1
|
Teichner EM, Subtirelu RC, Patil S, Parikh C, Ashok AB, Talasila S, Anderson VA, Khan T, Su Y, Werner T, Alavi A, Revheim ME. Positron Emission Tomography (PET) in presurgical planning of anterior temporal lobectomy: A systematic review of efficacy and limitations. Clin Neurol Neurosurg 2024; 246:108562. [PMID: 39326280 DOI: 10.1016/j.clineuro.2024.108562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024]
Abstract
INTRODUCTION Temporal lobe epilepsy (TLE), a debilitating neurological disorder, necessitates refined diagnostic and treatment strategies. This comprehensive review appraises the potential of positron emission tomography (PET) in enhancing the presurgical planning of Anterior Temporal Lobectomy (ATL) for patients afflicted with TLE. METHODS A comprehensive literature search was conducted using the PubMed, SCOPUS, and ScienceDirect databases from 1985 to 2022, following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines for studies investigating PET and ATL. This review studied a range of radiotracers, including FDG, H2O, FMZ, MPPF, and FCWAY, analyzing their efficacy in detecting epileptogenic foci, establishing resection boundaries, and predicting postoperative outcomes. The study paid special attention to cases where MRI findings were inconclusive. RESULTS A total of 52 studies were included in the final analysis. Our analysis revealed that FDG-PET imaging was instrumental in identifying seizure foci and predicting postoperative results. It exhibited significant value in situations where structural abnormalities were absent on MRI scans. Furthermore, newer radiotracers such as 5-HT1A antagonists, FCWAY and MPPF, presented promising potential for localizing seizure foci, particularly in MRI-negative TLE, despite their comparatively limited current usage. CONCLUSION PET imaging, although challenged by issues such as radiation exposure, limited accessibility, and high costs, offers considerable promise. Integration with other imaging modalities, such as EEG and MRI, has contributed to improved localization of epileptogenic foci and subsequently, enhanced surgical outcomes. Further research must focus on establishing the relative efficacy and optimal combinations of these radiotracers in the orchestration of ATL surgical planning and prognostication of postoperative outcomes for TLE patients. Encouragingly, these advancements hold the potential to revolutionize the management of TLE, delivering a better quality of life for patients.
Collapse
Affiliation(s)
- Eric M Teichner
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Robert C Subtirelu
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Shiv Patil
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Chitra Parikh
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Arjun B Ashok
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sahithi Talasila
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Victoria A Anderson
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Talha Khan
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Yvonne Su
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas Werner
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Mona-Elisabeth Revheim
- The Intervention Centre, Division of Technology and Innovation, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
2
|
Tung H, Tsai SC, Huang PR, Hsieh PF, Lin YC, Peng SJ. Morphological and metabolic asymmetries of the thalamic subregions in temporal lobe epilepsy predict cognitive functions. Sci Rep 2023; 13:22611. [PMID: 38114641 PMCID: PMC10730825 DOI: 10.1038/s41598-023-49856-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023] Open
Abstract
Both morphological and metabolic imaging were used to determine how asymmetrical changes of thalamic subregions are involved in cognition in temporal lobe epilepsy (TLE). We retrospectively recruited 24 left-TLE and 15 right-TLE patients. Six thalamic subnuclei were segmented by magnetic resonance imaging, and then co-registered onto Positron emission tomography images. We calculated the asymmetrical indexes of the volumes and normalized standard uptake value ratio (SUVR) of the entire and individual thalamic subnuclei. The SUVR of ipsilateral subnuclei were extensively and prominently decreased compared with the volume loss. The posterior and medial subnuclei had persistently lower SUVR in both TLE cases. Processing speed is the cognitive function most related to the metabolic asymmetry. It negatively correlated with the metabolic asymmetrical indexes of subregions in left-TLE, while positively correlated with the subnuclei volume asymmetrical indexes in right-TLE. Epilepsy duration negatively correlated with the volume asymmetry of most thalamic subregions in left-TLE and the SUVR asymmetry of ventral and intralaminar subnuclei in right-TLE. Preserved metabolic activity of contralateral thalamic subregions is the key to maintain the processing speed in both TLEs. R-TLE had relatively preserved volume of the ipsilateral thalamic volume, while L-TLE had relatively decline of volume and metabolism in posterior subnucleus.
Collapse
Affiliation(s)
- Hsin Tung
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Center of Faculty Development, Taichung Veterans General Hospital, Taichung, Taiwan
- Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Chuan Tsai
- Department of Nuclear Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Medical Imaging and Radiological Technology, Institute of Radiological Science, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Pu-Rong Huang
- Department of Nuclear Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Peiyuan F Hsieh
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Ching Lin
- Department of Nuclear Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Medical Imaging and Radiological Technology, Institute of Radiological Science, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Syu-Jyun Peng
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, No.250, Wuxing St., Xinyi Dist., Taipei City, 110, Taiwan.
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
3
|
Frontal lobe hypometabolism associated with Sudden Unexpected Death in Epilepsy (SUDEP) risk: An objective PET study. Epilepsy Behav 2021; 122:108185. [PMID: 34252829 DOI: 10.1016/j.yebeh.2021.108185] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/20/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Abnormalities of brain structures and neuronal networks have been identified in MRI studies of patients with Sudden Unexpected Death in Epilepsy (SUDEP) as well as in those at elevated risk. The goal of this study was to identify common patterns of objectively detected brain glucose metabolic abnormalities associated with SUDEP patients and those at high SUDEP risk. METHODS Patients with refractory epilepsy (n = 78, age: 16-61 years, 44 females), who underwent comprehensive presurgical evaluation, were assessed for their risk of SUDEP using the revised SUDEP-7 inventory. From the 57 patients with low SUDEP risk, 35 were selected to match their demographic and clinical characteristics to those with high SUDEP risk (n = 21). [18F]fluoro-deoxy-glucose positron emission tomography (FDG-PET) abnormalities were evaluated in the high- and low-SUDEP risk subgroups compared to FDG-PET scans of a healthy adult control group using statistical parametric mapping (SPM). Individual FDG-PET scans of 4 additional patients, who died from SUDEP, were also analyzed by SPM. RESULTS Mean SUDEP-7 score was 6.1 in the high and 2.7 in the low SUDEP risk group. MRI showed no lesion in 36 patients (64%). Statistical parametric mapping analysis of the high SUDEP risk subgroup showed bilateral medial frontal and inferior frontal hypometabolism as a common pattern. The low-risk group showed no specific common metabolic abnormalities on SPM group analysis. Individual PET scans of all 4 patients who died from SUDEP also showed bilateral frontal lobe hypometabolism. CONCLUSIONS These data show that bilateral frontal lobe involvement on FDG-PET, especially the medial and inferior frontal cortex, may be a common metabolic pattern associated with high SUDEP risk and SUDEP itself, in patients with refractory focal epilepsy.
Collapse
|
4
|
Hartl E, Rémi J, Vollmar C, Goc J, Loesch AM, Rominger A, Noachtar S. PET imaging in extratemporal epilepsy requires consideration of electroclinical findings. Epilepsy Res 2016; 125:72-6. [DOI: 10.1016/j.eplepsyres.2016.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/19/2016] [Accepted: 05/25/2016] [Indexed: 11/27/2022]
|
5
|
Abstract
Nuclear medicine imaging can provide important complementary information in the management of pediatric patients with neurological diseases. Pre-surgical localization of the epileptogenic focus in medically refractory epilepsy patients is the most common indication for nuclear medicine imaging in pediatric neurology. In patients with temporal lobe epilepsy, nuclear medicine imaging is particularly useful when magnetic resonance imaging findings are normal or its findings are discordant with electroencephalogram findings. In pediatric patients with brain tumors, nuclear medicine imaging can be clinically helpful in the diagnosis, directing biopsy, planning therapy, differentiating tumor recurrence from post-treatment sequelae, and assessment of response to therapy. Among other neurological diseases in which nuclear medicine has proved to be useful are patients with head trauma, inflammatory-infectious diseases and hypoxic-ischemic encephalopathy.
Collapse
Affiliation(s)
- Ümit Özgür Akdemir
- Gazi University Faculty of Medicine, Department of Nuclear Medicine, Ankara, Turkey Phone: +90 312 202 61 75 E-mail:
| | | |
Collapse
|
6
|
Abstract
Positron emission tomography (PET) has been widely used in the study of seizure disorders. As a research tool, PET has been used to determine the pathophysiology of different seizures disorders, prognostic and diagnostic information, and the response to various interventions. PET imaging has also been used clinically to help with the detection of seizure foci. With the continued development of a large array of radiopharmaceuticals that can evaluate all of the components of different neurotransmitter systems as well as cerebral blood flow and metabolism, PET imaging will continue to play a key role in research and clinical applications for seizure disorders.
Collapse
Affiliation(s)
- Abass Alavi
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
7
|
Kumar A, Chugani HT. Delineating Cortical Networks Underlying Epileptic Encephalopathy and Cognitive Impairment with PET: A Perspective. J Nucl Med 2010; 52:8-9. [DOI: 10.2967/jnumed.110.079012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
8
|
Abstract
Positron emission tomography (PET) imaging has been widely used in the evaluation and management of patients with seizure disorders. The ability of PET to measure cerebral function makes it ideal for studying the neurophysiologic correlates of seizure activity during ictal and interictal states. PET imaging is also useful for evaluating patients before surgical interventions to determine the best surgical method and maximize outcomes. Thus, PET will continue to play a major role not only in the clinical arena but in further investigations of the pathogenesis and management of various seizure disorders. This article reviews the literature regarding the current uses and indications for PET in the study and management of patients with seizure disorders.
Collapse
Affiliation(s)
- Abass Alavi
- Division of Nuclear Medicine, Department of Radiology, Hospital of the University of Pennsylvania, 110 Donner Building, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| | - Andrew B Newberg
- Division of Nuclear Medicine, Department of Radiology, Hospital of the University of Pennsylvania, 110 Donner Building, 3400 Spruce Street, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Badawy RAB, Harvey AS, Macdonell RAL. Cortical hyperexcitability and epileptogenesis: Understanding the mechanisms of epilepsy - part 2. J Clin Neurosci 2009; 16:485-500. [PMID: 19230676 DOI: 10.1016/j.jocn.2008.10.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 10/03/2008] [Indexed: 12/19/2022]
Abstract
Epilepsy encompasses a diverse group of seizure disorders caused by a variety of structural, cellular and molecular alterations of the brain primarily affecting the cerebral cortex, leading to recurrent unprovoked epileptic seizures. In this two-part review we examine the mechanisms underlying normal neuronal function and those predisposing to recurrent epileptic seizures starting at the most basic cellular derangements (Part 1, Volume 16, Issue 3) and working up to the highly complex epileptic networks and factors that modulate the predisposition to seizures (Part 2). We attempt to show that multiple factors can modify the epileptic process and that different mechanisms underlie different types of epilepsy, and in most situations there is an interplay between multiple genetic and environmental factors.
Collapse
Affiliation(s)
- Radwa A B Badawy
- Department of Neurology, Austin Health, Heidelberg, Victoria, Australia
| | | | | |
Collapse
|
10
|
Juckel G, Uhl I, Padberg F, Brüne M, Winter C. Psychosurgery and deep brain stimulation as ultima ratio treatment for refractory depression. Eur Arch Psychiatry Clin Neurosci 2009; 259:1-7. [PMID: 19137233 DOI: 10.1007/s00406-008-0826-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Accepted: 05/14/2008] [Indexed: 11/27/2022]
Abstract
For decades, the most severe, protracted and therapy-resistant forms of major depression have compelled clinicians and researchers to look for last resort treatment. Early psychosurgical procedures were hazardous and often associated with severe and persistent side effects including avolition, apathy and change of personality. With the introduction of psychopharmacological treatments in the 1950s, the frequency of ablative procedures declined rapidly. The past decade, however, has witnessed the resurgence of surgical strategies as a result of refined techniques and advances such as high frequency stimulation of deep brain nuclei. Recent data suggest that the overall effect of high frequency stimulation lies in the functional inhibition of neural activity in the region stimulated. Contrary to other psychosurgical procedures, high frequency stimulation reversibly modulates targeted brain areas and allows a postsurgical adaption of the stimulation parameters according to clinical outcome. With increased understanding of the brain regions and functional circuits involved in the pathogenesis of psychiatric disorders, major depression has emerged as a target for new psychosurgical approaches to selectively and precisely modulate neural areas involved in the disease process. Recent studies of minimally intervening procedures report good clinical outcome in the treatment of therapy-resistant forms of major depression. High frequency stimulation was successfully applied in several small samples of patients with treatment-resistant depression when the stimulation focused on different areas, e.g., nucleus accumbens, the lateral habenula or cortical areas. Nevertheless, the reticence toward psychosurgery, even for those patients suffering from the most debilitating forms of depression, still prevails, even though recent studies have shown significant improvement in terms of quality of life with the limitation that the number of treated cases has been small. In any event, valid and unambiguous criteria for patient eligibility have yet to be refined and standardized. In this review, we suggest possible standard criteria for the application of deep brain stimulation on patients suffering from otherwise treatment-resistant depression.
Collapse
Affiliation(s)
- Georg Juckel
- Department of Psychiatry Psychotherapy and Psychosomatic Medicine, Ruhr-University, Alexandrinenstr. 1, Bochum 44791, Germany.
| | | | | | | | | |
Collapse
|
11
|
|
12
|
Patil S, Biassoni L, Borgwardt L. Nuclear Medicine in Pediatric Neurology and Neurosurgery: Epilepsy and Brain Tumors. Semin Nucl Med 2007; 37:357-81. [PMID: 17707242 DOI: 10.1053/j.semnuclmed.2007.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In pediatric drug-resistant epilepsy, nuclear medicine can provide important additional information in the presurgical localization of the epileptogenic focus. The main modalities used are interictal (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) and ictal regional cerebral perfusion study with single-photon emission computed tomography (SPECT). Nuclear medicine techniques have a sensitivity of approximately 85% to 90% in the localization of an epileptogenic focus in temporal lobe epilepsy; however, in this clinical setting, they are not always clinically indicated because other techniques (eg, icterictal and ictal electroencephalogram, video telemetry, magnetic resonance imaging [MRI]) may be successful in the identification of the epileptogenic focus. Nuclear medicine is very useful when MRI is negative and/or when electroencephalogram and MRI are discordant. A good technique to identify the epileptogenic focus is especially needed in the setting of extra-temporal lobe epilepsy; however, in this context, identification of the epileptogenic focus is more difficult for all techniques and the sensitivity of the isotope techniques is only 50% to 60%. This review article discusses the clinical value of the different techniques in the clinical context; it also gives practical suggestions on how to acquire good ictal SPECT and interictal FDG-PET scans. Nuclear medicine in pediatric brain tumors can help in differentiating tumor recurrence from post-treatment sequelae, in assessing the response to treatment, in directing biopsy, and in planning therapy. Both PET and SPECT tracers can be used. In this review, we discuss the use of the different tracers available in this still very new, but promising, application of radioisotope techniques.
Collapse
Affiliation(s)
- Shekhar Patil
- University College London-Institute of Child Health, Great Ormond Street Hospital for Children NHS Trust and the National Centre for Young People with Epilepsy, London, United Kingdom
| | | | | |
Collapse
|
13
|
Carne RP, Cook MJ, MacGregor LR, Kilpatrick CJ, Hicks RJ, O'Brien TJ. "Magnetic resonance imaging negative positron emission tomography positive" temporal lobe epilepsy: FDG-PET pattern differs from mesial temporal lobe epilepsy. Mol Imaging Biol 2007; 9:32-42. [PMID: 17176980 DOI: 10.1007/s11307-006-0073-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Some patients with temporal lobe epilepsy (TLE) lack evidence of hippocampal sclerosis (HS) on MRI (HS-ve). We hypothesized that this group would have a different pattern of 2-deoxy-2-[F-18]fluoro-D-glucose (FDG)-positron emission tomography (PET) hypometabolism than typical mesial TLE/HS patients with evidence of hippocampal atrophy on magnetic resonance imaging (MRI) (HS+ve), with a lateral temporal neocortical rather than mesial focus. PROCEDURES Thirty consecutive HS-ve patients and 30 age- and sex-matched HS+ve patients with well-lateralized EEG were identified. FDG-PET was performed on 28 HS-ve patients and 24 HS+ve patients. Both groups were compared using statistical parametric mapping (SPM), directly and with FDG-PET from 20 healthy controls. RESULTS Both groups showed lateralized temporal hypometabolism compared to controls. In HS+ve, this was antero-infero-mesial (T = 17.13); in HS-ve the main clustering was inferolateral (T = 17.63). When directly compared, HS+ve had greater hypometabolism inmesial temporal/hippocampal regions (T = 4.86); HS-ve had greater inferolateral temporal hypometabolism (T = 4.18). CONCLUSIONS These data support the hypothesis that focal hypometabolism involves primarily lateal neocortical rather than mesial temporal structures in 'MRI-negative PET-positive TLE.'
Collapse
Affiliation(s)
- R P Carne
- Victorian Epilepsy Centre, St. Vincent's Hospital, Melbourne, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
14
|
de Lanerolle NC, Lee TS. New facets of the neuropathology and molecular profile of human temporal lobe epilepsy. Epilepsy Behav 2005; 7:190-203. [PMID: 16098816 DOI: 10.1016/j.yebeh.2005.06.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Accepted: 06/01/2005] [Indexed: 11/27/2022]
Abstract
This review summarizes the salient features of the anatomical and molecular neuropathology of the hippocampus from patients with intractable temporal lobe epilepsy (TLE). It argues that sclerotic hippocampus is essential for seizure expression and that sclerosis is not a consequence of seizures, but is related to the epileptogenicity of the seizure focus. While neurons in sclerotic hippocampus may contribute to hippocampal hyperexcitability, this role is perhaps less important than that of the astrocytes. The astrocytes in sclerotic hippocampus may directly influence excitability through altered water homeostasis and K+ buffering by redistribution of AQP4 transporters on their plasma membrane. It is proposed that they contribute to a high extracellular glutamate level through reduced glutamine synthetase, and activation through pro-inflammatory factors that release chemokines and cytokines, which enhance calcium-dependent glutamate release. Such a focal pool of glutamate may diffuse to surrounding neuron-rich areas to generate seizure activity in TLE.
Collapse
Affiliation(s)
- Nihal C de Lanerolle
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | |
Collapse
|
15
|
Joo EY, Hong SB, Han HJ, Tae WS, Kim JH, Han SJ, Seo DW, Lee KH, Hong SC, Lee M, Kim S, Kim BT. Postoperative alteration of cerebral glucose metabolism in mesial temporal lobe epilepsy. Brain 2005; 128:1802-10. [PMID: 15872014 DOI: 10.1093/brain/awh534] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To investigate postoperative changes in the cerebral glucose metabolism of patients with mesial temporal lobe epilepsy (MTLE), statistical parametric mapping (SPM) analysis was performed on pre- and postoperative (18)F-fluorodeoxyglucose PET (FDG-PET) images. We included 28 patients with MTLE who had undergone surgery and had been seizure-free postoperatively (16 had left MTLE and 12 right MTLE). All patients showed hippocampal sclerosis by pathology or brain MRI. FDG-PET images of the 12 right temporal lobe epilepsy patients were reversed to lateralize the epileptogenic zone to the left side in all patients. Application of the paired t-test in SPM to pre- and postoperative FDG-PETs showed that postoperative glucose metabolism decreased in the caudate nucleus, the pulvinar of the thalamus, fusiform gyrus, lingual gyrus and the posterior region of the insular cortex in the hemisphere ipsilateral to resection, whereas postoperative glucose metabolism increased in the anterior region of the insular cortex, temporal stem white matter, midbrain, inferior precentral gyrus, anterior cingulate gyrus and supramarginal gyrus in the hemisphere ipsilateral to resection. No significant postsurgical changes in cerebral glucose metabolism occurred in the contralateral hemisphere. Subtraction between pre- and postoperative FDG-PET images in individual patients produced similar findings to the SPM results, and additionally showed that postoperative glucose metabolism increased in the anterior thalamus in 12/28 patients (42.8%). SISCOM (subtraction ictal-interictal SPECT co-registered to MRI) performed in 17 patients showed ictal hyperperfusion in the ipsilateral temporal lobe, including the temporal stem white matter, midbrain, insular cortex and cingulate gyrus, bilateral basal ganglia and thalami, and multiple small regions in the frontoparietal lobes during seizures. This study suggests that brain regions showing a postoperative increase in glucose metabolism appear to represent the propagation pathways of ictal and interictal epileptic discharges in MTLE, whereas the postoperative decrease in glucose metabolism may be related to a permanent loss of afferents from resected anterior-mesial temporal structures.
Collapse
Affiliation(s)
- Eun Yeon Joo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-Dong, Gangnam-Gu, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bjørnaes H, Stabell KE, Røste GK, Bakke SJ. Changes in verbal and nonverbal memory following anterior temporal lobe surgery for refractory seizures: effects of sex and laterality. Epilepsy Behav 2005; 6:71-84. [PMID: 15652737 DOI: 10.1016/j.yebeh.2004.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Revised: 10/23/2004] [Accepted: 10/23/2004] [Indexed: 11/18/2022]
Abstract
We studied the effects on verbal and nonverbal memory of anterior temporal lobe (ATL) surgery for epilepsy in 91 patients (46 men, 45 women), all of whom had left-hemisphere dominance for speech. Patients were divided into four groups according to sex and laterality of the excision. The memory tasks were administered shortly before surgery, 6 months postoperatively, and at a 2-year follow-up. Test scores were submitted to repeated-measures analyses of variance. We found that men treated with left temporal resection declined significantly in long-delay verbal memory after surgery, whereas no clear pre- to postoperative sex differences were found with respect to other verbal memory scores. Only the results on long-delay verbal memory confirm previous findings, showing a greater vulnerability of verbal memory to left ATL surgery in men than in women. Women with left temporal excisions obtained particularly poor scores on a long-delay nonverbal memory test preoperatively, but improved their performance on this test significantly after surgery. The seemingly gradual improvement during the 2-year follow-up suggests a plastic process.
Collapse
|
17
|
Abstract
PET imaging has been widely used in the evaluation and management of patients with seizure disorders. The ability of PET to measure cerebral function is ideal for studying the neurophysiologic correlates of seizure activity during both ictal and interictal states. PET imaging is also valuable for evaluating patients before surgical interventions to determine the best surgical method and maximize outcomes. PET will continue to play a major role, not only in the clinical arena, but also in investigating the pathogenesis and treatment of various seizure disorders.
Collapse
Affiliation(s)
- Andrew B Newberg
- Division of Nuclear Medicine, Hospital of the University of Pennsylvania, 3400 Spruce Street, 110 Donner Building, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
18
|
Van Paesschen W. Qualitative and quantitative imaging of the hippocampus in mesial temporal lobe epilepsy with hippocampal sclerosis. Neuroimaging Clin N Am 2004; 14:373-400, vii. [PMID: 15324854 DOI: 10.1016/j.nic.2004.04.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
MR imaging allows the in vivo detection of hippocampal sclerosis (HS) and has been instrumental in the delineation of the syndrome of mesial temporal lobe epilepsy with HS (mTLE-HS). MR features of HS include hippocampal atrophy with an increased T2 signal. Quantitative MR imaging accurately reflects the degree of hippocampal damage.Ictal single photon emission computed tomography (SPECT) in mTLE-HS shows typical perfusion patterns of ipsilateral temporal lobe hyperperfusion, and ipsilateral frontoparietal and contralateral cerebellar hypoperfusion. Interictal 18fluoro-2-deoxyglucose positron emission tomography (PET) shows multiregional hypometabolism, involving predominantly the ipsilateral temporal lobe. 11C-flumazenil PET shows hippocampal decreases in central benzodiazepine receptor density. Future strategies to study the etiology and pathogenesis of HS should include longitudinal MR imaging studies,MR studies in families with epilepsy and febrile seizures, stratification for genetic background, coregistration with SPECT and PET, partial volume correction and statistical parametric mapping analysis of SPECT and PET images.
Collapse
Affiliation(s)
- Wim Van Paesschen
- Department of Neurology, University Hospital Gasthuisberg, Katholieke Universiteit Leuven, 49 Herestraat, 3000 Leuven, Belgium.
| |
Collapse
|
19
|
Nickel J, Jokeit H, Wunderlich G, Ebner A, Witte OW, Seitz RJ. Gender-specific Differences of Hypometabolism in mTLE: Implication for Cognitive Impairments. Epilepsia 2003; 44:1551-61. [PMID: 14636327 DOI: 10.1111/j.0013-9580.2003.13603.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE To determine gender differences of hypometabolism and their implications for cognitive impairment in patients with medically refractory mesial temporal lobe epilepsy (mTLE). METHODS Regional cerebral glucose metabolism (rCMRGlu) was studied in 42 patients (21 male, 21 female) with either left- or right-sided mTLE (22 left, 20 right) and in 12 gender- and age-matched healthy controls during resting wakefulness and in 12 sex- and age-matched healthy controls. Clinical characteristics were balanced across the patient subgroups. All patients were subjected to neuropsychological assessment: 41 patients had histologic changes of definite or probable hippocampal sclerosis. RESULTS Data analysis based on pixel-by-pixel comparisons and on a laterality index of regions of interest (ROIs) showed significant depressions of the mean rCMRGlu extending beyond the mesiotemporal region and temporolateral cortex to extratemporal regions including the frontoorbital and insular cortex in mTLE patients. Extramesiotemporal hypometabolism prevailed in the male patients. Metabolic asymmetry in temporal and frontal regions was related to performance in the Trail-Making Test and WAIS-R subitems. CONCLUSIONS Our data showed a gender-specific predominance of extramesiotemporal hypometabolism in male patients with mTLE related to abnormalities of temporal and frontal lobe functions.
Collapse
Affiliation(s)
- Janpeter Nickel
- Department of Neurology, University-Hospital Düsseldorf, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Affiliation(s)
- Susan S Spencer
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06520-8018, USA.
| |
Collapse
|
21
|
Newberg A, Alavi A, Reivich M. Determination of regional cerebral function with FDG-PET imaging in neuropsychiatric disorders. Semin Nucl Med 2002; 32:13-34. [PMID: 11839066 DOI: 10.1053/snuc.2002.29276] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Functional brain imaging using 18F fluorodeoxyglucose (FDG) and positron emission tomography (PET) has greatly enhanced our understanding of brain function both in normal conditions as well as in a wide variety of neuropsychiatric disorders. We review the uses of FDG PET in the diagnosis, management, and follow-up of patients with neuropsychiatric disorders. This article will also explore what FDG-PET imaging has revealed in these neuropsychiatric disorders and how these findings relate to both research and clinical applications.
Collapse
Affiliation(s)
- Andrew Newberg
- Division of Nuclear Medicine, The Hospital of the University of Pennsylvania, Philadelphia 19104, USA
| | | | | |
Collapse
|
22
|
Juhász C, Chugani DC, Muzik O, Watson C, Shah J, Shah A, Chugani HT. Electroclinical correlates of flumazenil and fluorodeoxyglucose PET abnormalities in lesional epilepsy. Neurology 2000; 55:825-35. [PMID: 10994004 DOI: 10.1212/wnl.55.6.825] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To analyze the clinical utility of [11C]flumazenil (FMZ) PET to detect perilesional and remote cortical areas of abnormal benzodiazepine receptor binding in relation to MRI, 2-deoxy-2-[18F]fluoro-d-glucose (FDG) PET, and electrocorticographic (ECoG) findings as well as clinical characteristics of the epilepsy in epileptic patients with brain lesion. BACKGROUND The success of resective surgery in patients with medically intractable epilepsy and brain lesion depends not only on removal of the lesion itself but also on the reliable presurgical delineation of the epileptic cortex that commonly extends beyond it. PET could provide a noninvasive identification of such epileptogenic areas. METHODS Seventeen patients underwent high resolution MRI, FDG and FMZ PET, and presurgical EEG evaluation, including chronic intracranial ECoG monitoring or intraoperative ECoG. Regional cortical FDG/FMZ PET abnormalities were defined on partial volume-corrected PET images using an objective method based on a semiautomated definition of areas with abnormal asymmetry. Structural lesions were defined on coregistered MRI. The marked PET abnormalities visualized on three-dimensional cortical surface were compared with each other, to the extent of MRI-defined lesion, as well as to ECoG findings. RESULTS The mean surface extent of FMZ PET abnormalities was significantly larger than the corresponding structural lesions, but it was significantly smaller than areas of glucose hypometabolism. The size of perilesional FDG PET abnormalities showed a correlation with the lifetime number of seizures (r = 0.93, p = 0.001). The extent of perilesional FMZ PET abnormalities was independent of the seizure number and showed an excellent correspondence with spiking cortex, the resection of which resulted in seizure-free outcome in all but one operated patient. Remote FMZ PET abnormalities (n = 6) were associated with early age at seizure onset (p = 0.048) and appeared in ipsilateral synaptically connected regions from the lesion area. CONCLUSIONS Three-dimensional surface-rendered FMZ PET is able to delineate perilesional epileptic cortex, and it may be especially useful to localize such areas in patients with extensive perilesional glucose hypometabolism associated with a large number of seizures. Remote FMZ PET abnormalities in patients with early onset and long duration of epilepsy might represent secondary epileptogenesis, but this requires further study.
Collapse
Affiliation(s)
- C Juhász
- Departments of Pediatrics, Children's Hospital of Michigan, Detroit, MI 48201, USA
| | | | | | | | | | | | | |
Collapse
|