiteto Lobão Vital 172, 4200-374 Porto Portugal
| | - Manuela Amorim
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado; Escola Superior de Biotecnologia; Universidade Católica Portuguesa; Rua Arquiteto Lobão Vital 172, 4200-374 Porto Portugal
| | - Maria F. Barroso
- REQUIMTE/LAQV; Instituto Superior de Engenharia do Porto; Instituto Politécnico do Porto; Rua Dr. António Bernardino de Almeida, 431 4200-072 Porto Portugal
| | - Ana Carvalho
- REQUIMTE/LAQV; Instituto Superior de Engenharia do Porto; Instituto Politécnico do Porto; Rua Dr. António Bernardino de Almeida, 431 4200-072 Porto Portugal
| | - Sandra M. Ferrador
- Bioinvitro, Biotecnologia Lda; Rua Eng.° José Rodrigo Carvalho, 95 4480-484 Árvore, Vila do Conde Portugal
| | - Ana M. Gomes
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado; Escola Superior de Biotecnologia; Universidade Católica Portuguesa; Rua Arquiteto Lobão Vital 172, 4200-374 Porto Portugal
| |
Collapse
|