1
|
Hori A, Inaba H, Hato T, Tanaka K, Sato S, Okamoto M, Horiuchi Y, Paran FJ, Tabe Y, Mori S, Rosales C, Akamatsu W, Murayama T, Kurebayashi N, Sakurai T, Ai T, Miida T. Carvedilol suppresses ryanodine receptor-dependent Ca2+ bursts in human neurons bearing PSEN1 variants found in early onset Alzheimer's disease. PLoS One 2024; 19:e0291887. [PMID: 39173065 PMCID: PMC11341060 DOI: 10.1371/journal.pone.0291887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 05/02/2024] [Indexed: 08/24/2024] Open
Abstract
Seizures are increasingly being recognized as the hallmark of Alzheimer's disease (AD). Neuronal hyperactivity can be a consequence of neuronal damage caused by abnormal amyloid β (Aß) depositions. However, it can also be a cell-autonomous phenomenon causing AD by Aß-independent mechanisms. Various studies using animal models have shown that Ca2+ is released from the endoplasmic reticulum (ER) via type 1 inositol triphosphate receptors (InsP3R1s) and ryanodine receptors (RyRs). To investigate which is the main pathophysiological mechanism in human neurons, we measured Ca2+ signaling in neural cells derived from three early-onset AD patients harboring Presenilin-1 variants (PSEN1 p.A246E, p.L286V, and p.M146L). Of these, it has been reported that PSEN1 p.A246E and p.L286V did not produce a significant amount of abnormal Aß. We found all PSEN1-mutant neurons, but not wild-type, caused abnormal Ca2+-bursts in a manner dependent on the calcium channel, Ryanodine Receptor 2 (RyR2). Indeed, carvedilol, an RyR2 inhibitor, and VK-II-86, an analog of carvedilol without the β-blocking effects, sufficiently eliminated the abnormal Ca2+ bursts. In contrast, Dantrolene, an inhibitor of RyR1 and RyR3, and Xestospongin c, an IP3R inhibitor, did not attenuate the Ca2+-bursts. The Western blotting showed that RyR2 expression was not affected by PSEN1 p.A246E, suggesting that the variant may activate the RyR2. The RNA-Seq data revealed that ER-stress responsive genes were increased, and mitochondrial Ca2+-transporter genes were decreased in PSEN1A246E cells compared to the WT neurons. Thus, we propose that aberrant Ca2+ signaling is a key link between human pathogenic PSEN1 variants and cell-intrinsic hyperactivity prior to deposition of abnormal Aß, offering prospects for the development of targeted prevention strategies for at-risk individuals.
Collapse
Affiliation(s)
- Atsushi Hori
- Department of Clinical Laboratory Technology, Faculty of Medical Science, Juntendo University, Chiba, Japan
| | - Haruka Inaba
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Hato
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Kimie Tanaka
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shoichi Sato
- Department of Clinical Engineering, Faculty of Medical Science, Juntendo University, Chiba, Japan
| | - Mizuho Okamoto
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Center for Genomic and Regenerative Medicine, School of Medicine, Juntendo University, Tokyo, Japan
| | - Yuna Horiuchi
- Department of Clinical Laboratory Technology, Faculty of Medical Science, Juntendo University, Chiba, Japan
| | - Faith Jessica Paran
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoko Tabe
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shusuke Mori
- Department of Acute Care and Disaster Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Corina Rosales
- Center for Bioenergetics and the Department of Medicine, Houston Methodist Research Institute, Texas, United States of America
- Weill Cornell Medicine, New York, New York, United States of America
| | - Wado Akamatsu
- Center for Genomic and Regenerative Medicine, School of Medicine, Juntendo University, Tokyo, Japan
| | - Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Nagomi Kurebayashi
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takashi Sakurai
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Tomohiko Ai
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Acute Care and Disaster Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Clinical Laboratory Medicine, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Takashi Miida
- Department of Clinical Laboratory Technology, Faculty of Medical Science, Juntendo University, Chiba, Japan
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Song B, Shen S, Fu S, Fu J. HSPA6 and its role in cancers and other diseases. Mol Biol Rep 2022; 49:10565-10577. [PMID: 35666422 DOI: 10.1007/s11033-022-07641-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/25/2022] [Indexed: 12/13/2022]
Abstract
Heat Shock Protein Family A (Hsp70) Member 6 (HSPA6) (Online Mendelian Inheritance in Man: 140555) belongs to the HSP70 family and is a partially conserved inducible protein in mammals. The HSPA6 gene locates on the human chromosome 1q23.3 and encodes a protein containing two important structural domains: The N-terminal nucleotide-binding domain and the C-terminal substrate-binding domain. Currently, studies have found that HSPA6 not only plays a role in the tumorigenesis and tumor progresses but also causes non-tumor-related diseases. Furthermore, HSPA6 exhibits to inhibit tumorigenesis and tumor progression in some types of cancers but promotes in others. Even though HSPA6 research has increased, its exact roles and mechanisms are still unclear. This article reviews the structure, expression, function, research progress, possible mechanism, and perspective of HSPA6 in cancers and other diseases, highlighting its potential role as a targeted therapeutic and prognostic marker.
Collapse
Affiliation(s)
- Binghui Song
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Shiyi Shen
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Shangyi Fu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
- School of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
3
|
Pan P, Weinsheimer S, Cooke D, Winkler E, Abla A, Kim H, Su H. Review of treatment and therapeutic targets in brain arteriovenous malformation. J Cereb Blood Flow Metab 2021; 41:3141-3156. [PMID: 34162280 PMCID: PMC8669284 DOI: 10.1177/0271678x211026771] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/23/2022]
Abstract
Brain arteriovenous malformations (bAVM) are an important cause of intracranial hemorrhage (ICH), especially in younger patients. The pathogenesis of bAVM are largely unknown. Current understanding of bAVM etiology is based on studying genetic syndromes, animal models, and surgically resected specimens from patients. The identification of activating somatic mutations in the Kirsten rat sarcoma viral oncogene homologue (KRAS) gene and other mitogen-activated protein kinase (MAPK) pathway genes has opened up new avenues for bAVM study, leading to a paradigm shift to search for somatic, de novo mutations in sporadic bAVMs instead of focusing on inherited genetic mutations. Through the development of new models and understanding of pathways involved in maintaining normal vascular structure and functions, promising therapeutic targets have been identified and safety and efficacy studies are underway in animal models and in patients. The goal of this paper is to provide a thorough review or current diagnostic and treatment tools, known genes and key pathways involved in bAVM pathogenesis to summarize current treatment options and potential therapeutic targets uncovered by recent discoveries.
Collapse
Affiliation(s)
- Peipei Pan
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, USA
| | - Shantel Weinsheimer
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, USA
| | - Daniel Cooke
- Department of Radiology, University of California, San Francisco, USA
| | - Ethan Winkler
- Department of Neurosurgery, University of California, San Francisco, USA
| | - Adib Abla
- Department of Neurosurgery, University of California, San Francisco, USA
| | - Helen Kim
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, USA
| | - Hua Su
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, USA
| |
Collapse
|
4
|
Abnormalities in the Von Willebrand-Angiopoietin Axis Contribute to Dysregulated Angiogenesis and Angiodysplasia in Children With a Glenn Circulation. JACC Basic Transl Sci 2021; 6:222-235. [PMID: 33778210 PMCID: PMC7987544 DOI: 10.1016/j.jacbts.2020.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 02/08/2023]
Abstract
Children with a bidirectional superior cavopulmonary connection (Glenn circulation) develop dysregulated angiogenesis and pulmonary angiodysplasia in the form of arteriovenous malformations (AVMs). No targeted therapy exists. The von Willebrand factor (vWF)–angiopoietin axis plays a major role in normal angiogenesis, angiodysplasia, and AVM formation in multiple diseases. vWF and angiopoietin-2 (which destabilizes vessel formation) were abnormal in children with a Glenn circulation versus control children. Within Glenn patients, angiopoietin-1 (which stabilizes vessel formation) and angiogenesis were different in the systemic versus pulmonary circulation. Plasma angiopoietin-1 was lower in the pulmonary circulation of Glenn patients with pulmonary AVMs than Glenn patients without AVMs. In parallel, differences in multiple angiogenic and inflammatory signaling peptides were observed between Glenn patients and controls, which indicated derangements in multiple angiogenic pathways in Glenn patients. These findings support the novel hypothesis that abnormal vWF metabolism and angiopoietin signaling dysregulate angiogenesis and contribute to pulmonary AVM formation in children with a Glenn circulation. The vWF-angiopoietin axis may be a target to correct angiogenic imbalance and reduce pulmonary angiodysplasia in Glenn patients.
Children with a bidirectional superior cavopulmonary (Glenn) circulation develop angiodysplasia and pulmonary arteriovenous malformations (AVMs). The von Willebrand factor (vWF)–angiopoietin axis plays a major role in AVM formation in multiple diseases. We observed derangements in global angiogenic signaling, vWF metabolism, angiopoietins, and in vitro angiogenesis in children with a Glenn circulation versus controls and within Glenn pulmonary versus systemic circulations. These findings support the novel hypothesis that abnormalities in the vWF-angiopoietin axis may dysregulate angiogenesis and contribute to Glenn pulmonary AVMs. The vWF-angiopoietin axis may be a target to correct angiogenic imbalance in Glenn patients, for whom no targeted therapy exists.
Collapse
Key Words
- ADAMTS-13, a disintegrin and metalloproteinase thrombospondin (motif) #13
- AVM, arteriovenous malformation
- EBM, endothelial basal media
- EGM, endothelial growth media
- Glenn
- HUVEC, human umbilical vein endothelial cell
- IVC, inferior vena cava
- LVAD, left ventricular assist device
- PA, pulmonary artery
- SVC, superior vena cava
- angiogenesis
- angiopoietin
- arteriovenous malformation
- vWF, von Willebrand factor
- von Willebrand factor
Collapse
|
5
|
Krithika S, Sumi S. Neurovascular inflammation in the pathogenesis of brain arteriovenous malformations. J Cell Physiol 2020; 236:4841-4856. [PMID: 33345330 DOI: 10.1002/jcp.30226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/11/2020] [Accepted: 12/08/2020] [Indexed: 11/11/2022]
Abstract
Brain arteriovenous malformations (bAVM) arise as congenital or sporadic focal lesions with a significant risk for intracerebral hemorrhage (ICH). A wide range of interindividual differences is present in the onset, progression, and severity of bAVM. A growing body of gene expression and polymorphism-based research studies support the involvement of localized inflammation in bAVM disease progression and rupture. In this review article, we analyze the altered responses of neural, vascular, and immune cell types that contribute to the inflammatory process, which exacerbates the pathophysiological progression of vascular dysmorphogenesis in bAVM lesions. The cumulative effect of inflammation in bAVM development is orchestrated by various genetic moderators and inflammatory mediators. We also discuss the potential therapies for the treatment of brain AVM by targeting the inflammatory processes and mediators. Elucidating the precise role of inflammation in the bAVM growth and hemorrhage would open novel avenues for noninvasive and effectual causal therapy that may complement the current therapeutic strategies.
Collapse
Affiliation(s)
- S Krithika
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - S Sumi
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
6
|
Takagi Y, Kanematsu Y, Mizobuchi Y, Mure H, Shimada K, Tada Y, Morigaki R, Sogabe S, Fujihara T, Miyamoto T, Miyake K. Basic research and surgical techniques for brain arteriovenous malformations. THE JOURNAL OF MEDICAL INVESTIGATION 2020; 67:222-228. [PMID: 33148892 DOI: 10.2152/jmi.67.222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Arteriovenous malformations (AVMs) are hemorrhagic vascular diseases in which arteries and veins are directly connected with no capillary bed between the two. We herein introduce the results of basic research of this disease and surgical techniques based on our data and experiences. The results obtained from our research show that cell death- and inflammation-related molecules changed or became activated compared with control specimens. These findings indicate that chronic inflammation occurs in and around the nidus of AVMs. Various molecules are involved in the mechanisms of cell death and angiogenesis during this process. Confirmation of blood flow in the nidus is very important to avoid hemorrhagic complications during surgical removal of the nidus. The risk of hemorrhage increases when the blood flow in the nidus is not reduced. We reported the advantages of serial indocyanine green videoangiography, which is used to assess the blood flow during AVM nidus removal. Since publication of the ARUBA trial and Scottish Audit, treatments with high morbidity have not been allowed. It is especially important for neurosurgeons to treat low Spetzler-Martin grade AVMs with low morbidity. J. Med. Invest. 67 : 222-228, August, 2020.
Collapse
Affiliation(s)
- Yasushi Takagi
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yasuhisa Kanematsu
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yoshifumi Mizobuchi
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Hideo Mure
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Kenji Shimada
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yoshiteru Tada
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Ryoma Morigaki
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Shu Sogabe
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Toshitaka Fujihara
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Takeshi Miyamoto
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Kazuhisa Miyake
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
7
|
Florian IA, Timiș TL, Ungureanu G, Florian IS, Bălașa A, Berindan-Neagoe I. Deciphering the vascular labyrinth: role of microRNAs and candidate gene SNPs in brain AVM development - literature review. Neurol Res 2020; 42:1043-1054. [PMID: 32723034 DOI: 10.1080/01616412.2020.1796380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Brain arteriovenous malformations (AVMs) are a relatively infrequent vascular pathology of unknown etiology that, despite their rarity, cause the highest number of hemorrhagic strokes under the age of 30 years. They pose a challenge to all forms of treatment due to their variable morphology, location, size, and, last but not least, evolving nature. MicroRNAs (miRNAs) are non-coding RNA strands that may suppress the expression of target genes by binding completely or partially to their complementary sequences. Single nucleotide polymorphisms (SNPs), as the name implies, are variations in a single nucleotide in the DNA, usually found in the non-coding segments. Although the majority of SNPs are harmless, some located in the proximity of candidate genes may result in altered expression or function of these genes and cause diseases or affect how different pathologies react to treatment. The roles miRNAs and certain SNPs play in the development and growth of AVMs are currently uncertain, yet progress in deciphering the minutiae of this pathology is already visible. Methods and Results: We performed an electronic Medline (PubMed, PubMed Central) and Google Academic exploration using permutations of the terms: "arteriovenous malformations," "single nucleotide polymorphisms," "microRNA," "non-coding RNA," and "genetic mutations." The findings were then divided into two categories, namely the miRNAs and the candidate gene SNPs associated with AVMs respectively. 6 miRNAs and 12 candidate gene SNPs were identified and discussed. Conclusions: The following literature review focuses on the discoveries made in ascertaining the different implications of miRNAs and candidate gene SNPs in the formation and evolution of brain AVMs, as well as highlighting the possible directions of future research and biological treatment. Abbreviations: ACVRL1/ALK1: activin receptor-like kinase 1; Akt: protein kinase B; ANGPTL4: angiopoietin-like 4; ANRIL: antisense noncoding RNA in the INK4 locus; AVM: arteriovenous malformation; AVM-BEC: arteriovenous malformation brain endothelial cell; BRCA1: breast cancer type 1 susceptibility protein; CCS: case-control study; CDKN2A/B: cyclin-dependent kinase inhibitor 2A/B; CLTC: clathrin heavy chain; DNA: deoxyribonucleic acid; ERK: extracellular signal-regulated kinase; GPR124: probable G-protein coupled receptor 124; GWAS: genome-wide association study; HHT: hereditary hemorrhagic telangiectasia; HIF1A: hypoxia-inducible factor 1A; IA: intracranial aneurysm; ICH: intracranial hemorrhage; Id-1: inhibitor of DNA-binding protein A; IL-17: interleukin 17; MAP4K3: mitogen-activated protein kinase kinase kinase kinase 3; miRNA: microRNA; MMP: matrix metalloproteinase; NFkB: nuclear factor kappa-light-chain of activated B cells; NOTCH: neurogenic locus notch homolog; p38MAPK: p38 mitogen-activated protein kinase; PI3K: phosphoinositide 3-kinase; RBBP8: retinoblastoma-binding protein 8; RNA: ribonucleic acid; SNAI1: Snail Family Transcriptional Repressor 1; SNP: single nucleotide polymorphism; SOX-17: SRY-related HMG-box; TGF-β: transformation growth factor β; TGFR: transformation growth factor receptor; TIMP-4, tissue inhibitor of metalloproteinase 4; TSP-1: thrombospondin-1; UTR: untranslated region; VEGF: Vascular Endothelial Growth Factor; VSMC: vascular smooth muscle cell; Wnt1: Wnt family member 1.
Collapse
Affiliation(s)
- Ioan Alexandru Florian
- Clinic of Neurosurgery, Cluj County Emergency Clinical Hospital , Cluj-Napoca, Romania.,Department of Neurosurgery, Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca, Romania
| | - Teodora Larisa Timiș
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca, Romania
| | - Gheorghe Ungureanu
- Clinic of Neurosurgery, Cluj County Emergency Clinical Hospital , Cluj-Napoca, Romania.,Department of Neurosurgery, Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca, Romania
| | - Ioan Stefan Florian
- Clinic of Neurosurgery, Cluj County Emergency Clinical Hospital , Cluj-Napoca, Romania.,Department of Neurosurgery, Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca, Romania
| | - Adrian Bălașa
- Clinic of Neurosurgery, Tîrgu Mureș County Clinical Emergency Hospital , Tîrgu Mureș, Romania.,Department of Neurosurgery, Tîrgu Mureș University of Medicine, Pharmacy, Science and Technology , Tîrgu Mureș, Romania
| | - Ioana Berindan-Neagoe
- The Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca, Romania.,Functional Genomics and Experimental Pathology Department, The Oncology Institute "Prof. Dr. Ion Chiricuta" , Cluj-Napoca, Romania
| |
Collapse
|
8
|
Hauer AJ, Kleinloog R, Giuliani F, Rinkel GJ, de Kort GA, Berkelbach van der Sprenkel JW, van der Zwan A, Gosselaar PH, van Rijen PC, de Boer-Bergsma JJ, Deelen P, Swertz MA, De Muynck L, Van Damme P, Veldink JH, Ruigrok YM, Klijn CJ. RNA-Sequencing Highlights Inflammation and Impaired Integrity of the Vascular Wall in Brain Arteriovenous Malformations. Stroke 2020; 51:268-274. [DOI: 10.1161/strokeaha.119.025657] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose—
Interventional treatment of unruptured brain arteriovenous malformations (BAVMs) has become increasingly controversial. Because medical therapy is still lacking, we aimed to obtain insight into the disease mechanisms implicated in BAVMs and to identify potential targets for medical treatment to prevent rupture of a BAVM.
Methods—
We used next-generation RNA sequencing to identify differential expression on a transcriptome-wide level comparing tissue samples of 12 BAVMs to 16 intracranial control arteries. We identified differentially expressed genes by negative binominal generalized log-linear regression (false discovery rate corrected
P
<0.05). We selected 10 genes for validation using droplet digital polymerase chain reaction. We performed functional pathway analysis accounting for potential gene-length bias, to establish enhancement of biological pathways involved in BAVMs. We further assessed which Gene Ontology terms were enriched.
Results—
We found 736 upregulated genes in BAVMs including genes implicated in the cytoskeletal machinery and cell-migration and genes encoding for inflammatory cytokines and secretory products of neutrophils and macrophages. Furthermore, we found 498 genes downregulated including genes implicated in extracellular matrix composition, the binary angiopoietin-TIE system, and TGF (transforming growth factor)-β signaling. We confirmed the differential expression of top 10 ranked genes. Functional pathway analysis showed enrichment of the protein digestion and absorption pathway (false discovery rate-adjusted
P
=1.70×10
−2
). We identified 47 enriched Gene Ontology terms (false discovery rate-adjusted
P
<0.05) implicated in cytoskeleton network, cell-migration, endoplasmic reticulum, transmembrane transport, and extracellular matrix composition.
Conclusions—
Our genome-wide RNA-sequencing study points to involvement of inflammatory mediators, loss of cerebrovascular quiescence, and impaired integrity of the vascular wall in the pathophysiology of BAVMs. Our study may lend support to potential receptivity of BAVMs to medical therapeutics, including those promoting vessel maturation, and anti-inflammatory and immune-modifying drugs.
Collapse
Affiliation(s)
- Allard J. Hauer
- From the Department of Neurology and Neurosurgery (A.J.H., R.K., F.G., G.J.E.R., J.W.B.v.d.S., A.v.d.Z., P.H.G., P.C.v.R., J.H.V., Y.M.R., C.J.M.K.), University Medical Center Utrecht, the Netherlands
| | - Rachel Kleinloog
- From the Department of Neurology and Neurosurgery (A.J.H., R.K., F.G., G.J.E.R., J.W.B.v.d.S., A.v.d.Z., P.H.G., P.C.v.R., J.H.V., Y.M.R., C.J.M.K.), University Medical Center Utrecht, the Netherlands
| | - Fabrizio Giuliani
- From the Department of Neurology and Neurosurgery (A.J.H., R.K., F.G., G.J.E.R., J.W.B.v.d.S., A.v.d.Z., P.H.G., P.C.v.R., J.H.V., Y.M.R., C.J.M.K.), University Medical Center Utrecht, the Netherlands
| | - Gabriël J.E. Rinkel
- From the Department of Neurology and Neurosurgery (A.J.H., R.K., F.G., G.J.E.R., J.W.B.v.d.S., A.v.d.Z., P.H.G., P.C.v.R., J.H.V., Y.M.R., C.J.M.K.), University Medical Center Utrecht, the Netherlands
| | - Gerard A. de Kort
- Brain Center Rudolf Magnus and Department of Radiology (G.A.d.K.), University Medical Center Utrecht, the Netherlands
| | - Jan Willem Berkelbach van der Sprenkel
- From the Department of Neurology and Neurosurgery (A.J.H., R.K., F.G., G.J.E.R., J.W.B.v.d.S., A.v.d.Z., P.H.G., P.C.v.R., J.H.V., Y.M.R., C.J.M.K.), University Medical Center Utrecht, the Netherlands
| | - Albert van der Zwan
- From the Department of Neurology and Neurosurgery (A.J.H., R.K., F.G., G.J.E.R., J.W.B.v.d.S., A.v.d.Z., P.H.G., P.C.v.R., J.H.V., Y.M.R., C.J.M.K.), University Medical Center Utrecht, the Netherlands
| | - Peter H. Gosselaar
- From the Department of Neurology and Neurosurgery (A.J.H., R.K., F.G., G.J.E.R., J.W.B.v.d.S., A.v.d.Z., P.H.G., P.C.v.R., J.H.V., Y.M.R., C.J.M.K.), University Medical Center Utrecht, the Netherlands
| | - Peter C. van Rijen
- From the Department of Neurology and Neurosurgery (A.J.H., R.K., F.G., G.J.E.R., J.W.B.v.d.S., A.v.d.Z., P.H.G., P.C.v.R., J.H.V., Y.M.R., C.J.M.K.), University Medical Center Utrecht, the Netherlands
| | - Jelkje J. de Boer-Bergsma
- Department of Genetics (J.J.d.B.-B., P.D., M.A.S.), University Medical Center Groningen, the Netherlands
- Genomics Coordination Center (J.J.d.B.-B., P.D., M.A.S.), University Medical Center Groningen, the Netherlands
| | - Patrick Deelen
- Department of Genetics (J.J.d.B.-B., P.D., M.A.S.), University Medical Center Groningen, the Netherlands
- Genomics Coordination Center (J.J.d.B.-B., P.D., M.A.S.), University Medical Center Groningen, the Netherlands
| | - Morris A. Swertz
- Department of Genetics (J.J.d.B.-B., P.D., M.A.S.), University Medical Center Groningen, the Netherlands
- Genomics Coordination Center (J.J.d.B.-B., P.D., M.A.S.), University Medical Center Groningen, the Netherlands
| | - Louis De Muynck
- Department of Neurology, University Hospital Leuven and Laboratory of Neurobiology, Center for Brain & Disease Research, VIB and KU Leuven, Belgium (L.D.M., P.V.D.)
| | - Philip Van Damme
- Department of Neurology, University Hospital Leuven and Laboratory of Neurobiology, Center for Brain & Disease Research, VIB and KU Leuven, Belgium (L.D.M., P.V.D.)
| | - Jan H. Veldink
- From the Department of Neurology and Neurosurgery (A.J.H., R.K., F.G., G.J.E.R., J.W.B.v.d.S., A.v.d.Z., P.H.G., P.C.v.R., J.H.V., Y.M.R., C.J.M.K.), University Medical Center Utrecht, the Netherlands
| | - Ynte M. Ruigrok
- From the Department of Neurology and Neurosurgery (A.J.H., R.K., F.G., G.J.E.R., J.W.B.v.d.S., A.v.d.Z., P.H.G., P.C.v.R., J.H.V., Y.M.R., C.J.M.K.), University Medical Center Utrecht, the Netherlands
| | - Catharina J.M. Klijn
- Department of Neurology, Donders Institute of Brain Cognition & Behaviour, Center for Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands (C.J.M.K.)
| |
Collapse
|
9
|
Huo R, Fu W, Li H, Jiao Y, Yan Z, Wang L, Wang J, Wang S, Cao Y, Zhao J. RNA Sequencing Reveals the Activation of Wnt Signaling in Low Flow Rate Brain Arteriovenous Malformations. J Am Heart Assoc 2019; 8:e012746. [PMID: 31170876 PMCID: PMC6645621 DOI: 10.1161/jaha.119.012746] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Background The blood flow rate of brain arteriovenous malformations (bAVMs) is an important clinical characteristic closely associated with the hemorrhage risk and radiosurgery obliteration rate of bAVMs. However, the underlying molecular properties remain unclear. To identify potential key molecules, signaling pathways, and vascular cell types involved, we compared gene expression profiles between bAVMs with high flow rates and low flow rates (LFR) and validated the functions of selected key molecules in vitro. Methods and Results We performed RNA‐sequencing analysis on 51 samples, including 14 high flow rate bAVMs and 37 LFR bAVMs. Functional pathway analysis was performed to identify potential signals influencing the flow rate phenotype of bAVMs. Candidate genes were investigated in bAVM specimens by immunohistochemical staining. Migration, tube formation, and proliferation assays were used to test the effects of candidate genes on the phenotypic properties of cultured human umbilical vein endothelial cells and human brain vascular smooth muscle cells. We identified 250 upregulated and 118 downregulated genes in LFR bAVMs compared with high flow rate bAVMs. Wnt signaling was activated in the LFR group via upregulation of FZD10 and MYOC. Immunohistochemical staining showed that vascular endothelial and smooth muscle cells of LFR bAVMs exhibited increased FZD10 and MYOC expression. Experimentally elevating these genes promoted human umbilical vein endothelial cells and migration and tube formation by activating canonical Wnt signaling in vitro. Conclusions Our results suggest that canonical Wnt signaling mediated by FZD10 and MYOC is activated in vascular endothelial and smooth muscle cells in LFR bAVMs.
Collapse
Affiliation(s)
- Ran Huo
- 1 Department of Neurosurgery Beijing Tiantan Hospital Capital Medical University Beijing China.,2 China National Clinical Research Center for Neurological Diseases Beijing China.,3 Center of Stroke Beijing Institute for Brain Disorders Beijing China.,4 Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease Beijing China
| | - Weilun Fu
- 1 Department of Neurosurgery Beijing Tiantan Hospital Capital Medical University Beijing China.,2 China National Clinical Research Center for Neurological Diseases Beijing China.,3 Center of Stroke Beijing Institute for Brain Disorders Beijing China.,4 Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease Beijing China
| | - Hao Li
- 1 Department of Neurosurgery Beijing Tiantan Hospital Capital Medical University Beijing China.,2 China National Clinical Research Center for Neurological Diseases Beijing China.,3 Center of Stroke Beijing Institute for Brain Disorders Beijing China.,4 Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease Beijing China
| | - Yuming Jiao
- 1 Department of Neurosurgery Beijing Tiantan Hospital Capital Medical University Beijing China.,2 China National Clinical Research Center for Neurological Diseases Beijing China.,3 Center of Stroke Beijing Institute for Brain Disorders Beijing China.,4 Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease Beijing China
| | - Zihan Yan
- 1 Department of Neurosurgery Beijing Tiantan Hospital Capital Medical University Beijing China.,2 China National Clinical Research Center for Neurological Diseases Beijing China.,3 Center of Stroke Beijing Institute for Brain Disorders Beijing China.,4 Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease Beijing China
| | - Linjian Wang
- 5 Savaid Medical School University of the Chinese Academy of Sciences Beijing China
| | - Jie Wang
- 1 Department of Neurosurgery Beijing Tiantan Hospital Capital Medical University Beijing China.,2 China National Clinical Research Center for Neurological Diseases Beijing China.,3 Center of Stroke Beijing Institute for Brain Disorders Beijing China.,4 Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease Beijing China
| | - Shuo Wang
- 1 Department of Neurosurgery Beijing Tiantan Hospital Capital Medical University Beijing China.,2 China National Clinical Research Center for Neurological Diseases Beijing China.,3 Center of Stroke Beijing Institute for Brain Disorders Beijing China.,4 Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease Beijing China
| | - Yong Cao
- 1 Department of Neurosurgery Beijing Tiantan Hospital Capital Medical University Beijing China.,2 China National Clinical Research Center for Neurological Diseases Beijing China.,3 Center of Stroke Beijing Institute for Brain Disorders Beijing China.,4 Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease Beijing China
| | - Jizong Zhao
- 1 Department of Neurosurgery Beijing Tiantan Hospital Capital Medical University Beijing China.,2 China National Clinical Research Center for Neurological Diseases Beijing China.,3 Center of Stroke Beijing Institute for Brain Disorders Beijing China.,4 Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease Beijing China.,5 Savaid Medical School University of the Chinese Academy of Sciences Beijing China
| |
Collapse
|
10
|
Abstract
Long noncoding RNAs (LncRNAs) were important genes involved in a variety of biological functions. They are aberrantly expressed in many types of diseases. In this study, we described LncRNAs profiles in 4 pairs of human brain arteriovenous malformation(AVM) and the corresponding fragment of superior temporal arteries(STA) or small scalp arteries (controlled arteries, CA) and try to find LncRNAs that correlated with the human brain AVM and with clinical symptoms.4 pairs of AVM tissues and corresponding STA or scalp artery fragments (depended on the operative approach) of 4 AVM patients who were admitted in Beijing TianTan hospital were collected. Then LncRNA and mRNA expression profiling analysis was performed by Arraystar-LncRNA array. From the data, we found 1931 LncRNAs upregulated (>2 folds) and 1852 downregulated (<2 folds) in total 28,012 LncRNAs that could be detected. We also found 1577 upregulated mRNAs (>2 folds) and 1699 downregulated (<2 folds) in 21,780 mRNAs that could be detected. LncRNAs (ENST00000423394, ENST00000444114, TCONS_00013855, and ENST00000452148) were evaluated by qPCR in 14 pairs of AVM nidus and the control. This 4 LncRNAs were aberrantly expressed in AVM nidus compared with the control. LncRNA (ENST00000423394) correlated with epilepsy (R = 0.34, P = .02, 95% confidence interval 0.08-0.85)We found that development of AVM may correspond with downregulation of NADPH reductase, lipoprotein lipase and Optic atrophy related proteins. It also may correspond with upregulation of Fcγreceptor. The downregulation of NADPH reductase may correlate with seizures of AVM patients.
Collapse
Affiliation(s)
- Xiong Li
- Department of Neurosurgery, Beijing ChaoYang Hospital
| | - FuXin Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University
| | - Jun Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University
| |
Collapse
|
11
|
Ito Y, Yoshida M, Maeda D, Takahashi M, Nanjo H, Masuda H, Goto A. Neovasculature can be induced by patching an arterial graft into a vein: A novel in vivo model of spontaneous arteriovenous fistula formation. Sci Rep 2018; 8:3156. [PMID: 29453407 PMCID: PMC5816615 DOI: 10.1038/s41598-018-21535-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/06/2018] [Indexed: 11/18/2022] Open
Abstract
Arteriovenous malformations consist of tangles of arteries and veins that are often connected by a fistula. The causes and mechanisms of these clinical entities are not fully understood. We discovered that suturing an arterial patch into the common jugular vein of rabbits led to spontaneous neovascularization, the formation of an arteriovenous fistula and the development of an arteriovenous shunt. An arterial patch excised from the common carotid artery was sutured into the common jugular vein. Within a month, a dense nidus-like neovasculature formed around the patch. Angiography and pulse-oximeter analyses showed that the blood flowing into the neovasculature was arterial blood. This indicated that an arteriovenous shunt had formed. Fluorescence in situ hybridization with a Y chromosome probe in female rabbits that received an arterial patch from male rabbits showed that the vessels close to the graft bore the Y chromosome, whereas the vessels further away did not. Enzyme-linked immunosorbent assays and cDNA microarray analysis showed that multiple angiogenic factors were upregulated after patch transplantation. This is the first in vivo model of spontaneous arteriovenous fistula formation. Further research on these differences may help to improve understanding of human vascular anomaly diseases and the basic principles underlying vasculogenesis and/or angiogenesis.
Collapse
Affiliation(s)
- Yukinobu Ito
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Makoto Yoshida
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Daichi Maeda
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Masato Takahashi
- Department of Diagnostic Pathology, Akita Kousei Medical Center, Akita, Japan
| | - Hiroshi Nanjo
- Department of Clinical Pathology, Akita University Hospital, Akita, Japan
| | - Hirotake Masuda
- Department of Clinical Laboratory, Ogachi Central Hospital, Akita, Japan
| | - Akiteru Goto
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita, Japan.
| |
Collapse
|
12
|
Bashir U, Shah S, Jeph S, O'Keeffe M, Khosa F. Magnetic Resonance (MR) Imaging of Vascular Malformations. Pol J Radiol 2017; 82:731-741. [PMID: 29657639 PMCID: PMC5894044 DOI: 10.12659/pjr.903491] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 03/05/2017] [Indexed: 11/24/2022] Open
Abstract
Vascular malformations pose a diagnostic and therapeutic challenge due to the broad differential diagnosis as well as common utilization of inadequate or inaccurate classification systems among healthcare providers. Therapeutic approaches to these lesions vary based on the type, size, and extent of the vascular anomaly, necessitating accurate diagnosis and classification. Magnetic resonance (MR) imaging (MRI) is an effective modality for classifying vascular anomalies due to its ability to delineate the extent and anatomic relationship of the malformation to adjacent structures. In addition to anatomical mapping, the complete evaluation of vascular anomalies includes hemodynamic characterization. Dynamic time-resolved contrast-enhanced MR angiography provides information regarding hemodynamics of vascular anomalies, differentiating high- and low-flow vascular malformations. Radiologists must identify the MRI features of vascular malformations for better diagnosis and classification.
Collapse
Affiliation(s)
- Usman Bashir
- Division of Imaging Research and Biomedical, Engineering, St. Thomas' Hospital, London, ON, Canada
| | - Samd Shah
- Department of Diagnostic Radiology, Geisinger Medical Center, Danville, PA, U.S.A
| | - Sunil Jeph
- Department of Diagnostic Radiology, Geisinger Medical Center, Danville, PA, U.S.A
| | - Michael O'Keeffe
- Division of Emergency and Trauma Radiology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Faisal Khosa
- Department of Diagnostic Radiology, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
13
|
Huang J, Song J, Qu M, Wang Y, An Q, Song Y, Yan W, Wang B, Wang X, Zhang S, Chen X, Zhao B, Liu P, Xu T, Zhang Z, Greenberg DA, Wang Y, Gao P, Zhu W, Yang GY. MicroRNA-137 and microRNA-195* inhibit vasculogenesis in brain arteriovenous malformations. Ann Neurol 2017; 82:371-384. [PMID: 28802071 DOI: 10.1002/ana.25015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 08/06/2017] [Accepted: 08/08/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Brain arteriovenous malformations (AVMs) are the most common cause of nontraumatic intracerebral hemorrhage in young adults. The genesis of brain AVM remains enigmatic. We investigated microRNA (miRNA) expression and its contribution to the pathogenesis of brain AVMs. METHODS We used a large-scale miRNA analysis of 16 samples including AVMs, hemangioblastoma, and controls to identify a distinct AVM miRNA signature. AVM smooth muscle cells (AVMSMCs) were isolated and identified by flow cytometry and immunohistochemistry, and candidate miRNAs were then tested in these cells. Migration, tube formation, and CCK-8-induced proliferation assays were used to test the effect of the miRNAs on phenotypic properties of AVMSMCs. A quantitative proteomics approach was used to identify protein expression changes in AVMSMCs treated with miRNA mimics. RESULTS A distinct AVM miRNA signature comprising a large portion of lowly expressed miRNAs was identified. Among these miRNAs, miR-137 and miR-195* levels were significantly decreased in AVMs and constituent AVMSMCs. Experimentally elevating the level of these microRNAs inhibited AVMSMC migration, tube formation, and survival in vitro and the formation of vascular rings in vivo. Proteomics showed the protein expression signature of AVMSMCs and identified downstream proteins regulated by miR-137 and miR-195* that were key signaling proteins involved in vessel development. INTERPRETATION Our results indicate that miR-137 and miR-195* act as vasculogenic suppressors in AVMs by altering phenotypic properties of AVMSMCs, and that the absence of miR-137 and miR-195* expression leads to abnormal vasculogenesis. Ann Neurol 2017;82:371-384.
Collapse
Affiliation(s)
- Jun Huang
- Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jianping Song
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Meijie Qu
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Wang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qingzhu An
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaying Song
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Yan
- Department of Biostatistics, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bingshun Wang
- Institute of Systemic Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojin Wang
- Institute of Systemic Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Song Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xi Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Bing Zhao
- Emergency Department, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Peixi Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Tongyi Xu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhijun Zhang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | | | - Yongting Wang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Pingjin Gao
- Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Wei Zhu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Department of Neurology, Rujijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Abstract
The chapter describes the epidemiology of cerebrovascular diseases, anatomy of the cerebral blood vessels, pathophysiology of ischemia, hypoxia, hypoxemia, anemic hypoxia, histotoxic hypoxia, carbon monoxide damage, hyperoxid brain damage and decompression sickness, and selective cell and regional vulnerability; diseases of the blood vessels including atherosclerosis, hypertensive angiopathy, small vessel disease, inflammatory vascular diseases, cerebral amyloid angiopathies, CADASIL, CARASIL and other diseases that can lead to cerebrovascular occlusion; intracranial and intraspinal aneurysms and vascular malformations; hematologic disorders that can cause cerebral infarct or hemorrhage; brain ischemic damage; and spontaneous intracranial bleeding. Within ischemic brain damage, focal cerebral ischemia, hemorrhagic infarct, brain edema, penumbra, global cerebral ischemia, venous thrombosis, lacunas and lacunar state, status cribosus, granular atrophy of the cerebral cortex, hippocampal sclerosis, vascular leukoencephalopathy Binswanger type and multi-infarct encephalopathy are discussed in detail. Cognitive impairment of vascular origin deserves an individual section.
Collapse
Affiliation(s)
- Isidro Ferrer
- Pathologic Anatomy Service, Institute of Neuropathology, Bellvitge University Hospital, University of Barcelona, Barcelona, Spain.
| | - Noemi Vidal
- Pathologic Anatomy Service, Institute of Neuropathology, Bellvitge University Hospital, University of Barcelona, Barcelona, Spain
| |
Collapse
|
15
|
The Effect of Acute and Chronic Social Stress on the Hippocampal Transcriptome in Mice. PLoS One 2015; 10:e0142195. [PMID: 26556046 PMCID: PMC4640871 DOI: 10.1371/journal.pone.0142195] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 10/19/2015] [Indexed: 12/19/2022] Open
Abstract
Psychogenic stress contributes to the formation of brain pathology. Using gene expression microarrays, we analyzed the hippocampal transcriptome of mice subjected to acute and chronic social stress of different duration. The longest period of social stress altered the expression of the highest number of genes and most of the stress-induced changes in transcription were reversible after 5 days of rest. Chronic stress affected genes involved in the functioning of the vascular system (Alas2, Hbb-b1, Hba-a2, Hba-a1), injury response (Vwf, Mgp, Cfh, Fbln5, Col3a1, Ctgf) and inflammation (S100a8, S100a9, Ctla2a, Ctla2b, Lcn2, Lrg1, Rsad2, Isg20). The results suggest that stress may affect brain functions through the stress-induced dysfunction of the vascular system. An important issue raised in our work is also the risk of the contamination of brain tissue samples with choroid plexus. Such contamination would result in a consistent up- or down-regulation of genes, such as Ttr, Igf2, Igfbp2, Prlr, Enpp2, Sostdc1, 1500015O10RIK (Ecrg4), Kl, Clic6, Kcne2, F5, Slc4a5, and Aqp1. Our study suggests that some of the previously reported, supposedly specific changes in hippocampal gene expression, may be a result of the inclusion of choroid plexus in the hippocampal samples.
Collapse
|
16
|
Hermanto Y, Takagi Y, Ishii A, Yoshida K, Kikuchi T, Funaki T, Mineharu Y, Miyamoto S. Immunohistochemical Analysis of Sox17 Associated Pathway in Brain Arteriovenous Malformations. World Neurosurg 2015; 87:573-83.e1-2. [PMID: 26463399 DOI: 10.1016/j.wneu.2015.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 10/02/2015] [Accepted: 10/05/2015] [Indexed: 01/28/2023]
Abstract
BACKGROUND Sox17 has emerged as an important factor in vascular remodeling because of the potential linkage with Wnt/β-catenin, Notch, and the inflammatory pathway. Brain arteriovenous malformation (BAVM), as an angiogenic and inflammatory disorder, might possess an aberrant regulation of the Sox17 associated pathway. We sought to investigate the expression of the Sox17 associated pathway in BAVMs. METHODS Using immunohistochemical methods, 16 paraffin specimens of BAVM nidus were analyzed. Specimens were obtained from patients during surgical procedures. RESULTS Expression of Sox17, Hey1, and β-catenin was observed in all specimens. Large veins possessed a distinct pattern of expression; thick-walled veins had a stronger intensity, whereas thin-walled veins had a weaker intensity, of Sox17, Hey1, and β-catenin (P < 0.001). Thick-walled veins also had a higher expression of Sox17, Hey1, and β-catenin compared with large arteries (P < 0.05). Hey1 and β-catenin expression was also higher in thick-walled veins compared with brain microvessels (P < 0.01). In addition, the difference in expression of the Sox17 associated pathway (Hey1 and β-catenin) was observed in medium and small arteries compared with large arteries in BAVM nidus and brain microvessels (P < 0.01). CONCLUSIONS The Sox17 associated pathway was activated in the BAVM nidus. Our results indicate that arterial identity is gained in thick-walled veins; this might reflect the process of arterialization of the veins as a result of hemodynamic stress. In addition, high expression of the Sox17 associated pathway in medium and small arteries indicates that BAVM vessels are intrinsically active.
Collapse
Affiliation(s)
- Yulius Hermanto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yasushi Takagi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Akira Ishii
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazumichi Yoshida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takayuki Kikuchi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeshi Funaki
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yohei Mineharu
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
17
|
Rangel-Castilla L, Russin JJ, Martinez-Del-Campo E, Soriano-Baron H, Spetzler RF, Nakaji P. Molecular and cellular biology of cerebral arteriovenous malformations: a review of current concepts and future trends in treatment. Neurosurg Focus 2015; 37:E1. [PMID: 25175428 DOI: 10.3171/2014.7.focus14214] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Arteriovenous malformations (AVMs) are classically described as congenital static lesions. However, in addition to rupturing, AVMs can undergo growth, remodeling, and regression. These phenomena are directly related to cellular, molecular, and physiological processes. Understanding these relationships is essential to direct future diagnostic and therapeutic strategies. The authors performed a search of the contemporary literature to review current information regarding the molecular and cellular biology of AVMs and how this biology will impact their potential future management. METHODS A PubMed search was performed using the key words "genetic," "molecular," "brain," "cerebral," "arteriovenous," "malformation," "rupture," "management," "embolization," and "radiosurgery." Only English-language papers were considered. The reference lists of all papers selected for full-text assessment were reviewed. RESULTS Current concepts in genetic polymorphisms, growth factors, angiopoietins, apoptosis, endothelial cells, pathophysiology, clinical syndromes, medical treatment (including tetracycline and microRNA-18a), radiation therapy, endovascular embolization, and surgical treatment as they apply to AVMs are discussed. CONCLUSIONS Understanding the complex cellular biology, physiology, hemodynamics, and flow-related phenomena of AVMs is critical for defining and predicting their behavior, developing novel drug treatments, and improving endovascular and surgical therapies.
Collapse
Affiliation(s)
- Leonardo Rangel-Castilla
- Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | | | | | | | | | | |
Collapse
|
18
|
Stankiewicz AM, Goscik J, Swiergiel AH, Majewska A, Wieczorek M, Juszczak GR, Lisowski P. Social stress increases expression of hemoglobin genes in mouse prefrontal cortex. BMC Neurosci 2014; 15:130. [PMID: 25472829 PMCID: PMC4269175 DOI: 10.1186/s12868-014-0130-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 11/18/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In order to better understand the effects of social stress on the prefrontal cortex, we investigated gene expression in mice subjected to acute and repeated social encounters of different duration using microarrays. RESULTS The most important finding was identification of hemoglobin genes (Hbb-b1, Hbb-b2, Hba-a1, Hba-a2, Beta-S) as potential markers of chronic social stress in mice. Expression of these genes was progressively increased in animals subjected to 8 and 13 days of repeated stress and was correlated with altered expression of Mgp (Mglap), Fbln1, 1500015O10Rik (Ecrg4), SLC16A10, and Mndal. Chronic stress increased also expression of Timp1 and Ppbp that are involved in reaction to vascular injury. Acute stress did not affect expression of hemoglobin genes but it altered expression of Fam107a (Drr1) and Agxt2l1 (Etnppl) that have been implicated in psychiatric diseases. CONCLUSIONS The observed up-regulation of genes associated with vascular system and brain injury suggests that stressful social encounters may affect brain function through the stress-induced dysfunction of the vascular system.
Collapse
Affiliation(s)
- Adrian M Stankiewicz
- Department of Animal Behavior, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552, Magdalenka, Poland.
| | - Joanna Goscik
- Faculty of Computer Science, Bialystok University of Technology, Wiejska 45A, 15-351, Bialystok, Poland.
| | - Artur H Swiergiel
- Department of Human and Animal Physiology, Institute of Biology, University of Gdansk, 80-308, Gdansk, Poland.
| | - Alicja Majewska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland.
| | - Marek Wieczorek
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Pomorska, 141/143, Poland.
| | - Grzegorz R Juszczak
- Department of Animal Behavior, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552, Magdalenka, Poland.
| | - Paweł Lisowski
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552, Magdalenka, Poland. .,iPS Cell-Based Disease Modeling Group, Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13092, Berlin, Germany.
| |
Collapse
|