1
|
Ruan S, Guo X, Ren Y, Cao G, Xing H, Zhang X. Nanomedicines based on trace elements for intervention of diabetes mellitus. Biomed Pharmacother 2023; 168:115684. [PMID: 37820567 DOI: 10.1016/j.biopha.2023.115684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/28/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023] Open
Abstract
Epidemiology shows that the incidence of diabetes mellitus (DM) is increasing year by year globally. Proper interventions are highly aspired for diabetics to improve the quality of life and prevent development of chronic complications. Trace elements, also known as microelements, are chemical substances that are present in our body in minute amounts. They are necessitated by the body for growth, development and functional metabolism. For the past few years, trace element nanoparticles have aroused considerable interest as a burgeoning form of nanomedicines in antidiabetic applications. These microelement-based nanomedicines can regulate glucose metabolism in several ways, showing great potential for diabetes management. Starting from the pathophysiology of diabetes, the state-of-the-art of diabetes treatment, the physiological roles of trace elements, various emerging trace element nanoparticles specific for diabetes were comprehensively reviewed in this work. Our findings disclose that trace element nanoparticles can fight against diabetes by lowering blood glucose, promoting insulin secretion, alleviating glucose intolerance, improving insulin sensitivity, ameliorating lipid profile, anti-inflammation and anti-oxidant stress, and other mechanisms. In conclusion, trace element nanoparticles can be applied as nanomedicines or dietary modifiers for effective intervention for diabetes.
Collapse
Affiliation(s)
- Shuxian Ruan
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaolei Guo
- Office of Academic Research, Binzhou Polytechnic, Binzhou, China
| | - Yuehong Ren
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Guangshang Cao
- Department of Pharmaceutics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Huijie Xing
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou, China.
| | - Xingwang Zhang
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China.
| |
Collapse
|
2
|
Xu H, Li S, Ma X, Xue T, Shen F, Ru Y, Jiang J, Kuai L, Li B, Zhao H, Ma X. Cerium oxide nanoparticles in diabetic foot ulcer management: Advances, limitations, and future directions. Colloids Surf B Biointerfaces 2023; 231:113535. [PMID: 37729799 DOI: 10.1016/j.colsurfb.2023.113535] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/09/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023]
Abstract
Diabetic foot ulcer (DFU) is one of the most serious complications of diabetes, potentially resulting in wound infection and amputation under severe circumstances. Oxidative stress and dysbiosis are the primary factors that delay wound healing, posing challenges to effective treatment. Unfortunately, conventional approaches in these aspects have proven satisfactory in achieving curative outcomes. Recent research has increasingly focused on using nanoparticles, leveraging their potential in wound dressing and medication delivery. Their unique physical properties further enhance their therapeutic effectiveness. Among these nanoparticles, cerium oxide nanoparticles (CONPs) have garnered attention due to their notable beneficial effects on oxidative stress and microbial abundance, thus representing a promising therapeutic avenue for DFU. This review comprehensively assesses recent studies on CONPs in treating DFU. Furthermore, we elaborate on the wound healing process, ceria synthesis, and incorporating CONPs with other materials. Crucially, a thorough evaluation of CONPs' toxicity as a novel metallic nanomaterial for therapeutic use must precede their formal clinical application. Additionally, we identify the current challenges CONPs encounter and propose future directions for their development.
Collapse
Affiliation(s)
- Haotian Xu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Shiqi Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Xiaoxuan Ma
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Tingting Xue
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Fang Shen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Jingsi Jiang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bin Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hang Zhao
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xin Ma
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| |
Collapse
|
3
|
Hu X, Lin R, Zhang C, Pian Y, Luo H, Zhou L, Shao J, Ren X. Nano-selenium Alleviates Cadmium-Induced Mouse Leydig Cell Injury, via the Inhibition of Reactive Oxygen Species and the Restoration of Autophagic Flux. Reprod Sci 2022; 30:1808-1822. [PMID: 36509961 DOI: 10.1007/s43032-022-01146-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Cadmium (Cd) is a well-known environmental pollutant that can contribute to male reproductive toxicity through oxidative stress. Nano-selenium (Nano-se) is an active single body of selenium with strong antioxidant properties and low toxicity. Some studies have addressed the potential ameliorative effect of Nano-se against Cd-induced testicular toxicity; however, the underlying mechanisms remain to be investigated. This study aimed to explore the protective effect of Nano-se on Cd-induced mouse testicular TM3 cell toxicity by regulating autophagy process. We showed that cadmium exposure to TM3 cells inhibited cell viability and elevated the level of reactive oxygen species (ROS) generation. Morphology observation by transmission electron microscope and the presence of mRFP-GFP-LC3 fluorescence puncta demonstrated that cadmium increased autophagosome formation and accumulation in TM3 cells, resulting in blocking the autophagic flux of TM3 cells. Meanwhile, cadmium remarkably increased the ratio of LC3-II to LC3-I protein expression (2.07 ± 0.31) and the Beclin-1 protein expression (1.97 ± 0.40) in TM3 cells (P < 0.01). Pretreatment with Nano-se significantly reduced Cd-induced TM3 cell toxicity (P < 0.01). Furthermore, Nano-se treatment reversed Cd-induced ROS production and autophagosome accumulation, and autophagy as evidenced by the ratio of LC3-II to LC3-I and Beclin-1 expression. In addition, ROS scavenger, N-acetyl-L-cysteine (NAC) or autophagy inhibitor, 3-methyladenine (3-MA) reversed cadmium-induced ROS generation, autophagosome accumulation, and autophagy-related protein expression levels, which confirmed that cadmium induced TM3 cell injury via ROS signal pathway and blockage of autophagic flux. Collectively, our results reveal that Nano-se attenuates Cd-induced TM3 cell toxicity through the inhibition of ROS production and the amelioration of autophagy disruption.
Collapse
Affiliation(s)
- Xindi Hu
- Department of Nutrition, School of Public Health, Xuzhou Medical University, No. 209 Tongshan Road, Yunlong Area, Xuzhou, 221004, Jiangsu Province, China.,Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Rui Lin
- Department of Nutrition, School of Public Health, Xuzhou Medical University, No. 209 Tongshan Road, Yunlong Area, Xuzhou, 221004, Jiangsu Province, China.,Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Chaoqin Zhang
- Department of Nutrition, School of Public Health, Xuzhou Medical University, No. 209 Tongshan Road, Yunlong Area, Xuzhou, 221004, Jiangsu Province, China.,Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Yajing Pian
- Department of Nutrition, School of Public Health, Xuzhou Medical University, No. 209 Tongshan Road, Yunlong Area, Xuzhou, 221004, Jiangsu Province, China.,Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Haolong Luo
- Department of Nutrition, School of Public Health, Xuzhou Medical University, No. 209 Tongshan Road, Yunlong Area, Xuzhou, 221004, Jiangsu Province, China.,Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Li Zhou
- Department of Nutrition, School of Public Health, Xuzhou Medical University, No. 209 Tongshan Road, Yunlong Area, Xuzhou, 221004, Jiangsu Province, China.,Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Jihong Shao
- Department of Nutrition, School of Public Health, Xuzhou Medical University, No. 209 Tongshan Road, Yunlong Area, Xuzhou, 221004, Jiangsu Province, China.,Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Xiangmei Ren
- Department of Nutrition, School of Public Health, Xuzhou Medical University, No. 209 Tongshan Road, Yunlong Area, Xuzhou, 221004, Jiangsu Province, China. .,Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
4
|
Lawand PV, Desai S. Nanobiotechnology-Modified Cellular and Molecular Therapy as a Novel Approach for Autoimmune Diabetes Management. Pharm Nanotechnol 2022; 10:279-288. [PMID: 35927916 DOI: 10.2174/2211738510666220802111315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Several cellular and molecular therapies such as stem cell therapy, cell replacement therapy, gene modification therapy, and tolerance induction therapy have been researched to procure a permanent cure for Type 1 Diabetes. However, due to the induction of undesirable side effects, their clinical utility is questionable. These anti-diabetic therapies can be modified with nanotechnological tools for reducing adverse effects by selectively targeting genes and/or receptors involved directly or indirectly in diabetes pathogenesis, such as the glucagon-like peptide 1 receptor, epidermal growth factor receptor, human leukocyte antigen (HLA) gene, miRNA gene and hepatocyte growth factor (HGF) gene. This paper will review the utilities of nanotechnology in stem cell therapy, cell replacement therapy, beta-cell proliferation strategies, immune tolerance induction strategies, and gene therapy for type 1 diabetes management.
Collapse
Affiliation(s)
- Priyanka Vasant Lawand
- Department of Pharmacology, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| | - Shivani Desai
- Department of Pharmacy Practice, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| |
Collapse
|
5
|
In vivo study of dose-dependent antioxidant efficacy of functionalized core-shell yttrium oxide nanoparticles. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:593-606. [PMID: 35201389 PMCID: PMC8989852 DOI: 10.1007/s00210-022-02219-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/09/2022] [Indexed: 11/30/2022]
Abstract
Abstract Herein, we assess the dose-dependent antioxidant efficacy of ultrafine spherical functionalized core–shell yttrium oxide nanoparticles (YNPs) with a mean size of 7–8 nm and modified with poly EGMP (ethylene glycol methacrylate phosphate) and N-Fluorescein Acrylamide. The antioxidant properties of these nanoparticles were investigated in three groups of Sprague–Dawley rats (10 per group) exposed to environmental stress daily for 1 week and one control group. Groups 2 and 3 were intravenously injected twice a week with YNPs at 0.3 and 0.5 mg at 2nd and 5th day of environmental stress exposure respectively. Different samples of blood and serum were collected from all experimental groups at end of the experiment to measure oxidative biomarkers such as total antioxidant capacity (TAC), hydroxyl radical antioxidant capacity (HORAC), oxygen radical antioxidant capacity (ORAC), malondialdehyde (MDA), and oxidants concentration as hydrogen peroxide (H2O2). The liver, brain, and spleen tissues were collected for fluorescence imaging and histopathological examination in addition to brain tissue examination by transmission electron microscope (TEM). Inductively coupled plasma-mass spectrometry (ICP-MS) was used to estimate YNPs translocation and concentration in tissues which is consecutively dependent on the dose of administration. Depending on all results, poly EGMP YNPs (poly EGMP yttrium oxide nanoparticles) can act as a potent direct antioxidant in a dose-dependent manner with good permeability through blood–brain barrier (BBB). Also, the neuroprotective effect of YNPs opening the door to a new therapeutic approach for modulating oxidative stress–related neural disorders. Highlights • The dose-dependent antioxidant efficacy of ultrafine spherical functionalized core–shell yttrium oxide nanoparticles (YNPs) with a mean size of 7–8 nm and modified with poly EGMP (ethylene glycol methacrylate phosphate) and N-Fluorescein Acrylamide was assessed. • The dose of administration directly affecting the brain, liver, and spleen tissues distribution, retention, and uptake of YNPs and direct correlation between the absorbed amount and higher dose administered. • YNPs can act as a potent direct antioxidant in a dose-dependent manner with good permeability through blood–brain barrier (BBB). Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00210-022-02219-1.
Collapse
|
6
|
Rampin A, Carrabba M, Mutoli M, Eman CL, Testa G, Madeddu P, Spinetti G. Recent Advances in KEAP1/NRF2-Targeting Strategies by Phytochemical Antioxidants, Nanoparticles, and Biocompatible Scaffolds for the Treatment of Diabetic Cardiovascular Complications. Antioxid Redox Signal 2022; 36:707-728. [PMID: 35044251 DOI: 10.1089/ars.2021.0134] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Modulation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-mediated antioxidant response is a key aspect in the onset of diabetes-related cardiovascular complications. With this review, we provide an overview of the recent advances made in the development of Nrf2-targeting strategies for the treatment of diabetes, with particular attention toward the activation of Nrf2 by natural antioxidant compounds, nanoparticles, and oxidative stress-modulating biocompatible scaffolds. Recent Advances: In the past 30 years, studies addressing the use of antioxidant therapies to treat diabetes have grown exponentially, showing promising but yet inconclusive results. Animal studies and clinical trials on the Nrf2 pathway have shown promising results, suggesting that its activation can delay or reverse some of the cardiovascular impairments in diabetes. Critical Issues: Hyperglycemia- and oscillating glucose levels-induced reactive oxygen species (ROS) accumulation is progressively emerging as a central factor in the onset and progression of diabetes-related cardiovascular complications, including endothelial dysfunction, retinopathy, heart failure, stroke, critical limb ischemia, ulcers, and delayed wound healing. In this context, accumulating evidence suggests a central role for Nrf2-mediated antioxidant response, one of the most studied cellular defensive mechanisms against ROS accumulation. Future Directions: Innovative approaches such as tissue engineering and nanotechnology are converging toward targeting oxidative stress in diabetes. Antioxid. Redox Signal. 36, 707-728.
Collapse
Affiliation(s)
- Andrea Rampin
- Laboratory of Cardiovascular Physiopathology-Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Michele Carrabba
- Laboratory of Experimental Cardiovascular Medicine, University of Bristol, Bristol, England, United Kingdom
| | - Martina Mutoli
- Laboratory of Cardiovascular Physiopathology-Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Charlotte L Eman
- Laboratory of Cardiovascular Physiopathology-Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Gianluca Testa
- Department of Medicine and Health Sciences, "V. Tiberio" University of Molise, Campobasso, Italy.,Interdepartmental Center for Nanotechnology Research-NanoBem, University of Molise, Campobasso, Italy
| | - Paolo Madeddu
- Laboratory of Experimental Cardiovascular Medicine, University of Bristol, Bristol, England, United Kingdom
| | - Gaia Spinetti
- Laboratory of Cardiovascular Physiopathology-Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
7
|
Navaei-Nigjeh M, Daniali M, Rahimifard M, Khaksar MR. Multi-organ Toxicity Attenuation by Cerium Oxide and Yttrium Oxide Nanoparticles: Comparing the Beneficial Effects on Tissues Oxidative Damage Induced by Sub-acute Exposure to Diazinon. Pharm Nanotechnol 2021; 8:225-238. [PMID: 32767961 DOI: 10.2174/2211738508666200808135226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Excessive use of diazinon, as an organophosphate pesticide (OP), contributes to cytotoxic and pathologic cellular damage and, in particular, oxidative stress. However, metal-oxide nanoparticles (NPs), such as cerium oxide (CeO2) and yttrium oxide (Y2O3), with the property of free radical scavenging demonstrated beneficial effects in the alleviation of oxidative stress biomarkers. OBJECTIVE The aims of this study include evaluating beneficial effects of CeO2 NPs, Y2O3 NPs, and their combination against diazinon-induced oxidative stress in different tissues of brain, heart, lung, kidney, liver, and spleen. METHODS Eight randomized groups of 6 adult male Wistar rats were formed. Each group of rats administered a different combination of diazinon, CeO2 and Y2O3 NPs daily and levels of oxidative stress markers, such as reactive oxygen species (ROS), lipid peroxidation (LPO), total thiol molecules (TTM) and total anti-oxidant power (TAP) and catalase enzyme, were measured after 2 weeks of the treatment. RESULTS Measurements of the mentioned markers in the brain, heart, lung, kidney, liver, and spleen showed that the administration of NPs could significantly alleviate the oxidative stress induced by diazinon. However, the findings of this study illustrated that the combination of both CeO2 and Y2O3 NPs led to a better reduction in oxidative stress markers. CONCLUSION Sub-acute exposure of diazinon in rats led to increased levels of oxidative stress markers in pivotal tissues such as the brain, heart, lung, kidney, liver, and spleen. CeO2 and Y2O3 NPs neutralize the oxidative stress to compensate diazinon-induced tissue damages. Lay Summary: Organophosphate pesticides (OPs), which are mainly used for pest control, are responsible for the entry of pesticides into the human food cycle. Organophosphate such as diazinon increases the molecular biomarkers of oxidative stress inside the cells of vital tissues such as the heart, liver, lungs, etc. Metal oxide nanoparticles (NPs) such as cerium oxide (CeO2) and yitrium oxide (Y2O3) can have free radical scavenging potential under oxidative stress and through various mechanisms. Although these nanoparticles reduce oxidative stress, it should be borne in the design of the study that additional doses of these substances reverse the beneficial effects.
Collapse
Affiliation(s)
- Mona Navaei-Nigjeh
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Daniali
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahban Rahimifard
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad R Khaksar
- Department of Occupational Health, Faculty of Health, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
8
|
Chai WF, Tang KS. Protective potential of cerium oxide nanoparticles in diabetes mellitus. J Trace Elem Med Biol 2021; 66:126742. [PMID: 33773280 DOI: 10.1016/j.jtemb.2021.126742] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/15/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Diabetes mellitus (DM) is a non-communicable metabolic disease which is closely related to excessive oxidative stress after constant exposure to high plasma glucose. Although the current antidiabetic medications are effective in lowering blood glucose, these medications do not prevent or reverse the disease progression. Thus, there is a crucial need to explore new therapeutic interventions that could address this shortcoming. As cerium oxide nanoparticles (CONPs) possess antioxidant property, this agent may be used as a treatment option for the management of DM. PURPOSE This review aims to provide a critical evaluation of the pharmacological and antidiabetic effects of CONPs in cell and animal models. The roles of CONPs in attenuating DM complications are also presented in this report. METHODS We conducted a literature search in the PubMed database using the keywords "cerium oxide", "cerous oxide", "ceria", "nanoceria", and "diabetes" from inception to December 2020. The inclusion criteria were primary source articles that investigated the role of CONPs in DM and diabetic complications. RESULTS We identified 47 articles from the initial search. After the thorough screening, only 31 articles were included in this study. We found that CONPs can attenuate parameters that are related to DM and diabetic complications in various animals and cell culture models. CONCLUSION CONPs could potentially be used in the treatment of those with DM and complications caused by the disease.
Collapse
Affiliation(s)
- Wui Fang Chai
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Kim San Tang
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
9
|
Selenium and Nano-Selenium Biofortification for Human Health: Opportunities and Challenges. SOIL SYSTEMS 2020. [DOI: 10.3390/soilsystems4030057] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Selenium is an essential micronutrient required for the health of humans and lower plants, but its importance for higher plants is still being investigated. The biological functions of Se related to human health revolve around its presence in 25 known selenoproteins (e.g., selenocysteine or the 21st amino acid). Humans may receive their required Se through plant uptake of soil Se, foods enriched in Se, or Se dietary supplements. Selenium nanoparticles (Se-NPs) have been applied to biofortified foods and feeds. Due to low toxicity and high efficiency, Se-NPs are used in applications such as cancer therapy and nano-medicines. Selenium and nano-selenium may be able to support and enhance the productivity of cultivated plants and animals under stressful conditions because they are antimicrobial and anti-carcinogenic agents, with antioxidant capacity and immune-modulatory efficacy. Thus, nano-selenium could be inserted in the feeds of fish and livestock to improvise stress resilience and productivity. This review offers new insights in Se and Se-NPs biofortification for edible plants and farm animals under stressful environments. Further, extensive research on Se-NPs is required to identify possible adverse effects on humans and their cytotoxicity.
Collapse
|