1
|
Fujimoto Y, Fujita Y, Tanaka K, Nagashima H, Yamanishi S, Ikeuchi Y, Iwahashi H, Sanada S, Muragaki Y, Sasayama T. Clinical Benefits of Photodynamic Therapy Using Talaporfin Sodium in Patients With Isocitrate Dehydrogenase-Wildtype Diagnosed Glioblastoma: A Retrospective Study of 100 Cases. Neurosurgery 2024:00006123-990000000-01420. [PMID: 39495040 DOI: 10.1227/neu.0000000000003247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/10/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Photodynamic therapy (PDT) with talaporfin sodium is an intraoperative local therapy administered after the surgical removal of malignant gliomas. However, its clinical efficacy in a large patient population has not been determined. To analyze the clinical outcomes and prognosis in isocitrate dehydrogenase (IDH)-wildtype glioblastoma patients treated with PDT. METHODS This retrospective study included patients with newly diagnosed IDH-wildtype glioblastoma treated at Kobe University Hospital between January 2013 and December 2022. PDT involves irradiation of the resection cavity with a 664-nm semiconductor laser after an intravenous infusion of talaporfin sodium. The main outcome measures were the recurrence patterns and survival times, which were compared between the PDT and non-PDT groups. Univariate and multivariate analyses were used to determine the prognostic factors. In addition, adverse events and prognostic factors in the PDT group were analyzed. RESULTS A total of 44 and 56 patients were included in the PDT and non-PDT groups, respectively. The local recurrence rate was significantly lower in the PDT group than in the non-PDT group (51.3% vs 83.9%), whereas the distant recurrence and dissemination rates were significantly higher in the PDT group than in the non-PDT group (48.7% vs 16.1%). Two grade 3 adverse events were observed in the PDT group. The median progression-free survival and overall survival times were significantly longer in the PDT group than in the non-PDT group (progression-free survival: 10.8 vs 9.3 months, respectively, and overall survival: 24.6 vs 17.6 months, respectively). Multivariate analysis of the PDT groups revealed that younger age was an independent prognostic factor. CONCLUSION PDT with talaporfin sodium provided effective local control with minimal adverse effects. The survival time of the patients treated with PDT was significantly longer than that of the patients who did not receive PDT. Therefore, a randomized controlled clinical trial on PDT is warranted.
Collapse
Affiliation(s)
- Yosuke Fujimoto
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuichi Fujita
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazuhiro Tanaka
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroaki Nagashima
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shunsuke Yamanishi
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yusuke Ikeuchi
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hirofumi Iwahashi
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shoji Sanada
- Clinical and Translational Research Center, Kobe University Hospital, Kobe, Japan
| | - Yoshihiro Muragaki
- Center for Advanced Medical Engineering Research and Development, Kobe University, Japan
| | - Takashi Sasayama
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
2
|
Saito Y, Fukami S, Nagai K, Ogawa E, Kuroda M, Kohno M, Akimoto J. Cytocidal Effects of Interstitial Photodynamic Therapy Using Talaporfin Sodium and a Semiconductor Laser in a Rat Intracerebral Glioma Model. Biomedicines 2024; 12:2141. [PMID: 39335654 PMCID: PMC11430772 DOI: 10.3390/biomedicines12092141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
This preclinical study was conducted to investigate the efficacy of interstitial PDT (i-PDT) for malignant gliomas arising deep within the brain, which are difficult to remove. C6 glioma cells were implanted into the basal ganglia of rats, and 3 weeks later, the second-generation photosensitizer talaporfin sodium (TPS) was administered intraperitoneally. Ninety minutes after administration, a prototype fine plastic optical fiber was punctured into the tumor tissue, and semiconductor laser light was irradiated into the tumor from a 2-mm cylindrical light-emitting source under various conditions. The brain was removed 24 h after the i-PDT and analyzed pathologically. The optical fiber was able to puncture the tumor center in all cases, enabling i-PDT to be performed. Histological analysis showed that tumor necrosis was induced in areas close to the light source, correlating with the irradiation energy dose, whereas apoptosis was induced at some distance from the light source. Irradiation using high energy levels resulted in tissue swelling from strong tumor necrosis, and irradiation at 75 J/cm2 was most suitable for inducing apoptosis. An experimental system of i-PDT using TPS was established using malignant glioma cells transplanted into the rat brain. Tumor cell death, which correlated with the light propagation, was induced in tumor tissue.
Collapse
Affiliation(s)
- Yuki Saito
- Department of Neurosurgery, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Shinjiro Fukami
- Department of Neurosurgery, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Kenta Nagai
- Department of Neurosurgery, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Emiyu Ogawa
- Department of Electronics and Electrical Engineering, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Michihiro Kohno
- Department of Neurosurgery, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Jiro Akimoto
- Department of Neurosurgery, Tokyo Medical University, Tokyo 160-0023, Japan
- Department of Neurosurgery, Kohsei Chuo General Hospital, Tokyo 153-8581, Japan
| |
Collapse
|
3
|
Kara M, Kocaaga N, Akgul B, Abamor ES, Erdogmus A, Topuzogullari M, Acar S. Micelles of poly[oligo(ethylene glycol) methacrylate] as delivery vehicles for zinc phthalocyanine photosensitizers. NANOTECHNOLOGY 2024; 35:475602. [PMID: 39173645 DOI: 10.1088/1361-6528/ad726b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
Drug-loaded polymeric micelles have proven to be highly effective carrier systems for the efficient delivery of hydrophobic photosensitizers (PSs) in photodynamic therapy (PDT). This study introduces the micellization potential of poly(oligoethylene glycol methyl ether methacrylate) (pOEGMA) as a novel approach, utilizing the hydrophobic methacrylate segments of pOEGMA to interact with highly hydrophobic zinc phthalocyanine (ZnPc), thereby forming a potential micellar drug carrier system. The ZnPc molecule was synthesized from phthalonitrile derivatives and its fluorescence, photodegradation, and singlet oxygen quantum yields were determined in various solvents. In solvents such as tetrahydrofuran, dimethyl sulfoxide, and N,N-dimethylformamide, the ZnPc compound exhibited the requisite photophysical and photochemical properties for PDT applications. The pOEGMA homopolymer was synthesized via reversible addition-fragmentation chain-transfer polymerization, while ZnPc-loaded pOEGMA micelles were prepared using the nanoprecipitation method. Characterization of the pOEGMA, ZnPc, and micelles was conducted using FTIR,1H-NMR, dynamic light scattering, matrix-assisted laser desorption/ionization time-of-flight mass spectrometries, gel permeation chromatography, and transmission electron microscopy. The critical micelle concentration was determined to be 0.027 mg ml-1using fluorescence spectrometry. The drug loading and encapsulation efficiencies of the ZnPc-loaded micelles were calculated to be 0.67% and 0.47%, respectively. Additionally, the release performance of ZnPc from pOEGMA micelles was monitored over a period of nearly 10 d, while the lyophilized micelles exhibited stability for 3 months. Lastly, the ZnPc-loaded micelles were more biocompatible than ZnPc on L929 cell line. The results suggest that the pOEGMA homopolymer possesses the capability to micellize through its methacrylate segments when interacting with highly hydrophobic molecules, presenting a promising avenue for enhancing the delivery efficiency of hydrophobic PSs in PDT. Moreover, it was also deciphered that obtained formulations were highly biocompatible according to cytotoxicity results and could be safely employed as drug delivery systems in further applications.
Collapse
Affiliation(s)
- Merve Kara
- Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - Nagihan Kocaaga
- Faculty of Arts and Sciences, Department of Chemistry, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - Busra Akgul
- Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - Emrah S Abamor
- Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - Ali Erdogmus
- Faculty of Arts and Sciences, Department of Chemistry, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - Murat Topuzogullari
- Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - Serap Acar
- Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Esenler, Istanbul, Turkey
| |
Collapse
|
4
|
Li L, Wei KL, Liu MS, Wang QL, Zeng TF, Chen RZ, Xia XW, Zhang HT. Hematoporphyrin derivative-mediated photodynamic techniques for the diagnosis and treatment of chordoma. Photodiagnosis Photodyn Ther 2024; 48:104231. [PMID: 38821238 DOI: 10.1016/j.pdpdt.2024.104231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Chordoma is a rare congenital low-grade malignant tumor characterized by infiltrative growth. It often tends to compress important intracranial nerves and blood vessels, making its surgical treatment extremely difficult. Besides, the efficacy of radiotherapy and chemotherapy is limited. The photosensitizer hematoporphyrin derivative (HPD) can emit red fluorescence under 405 nm excitation and produce reactive oxygen species for tumor therapy under 630 nm excitation. Herein, we investigated the effects of the photosensitizer hematoporphyrin derivative (HPD) on different cell lines of chordoma and xenograft tumors under 405 nm and 630 nm excitation. METHODS The photosensitizer hematoporphyrin derivative (HPD) and Two different chordoma cell lines (U-CH1, JHC7) were used for the test. The in vitro experiments were as follows: (1) the fluorescence intensity emitted by chordoma cells excited by different 405 nm light intensities was observed under a confocal microscope; (2) the Cell Counting Kit-8 (CCK-8) assay was performed to detect the effects of different photosensitizer concentrations and 630 nm light energy densities on the activity of chordoma cells. In the in vivo experiments, (3) Fluorescence visualization of chordoma xenograft tumors injected with photosensitizer via tail vein under 405 nm excitation; (4) Impact of 630 nm excitation of photosensitizer on the growth of chordoma xenograft tumors. RESULTS (1) The photosensitizers in chordoma cells and chordoma xenografts of nude mice were excited by 405 nm to emit red fluorescence; (2) 630 nm excitation photosensitizer reduces chordoma cell activity and inhibits chordoma xenograft tumor growth in chordoma nude mice. CONCLUSION Photodynamic techniques mediated by the photosensitizer hematoporphyrin derivatives can be used for the diagnosis and treatment of chordoma.
Collapse
Affiliation(s)
- Lei Li
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, 541001 Guilin, China
| | - Kai-Lun Wei
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, 541001 Guilin, China
| | - Ming-Song Liu
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, 541001 Guilin, China
| | - Qi-Lin Wang
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, 541001 Guilin, China
| | - Tong-Fei Zeng
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, 541001 Guilin, China
| | - Rui-Zhe Chen
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, 541001 Guilin, China
| | - Xue-Wei Xia
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, 541001 Guilin, China
| | - Hong-Tian Zhang
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, 541001 Guilin, China.
| |
Collapse
|
5
|
Komatsu N, Kosai A, Kuroda M, Hamakubo T, Abe T. Cetuximab-Toxin Conjugate and NPe6 with Light Enhanced Cytotoxic Effects in Head and Neck Squamous Cell Carcinoma In Vitro. Biomedicines 2024; 12:973. [PMID: 38790935 PMCID: PMC11117702 DOI: 10.3390/biomedicines12050973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/17/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) is a cancer-targeted treatment that uses a photosensitizer (PS) and irradiation of a specific wavelength to exert cytotoxic effects. To enhance the antitumor effect against head and neck squamous cell carcinoma (HNSCC), we developed a new phototherapy, intelligent targeted antibody phototherapy (iTAP). This treatment uses a combination of immunotoxin (IT) and a PS for PDT and light irradiation. In our prior study, we demonstrated that an immunotoxin (IT) consisting of an anti-ROBO1 antibody conjugated to saporin, when used in combination with the photosensitizer (PS) disulfonated aluminum phthalocyanine (AlPcS2a) and irradiated with light at the appropriate wavelength, resulted in increased cytotoxicity against head and neck squamous cell carcinoma (HNSCC) cells. ROBO1 is a receptor known to be involved in the progression of cancer. In this study, we newly investigate the iTAP targeting epidermal growth factor receptor (EGFR) which is widely used as a therapeutic target for HNSCC. METHODS We checked the expression of EGFR in HNSCC cell lines, SAS, HO-1-u-1, Sa3, and HSQ-89. We analyzed the cytotoxicity of saporin-conjugated anti-EGFR antibody (cetuximab) (IT-Cmab), mono-L-aspartyl chlorin e6 (NPe6, talaporfin sodium), and light (664 nm) irradiation (i.e., iTAP) in SAS, HO-1-u-1, Sa3, and HSQ-89 cells. RESULTS EGFR was expressed highly in Sa3, moderately in HO-1-u-1, SAS, and nearly not in HSQ-89. Cmab alone or IT-Cmab alone did not show cytotoxic effects in Sa3, HO-1-u-1, and HSQ-89 cells, which have moderate or low expression levels of EGFR protein. However, the iTAP method enhanced the cytotoxicity of IT-Cmab by the photodynamic effect in Sa3 and HO-1-u-1 cells, which have moderate levels of EGFR expression. CONCLUSION Our study is the first to report on the iTAP method using IT-Cmab and NPe6 for HNSCC. The cytotoxic effects are enhanced in cell lines with moderate levels of EGFR protein expression, but not in nonexpressing cell lines, which is expected to expand the range of therapeutic windows and potentially reduce complications.
Collapse
Affiliation(s)
- Noriko Komatsu
- Department of Oral and Maxillofacial Surgery of Dentistry, Kanagawa Dental University, Yokosuka 238-8570, Japan; (N.K.); (A.K.); (M.K.)
| | - Azuma Kosai
- Department of Oral and Maxillofacial Surgery of Dentistry, Kanagawa Dental University, Yokosuka 238-8570, Japan; (N.K.); (A.K.); (M.K.)
| | - Mikako Kuroda
- Department of Oral and Maxillofacial Surgery of Dentistry, Kanagawa Dental University, Yokosuka 238-8570, Japan; (N.K.); (A.K.); (M.K.)
| | | | - Takahiro Abe
- Department of Oral and Maxillofacial Surgery of Dentistry, Kanagawa Dental University, Yokosuka 238-8570, Japan; (N.K.); (A.K.); (M.K.)
| |
Collapse
|
6
|
Nagai K, Akimoto J, Fukami S, Saito Y, Ogawa E, Takanashi M, Kuroda M, Kohno M. Efficacy of interstitial photodynamic therapy using talaporfin sodium and a semiconductor laser for a mouse allograft glioma model. Sci Rep 2024; 14:9137. [PMID: 38644422 PMCID: PMC11033255 DOI: 10.1038/s41598-024-59955-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 04/17/2024] [Indexed: 04/23/2024] Open
Abstract
To investigate the therapeutic potential of photodynamic therapy (PDT) for malignant gliomas arising in unresectable sites, we investigated the effect of tumor tissue damage by interstitial PDT (i-PDT) using talaporfin sodium (TPS) in a mouse glioma model in which C6 glioma cells were implanted subcutaneously. A kinetic study of TPS demonstrated that a dose of 10 mg/kg and 90 min after administration was appropriate dose and timing for i-PDT. Performing i-PDT using a small-diameter plastic optical fiber demonstrated that an irradiation energy density of 100 J/cm2 or higher was required to achieve therapeutic effects over the entire tumor tissue. The tissue damage induced apoptosis in the area close to the light source, whereas vascular effects, such as fibrin thrombus formation occurred in the area slightly distant from the light source. Furthermore, when irradiating at the same energy density, irradiation at a lower power density for a longer period of time was more effective than irradiation at a higher power density for a shorter time. When performing i-PDT, it is important to consider the rate of delivery of the irradiation light into the tumor tissue and to set irradiation conditions that achieve an optimal balance between cytotoxic and vascular effects.
Collapse
Affiliation(s)
- Kenta Nagai
- Department of Neurosurgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan
| | - Jiro Akimoto
- Department of Neurosurgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan.
| | - Shinjiro Fukami
- Department of Neurosurgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan
| | - Yuki Saito
- Department of Neurosurgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan
| | - Emiyu Ogawa
- Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | | | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Michihiro Kohno
- Department of Neurosurgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan
| |
Collapse
|
7
|
Przygoda M, Bartusik-Aebisher D, Dynarowicz K, Cieślar G, Kawczyk-Krupka A, Aebisher D. Cellular Mechanisms of Singlet Oxygen in Photodynamic Therapy. Int J Mol Sci 2023; 24:16890. [PMID: 38069213 PMCID: PMC10706571 DOI: 10.3390/ijms242316890] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
In this review, we delve into the realm of photodynamic therapy (PDT), an established method for combating cancer. The foundation of PDT lies in the activation of a photosensitizing agent using specific wavelengths of light, resulting in the generation of reactive oxygen species (ROS), notably singlet oxygen (1O2). We explore PDT's intricacies, emphasizing its precise targeting of cancer cells while sparing healthy tissue. We examine the pivotal role of singlet oxygen in initiating apoptosis and other cell death pathways, highlighting its potential for minimally invasive cancer treatment. Additionally, we delve into the complex interplay of cellular components, including catalase and NOX1, in defending cancer cells against PDT-induced oxidative and nitrative stress. We unveil an intriguing auto-amplifying mechanism involving secondary singlet oxygen production and catalase inactivation, offering promising avenues for enhancing PDT's effectiveness. In conclusion, our review unravels PDT's inner workings and underscores the importance of selective illumination and photosensitizer properties for achieving precision in cancer therapy. The exploration of cellular responses and interactions reveals opportunities for refining and optimizing PDT, which holds significant potential in the ongoing fight against cancer.
Collapse
Affiliation(s)
- Maria Przygoda
- Students English Division Science Club, Medical College of The University of Rzeszów, 35-315 Rzeszów, Poland;
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of The University of Rzeszów, 35-310 Rzeszów, Poland;
| | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland;
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland;
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The University of Rzeszów, 35-959 Rzeszów, Poland
| |
Collapse
|
8
|
Domka W, Bartusik-Aebisher D, Rudy I, Dynarowicz K, Pięta K, Aebisher D. Photodynamic therapy in brain cancer: mechanisms, clinical and preclinical studies and therapeutic challenges. Front Chem 2023; 11:1250621. [PMID: 38075490 PMCID: PMC10704472 DOI: 10.3389/fchem.2023.1250621] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/14/2023] [Indexed: 09/13/2024] Open
Abstract
Cancer is a main cause of death and preferred methods of therapy depend on the type of tumor and its location. Gliomas are the most common primary intracranial tumor, accounting for 81% of malignant brain tumors. Although relatively rare, they cause significant mortality. Traditional methods include surgery, radiotherapy and chemotherapy; they also have significant associated side effects that cause difficulties related to tumor excision and recurrence. Photodynamic therapy has potentially fewer side effects, less toxicity, and is a more selective treatment, and is thus attracting increasing interest as an advanced therapeutic strategy. Photodynamic treatment of malignant glioma is considered to be a promising additional therapeutic option that is currently being extensively investigated in vitro and in vivo. This review describes the application of photodynamic therapy for treatment of brain cancer. The mechanism of photodynamic action is also described in this work as it applies to treatment of brain cancers such as glioblastoma multiforme. The pros and cons of photodynamic therapy for brain cancer are also discussed.
Collapse
Affiliation(s)
- Wojciech Domka
- Department of Otolaryngology, Medical College of the University of Rzeszów, Rzeszów, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, Rzeszów, Poland
| | - Izabela Rudy
- Students English Division Science Club, Medical College of the University of Rzeszów, Rzeszów, Poland
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, Rzeszów, Poland
| | - Karolina Pięta
- Students English Division Science Club, Medical College of the University of Rzeszów, Rzeszów, Poland
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, Rzeszów, Poland
| |
Collapse
|
9
|
Nguyen Cao TG, Kang JH, Kang SJ, Truong Hoang Q, Kang HC, Rhee WJ, Zhang YS, Ko YT, Shim MS. Brain endothelial cell-derived extracellular vesicles with a mitochondria-targeting photosensitizer effectively treat glioblastoma by hijacking the blood‒brain barrier. Acta Pharm Sin B 2023; 13:3834-3848. [PMID: 37719366 PMCID: PMC10502277 DOI: 10.1016/j.apsb.2023.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive malignant brain tumor and has a high mortality rate. Photodynamic therapy (PDT) has emerged as a promising approach for the treatment of malignant brain tumors. However, the use of PDT for the treatment of GBM has been limited by its low blood‒brain barrier (BBB) permeability and lack of cancer-targeting ability. Herein, brain endothelial cell-derived extracellular vesicles (bEVs) were used as a biocompatible nanoplatform to transport photosensitizers into brain tumors across the BBB. To enhance PDT efficacy, the photosensitizer chlorin e6 (Ce6) was linked to mitochondria-targeting triphenylphosphonium (TPP) and entrapped into bEVs. TPP-conjugated Ce6 (TPP-Ce6) selectively accumulated in the mitochondria, which rendered brain tumor cells more susceptible to reactive oxygen species-induced apoptosis under light irradiation. Moreover, the encapsulation of TPP-Ce6 into bEVs markedly improved the aqueous stability and cellular internalization of TPP-Ce6, leading to significantly enhanced PDT efficacy in U87MG GBM cells. An in vivo biodistribution study using orthotopic GBM-xenografted mice showed that bEVs containing TPP-Ce6 [bEV(TPP-Ce6)] substantially accumulated in brain tumors after BBB penetration via transferrin receptor-mediated transcytosis. As such, bEV(TPP-Ce6)-mediated PDT considerably inhibited the growth of GBM without causing adverse systemic toxicity, suggesting that mitochondria are an effective target for photodynamic GBM therapy.
Collapse
Affiliation(s)
- Thuy Giang Nguyen Cao
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Ji Hee Kang
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Su Jin Kang
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Quan Truong Hoang
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Han Chang Kang
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, the Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Won Jong Rhee
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Research Center for Bio Materials & Process Development, Incheon National University, Incheon 22012, Republic of Korea
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Young Tag Ko
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
10
|
Yamashita S, Kojima M, Onda N, Shibutani M. In Vitro Comparative Study of Near-Infrared Photoimmunotherapy and Photodynamic Therapy. Cancers (Basel) 2023; 15:3400. [PMID: 37444510 DOI: 10.3390/cancers15133400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a new phototherapy that utilizes a monoclonal antibody (mAb) against cancer antigens and a phthalocyanine dye, IRDye700DX (IR700) conjugate (mAb-IR700). Photodynamic therapy (PDT) is a combination therapy that utilizes photoreactive agents and light irradiation as well as NIR-PIT. In the present study, we compared these therapies in vitro. The characterization of cellular binding/uptake specificity and cytotoxicity were examined using two mAb-IR700 forms and a conventional PDT agent, talaporfin sodium, in three cell lines. As designed, mAb-IR700 had high molecular selectivity and visualized target molecule-positive cells at the lowest concentration examined. NIR-PIT induced necrosis and damage-associated molecular patterns (DAMPs), a surrogate maker of immunogenic cell death. In contrast, talaporfin sodium was taken up by cells regardless of cell type, and its uptake was enhanced in a concentration-dependent manner. PDT induced cell death, with the pattern of cell death shifting from apoptosis to necrosis depending on the concentration of the photosensitizer. Induction of DAMPs was observed at the highest concentration, but their sensitivity differed among cell lines. Overall, our data suggest that molecule-specific NIR-PIT may have potential advantages compared with PDT in terms of the efficiency of tumor visualization and induction of DAMPs.
Collapse
Affiliation(s)
- Susumu Yamashita
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu 183-8509, Tokyo, Japan
- Medical Evaluation Engineering, Olympus Medical Systems Corporation, 2-3 Kuboyama-cho, Hachioji 192-8512, Tokyo, Japan
| | - Miho Kojima
- Medical Evaluation Engineering, Olympus Medical Systems Corporation, 2-3 Kuboyama-cho, Hachioji 192-8512, Tokyo, Japan
| | - Nobuhiko Onda
- Medical Evaluation Engineering, Olympus Medical Systems Corporation, 2-3 Kuboyama-cho, Hachioji 192-8512, Tokyo, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu 183-8509, Tokyo, Japan
| |
Collapse
|
11
|
Caverzán MD, Oliveda PM, Beaugé L, Palacios RE, Chesta CA, Ibarra LE. Metronomic Photodynamic Therapy with Conjugated Polymer Nanoparticles in Glioblastoma Tumor Microenvironment. Cells 2023; 12:1541. [PMID: 37296661 PMCID: PMC10252555 DOI: 10.3390/cells12111541] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Alternative therapies such as photodynamic therapy (PDT) that combine light, oxygen and photosensitizers (PSs) have been proposed for glioblastoma (GBM) management to overcome conventional treatment issues. An important disadvantage of PDT using a high light irradiance (fluence rate) (cPDT) is the abrupt oxygen consumption that leads to resistance to the treatment. PDT metronomic regimens (mPDT) involving administering light at a low irradiation intensity over a relatively long period of time could be an alternative to circumvent the limitations of conventional PDT protocols. The main objective of the present work was to compare the effectiveness of PDT with an advanced PS based on conjugated polymer nanoparticles (CPN) developed by our group in two irradiation modalities: cPDT and mPDT. The in vitro evaluation was carried out based on cell viability, the impact on the macrophage population of the tumor microenvironment in co-culture conditions and the modulation of HIF-1α as an indirect indicator of oxygen consumption. mPDT regimens with CPNs resulted in more effective cell death, a lower activation of molecular pathways of therapeutic resistance and macrophage polarization towards an antitumoral phenotype. Additionally, mPDT was tested in a GBM heterotopic mouse model, confirming its good performance with promising tumor growth inhibition and apoptotic cell death induction.
Collapse
Affiliation(s)
- Matías Daniel Caverzán
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto X5800BIA, Argentina
- Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Río Cuarto X5800BIA, Argentina
| | - Paula Martina Oliveda
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5800BIA, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto X5800BIA, Argentina
| | - Lucía Beaugé
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto X5800BIA, Argentina
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5800BIA, Argentina
| | - Rodrigo Emiliano Palacios
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto X5800BIA, Argentina
- Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5800BIA, Argentina
| | - Carlos Alberto Chesta
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto X5800BIA, Argentina
- Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5800BIA, Argentina
| | - Luis Exequiel Ibarra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5800BIA, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto X5800BIA, Argentina
| |
Collapse
|
12
|
Vicente MDGH, Smith KM. Amino Acid Derivatives of Chlorin-e 6-A Review. Molecules 2023; 28:molecules28083479. [PMID: 37110713 PMCID: PMC10146174 DOI: 10.3390/molecules28083479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Details of the structural elucidation of the clinically useful photodynamic therapy sensitizer NPe6 (15) are presented. NPe6, also designated as Laserphyrin, Talaporfin, and LS-11, is a second-generation photosensitizer derived from chlorophyll-a, currently used in Japan for the treatment of human lung, esophageal, and brain cancers. After the initial misidentification of the structure of this chlorin-e6 aspartic acid conjugate as (13), NMR and other synthetic procedures described herein arrived at the correct structure (15), confirmed using single crystal X-ray crystallography. Interesting new features of chlorin-e6 chemistry (including the intramolecular formation of an anhydride (24)) are reported, allowing chemists to regioselectively conjugate amino acids to each available carboxylic acid on positions 131 (formic), 152 (acetic), and 173 (propionic) of chlorin e6 (14). Cellular investigations of several amino acid conjugates of chlorin-e6 revealed that the 131-aspartylchlorin-e6 derivative is more phototoxic than its 152- and 173-regioisomers, in part due to its nearly linear molecular conformation.
Collapse
Affiliation(s)
| | - Kevin M Smith
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
13
|
Comincini S, Manai F, Sorrenti M, Perteghella S, D’Amato C, Miele D, Catenacci L, Bonferoni MC. Development of Berberine-Loaded Nanoparticles for Astrocytoma Cells Administration and Photodynamic Therapy Stimulation. Pharmaceutics 2023; 15:pharmaceutics15041078. [PMID: 37111564 PMCID: PMC10146331 DOI: 10.3390/pharmaceutics15041078] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Berberine (BBR) is known for its antitumor activity and photosensitizer properties in anti-cancer photodynamic therapy (PDT), and it has previously been favorably assayed against glioblastoma multiforme (GBM)-derived cells. In this work, two BBR hydrophobic salts, dodecyl sulfate (S) and laurate (L), have been encapsulated in PLGA-based nanoparticles (NPs), chitosan-coated by the addition of chitosan oleate in the preparation. NPs were also further functionalized with folic acid. All the BBR-loaded NPs were efficiently internalized into T98G GBM established cells, and internalization increased in the presence of folic acid. However, the highest mitochondrial co-localization percentages were obtained with BBR-S NPs without folic acid content. In the T98G cells, BBR-S NPs appeared to be the most efficient in inducing cytotoxicity events and were therefore selected to assess the effect of photodynamic stimulation (PDT). As a result, PDT potentiated the viability reduction for the BBR-S NPs at all the studied concentrations, and a roughly 50% reduction of viability was obtained. No significant cytotoxic effect on normal rat primary astrocytes was observed. In GBM cells, a significant increase in early and late apoptotic events was scored by BBR NPs, with a further increase following the PDT scheme. Furthermore, a significantly increased depolarization of mitochondria was highlighted following BBR-S NPs’ internalization and mostly after PDT stimulation, compared to untreated and PDT-only treated cells. In conclusion, these results highlighted the efficacy of the BBR-NPs-based strategy coupled with photoactivation approaches to induce favorable cytotoxic effects in GBM cells.
Collapse
|
14
|
Caverzán MD, Beaugé L, Oliveda PM, Cesca González B, Bühler EM, Ibarra LE. Exploring Monocytes-Macrophages in Immune Microenvironment of Glioblastoma for the Design of Novel Therapeutic Strategies. Brain Sci 2023; 13:brainsci13040542. [PMID: 37190507 DOI: 10.3390/brainsci13040542] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Gliomas are primary malignant brain tumors. These tumors seem to be more and more frequent, not only because of a true increase in their incidence, but also due to the increase in life expectancy of the general population. Among gliomas, malignant gliomas and more specifically glioblastomas (GBM) are a challenge in their diagnosis and treatment. There are few effective therapies for these tumors, and patients with GBM fare poorly, even after aggressive surgery, chemotherapy, and radiation. Over the last decade, it is now appreciated that these tumors are composed of numerous distinct tumoral and non-tumoral cell populations, which could each influence the overall tumor biology and response to therapies. Monocytes have been proved to actively participate in tumor growth, giving rise to the support of tumor-associated macrophages (TAMs). In GBM, TAMs represent up to one half of the tumor mass cells, including both infiltrating macrophages and resident brain microglia. Infiltrating macrophages/monocytes constituted ~ 85% of the total TAM population, they have immune functions, and they can release a wide array of growth factors and cytokines in response to those factors produced by tumor and non-tumor cells from the tumor microenvironment (TME). A brief review of the literature shows that this cell population has been increasingly studied in GBM TME to understand its role in tumor progression and therapeutic resistance. Through the knowledge of its biology and protumoral function, the development of therapeutic strategies that employ their recruitment as well as the modulation of their immunological phenotype, and even the eradication of the cell population, can be harnessed for therapeutic benefit. This revision aims to summarize GBM TME and localization in tumor niches with special focus on TAM population, its origin and functions in tumor progression and resistance to conventional and experimental GBM treatments. Moreover, recent advances on the development of TAM cell targeting and new cellular therapeutic strategies based on monocyte/macrophages recruitment to eradicate GBM are discussed as complementary therapeutics.
Collapse
|
15
|
Sonokawa T, Obi N, Usuda J, Sudo Y, Hamakubo T. Development of a new minimally invasive phototherapy for lung cancer using antibody-toxin conjugate. Thorac Cancer 2023; 14:645-653. [PMID: 36655546 PMCID: PMC9981311 DOI: 10.1111/1759-7714.14776] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) is a cancer-targeted treatment that uses a photosensitizer (PS) and laser irradiation. The effectiveness of current PDT using red light for advanced cancers is limited, because red light can only reach depths within a few millimeters. To enhance the antitumor effect for lung cancers, we developed a new phototherapy, intelligent targeted antibody phototherapy (iTAP). This treatment uses a combination of immunotoxin and a PS, mono-L-aspartyl chlorin e6 (NPe6). METHODS We examined whether cetuximab encapsulated in endosomes was released into the cytosol by PS in PDT under light irradiation. A431 cells were treated with fluorescein isothiocyanate-labeled cetuximab, NPe6, and light irradiation and were observed with fluorescence microscopy. We analyzed the cytotoxicity of saporin-conjugated cetuximab (IT-cetuximab) in A431, A549, and MCF7 cells and the antitumor effect in model A549-bearing mice in vivo using the iTAP method. RESULTS Fluorescent microscopy analysis showed that the photodynamic effect of NPe6 (20 μM) and light irradiation (37.6 J/cm2 ) caused the release of cetuximab from the endosome into the cytosol. In vitro analysis demonstrated that the iTAP method enhanced the cytotoxicity of IT-cetuximab by the photodynamic effect. In in vivo experiments, compared with IT-cetuximab alone or PDT alone, the iTAP method using a low dose of IT-cetuximab showed the greatest enhancement of the antitumor effect. CONCLUSIONS Our study is the first report of the iTAP method using NPe6 for lung cancer cells. The iTAP method may become a new, minimally invasive treatment superior to current PDT methods.
Collapse
Affiliation(s)
- Takumi Sonokawa
- Department of Thoracic SurgeryNippon Medical SchoolTokyoJapan
| | - Naoko Obi
- Research & Development DivisionPhotoQ3 Inc.TokyoJapan
| | - Jitsuo Usuda
- Department of Thoracic SurgeryNippon Medical SchoolTokyoJapan
| | - Yukio Sudo
- Research & Development DivisionPhotoQ3 Inc.TokyoJapan
| | | |
Collapse
|
16
|
First Clinical Report of the Intraoperative Macro- and Micro-Photodiagnosis and Photodynamic Therapy Using Talaporfin Sodium for a Patient with Disseminated Lumbar Medulloblastoma. J Clin Med 2023; 12:jcm12020432. [PMID: 36675360 PMCID: PMC9867022 DOI: 10.3390/jcm12020432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023] Open
Abstract
Photodiagnosis (PD) and photodynamic therapy (PDT) using the second-generation photosensitizer talaporfin sodium together with an exciting laser for primary intracranial malignant tumors is well recognized in Japan, and many medical institutions are introducing this new therapeutic option. In particular, intraoperative PDT using talaporfin sodium for infiltrating tumor cells in the cavity walls after the resection of malignant glioma is now covered by health insurance after receiving governmental approvement, and this method has been recommended in therapeutic guidelines for primary malignant brain tumors in Japan. On the other hand, experimental and clinical studies on the development of novel therapeutic strategies for malignant spinal cord tumors have not been reported to date, although their histological features are almost identical to those of intracranial malignant tumors. Therefore, the clinical outcomes of malignant spinal cord tumors have been less favorable than those of malignant brain tumors. In this report, we performed the PD and PDT using talaporfin sodium on a patient with a metastatic lumbar lesion that was detected on magnetic resonance image (MRI) 50 months after the resection of cerebellar medulloblastoma who presented with lumbago and sciatica. We were able to detect the target lesion in the conus medullaris using a surgical microscope, and detected the disseminated medulloblastoma cells floating in the cerebrospinal fluid using a compact fluorescence microscope. Furthermore, we performed PDT to the resected lumbar lesion with the adjuvant platinum-based chemotherapy, and the patient survived a meaningful life for more than 2 years after the lumbar surgery. This report describes the first case of a human patient in whom the efficacy of PD and PDT was demonstrated for a malignant spinal cord tumor.
Collapse
|
17
|
Dang Q, Yang J, Zha B, Li P, Cui H, Zheng Y. Sonodynamic Therapy for A Child with Recurrent Brainstem Glioma: A Case Report. INTERDISCIPLINARY NEUROSURGERY 2023. [DOI: 10.1016/j.inat.2023.101722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
18
|
Multifunctional Photoactive Nanomaterials for Photodynamic Therapy against Tumor: Recent Advancements and Perspectives. Pharmaceutics 2022; 15:pharmaceutics15010109. [PMID: 36678738 PMCID: PMC9866498 DOI: 10.3390/pharmaceutics15010109] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022] Open
Abstract
Numerous treatments are available for cancer, including chemotherapy, immunotherapy, radiation therapy, hormone therapy, biomarker testing, surgery, photodynamic therapy, etc. Photodynamic therapy (PDT) is an effective, non-invasive, novel, and clinically approved strategy to treat cancer. In PDT, three main agents are utilized, i.e., photosensitizer (PS) drug, oxygen, and light. At first, the photosensitizer is injected into blood circulation or applied topically, where it quickly becomes absorbed or accumulated at the tumor site passively or actively. Afterward, the tumor is irradiated with light which leads to the activation of the photosensitizing molecule. PS produces the reactive oxygen species (ROS), resulting in the death of the tumor cell. However, the effectiveness of PDT for tumor destruction is mainly dependent on the cellular uptake and water solubility of photosensitizer molecules. Therefore, the delivery of photosensitizer molecules to the tumor cell is essential in PDT against cancer. The non-specific distribution of photosensitizer results in unwanted side effects and unsuccessful therapeutic outcomes. Therefore, to improve PDT clinical outcomes, the current research is mostly focused on developing actively targeted photosensitizer molecules, which provide a high cellular uptake and high absorption capacity to the tumor site by overcoming the problem associated with conventional PDT. Therefore, this review aims to provide current knowledge on various types of actively and passively targeted organic and inorganic nanocarriers for different cancers.
Collapse
|
19
|
Ramzi NI, Mishiro K, Munekane M, Fuchigami T, Hu X, Jastrząb R, Kitamura Y, Kinuya S, Ogawa K. Synthesis and evaluation of radiolabeled porphyrin derivatives for cancer diagnoses and their nonradioactive counterparts for photodynamic therapy. RSC Med Chem 2022; 13:1565-1574. [PMID: 36561065 PMCID: PMC9749959 DOI: 10.1039/d2md00234e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/19/2022] [Indexed: 12/25/2022] Open
Abstract
Radioiodinated porphyrin derivatives and the corresponding nonradioactive iodine introduced compounds, [125I]I-TPPOH ([125I]3), [125I]I-l-tyrosine-TPP ([125I]9), I-TPPOH (3), and I-l-tyrosine-TPP (9) were designed, synthesized, and evaluated by in vitro and in vivo experiments. In cytotoxicity assays, 3 and 9 exhibited significant cytotoxicity under light conditions but did not show significant cytotoxicity without light irradiation. Biodistribution experiments with [125I]3 and [125I]9 showed similar distribution patterns with high retention in tumors. In photodynamic therapeutic (PDT) experiments, 3 and 9 at a dose of 13.6 μmol kg-1 weight with 50 W single light irradiation onto the tumor area significantly inhibited tumor growth. These results indicate that the iodinated porphyrin derivatives [123/natI]3 and [123/natI]9 are promising cancer theranostic agents.
Collapse
Affiliation(s)
- Nur Izni Ramzi
- Graduate School of Pharmaceutical Sciences, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Kenji Mishiro
- Institute for Frontier Science Initiative, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Masayuki Munekane
- Graduate School of Pharmaceutical Sciences, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Takeshi Fuchigami
- Graduate School of Pharmaceutical Sciences, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Xiaojun Hu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University Shanghai 200444 China
| | - Renata Jastrząb
- Faculty of Chemistry, Adam Mickiewicz University of Poznan Uniwersytetu Poznanskiego 8 Poznan 61-614 Poland
| | - Yoji Kitamura
- Research Center for Experimental Modeling of Human Disease, Kanazawa University Takara-machi 13-1 Kanazawa Ishikawa 920-8640 Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa University Takara-machi 13-1 Kanazawa Ishikawa 920-8641 Japan
| | - Kazuma Ogawa
- Graduate School of Pharmaceutical Sciences, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
- Institute for Frontier Science Initiative, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| |
Collapse
|
20
|
Rothe F, Patties I, Kortmann RD, Glasow A. Immunomodulatory Effects by Photodynamic Treatment of Glioblastoma Cells In Vitro. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113384. [PMID: 35684322 PMCID: PMC9181863 DOI: 10.3390/molecules27113384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022]
Abstract
Multimodal treatment adding immunotherapy and photodynamic treatment (PDT) to standard therapy might improve the devastating therapeutic outcome of glioblastoma multiforme patients. As a first step, we provide investigations to optimize dendritic cell (DC) vaccination by using PDT and ionizing radiation (IR) to achieve maximal synergistic effects. In vitro experiments were conducted on murine glioblastoma GL261 cells, primary DCs differentiated from bone marrow and T cells, isolated from the spleen. Induction of cell death, reactive oxygen species, and inhibition of proliferation by tetrahydroporphyrin-tetratosylat (THPTS)-PDT and IR were confirmed by WST-1, LDH, ROS, and BrdU assay. Tumor cargo (lysate or cells) for DC load was treated with different combinations of THPTS-PDT, freeze/thaw cycles, and IR and immunogenicity analyzed by induction of T-cell activation. Cellular markers (CD11c, 83, 86, 40, 44, 69, 3, 4, 8, PD-L1) were quantified by flow cytometry. Cytotoxic T-cell response was evaluated by calcein AM assay. Immunogenicity of THPTS-PDT-treated GL261 cells lysate was superior to IR-treated lysate, or treated whole cells proven by increased DC phagocytosis, T-cell adhesion, proliferation, cytolytic activity, and cytokine release. These data strongly support the application of PDT together with IR for optimal immunogenic cell death induction in tumor cell lysate used to pulse DC vaccines.
Collapse
|
21
|
Mazurek M, Szczepanek D, Orzyłowska A, Rola R. Analysis of Factors Affecting 5-ALA Fluorescence Intensity in Visualizing Glial Tumor Cells-Literature Review. Int J Mol Sci 2022; 23:ijms23020926. [PMID: 35055109 PMCID: PMC8779265 DOI: 10.3390/ijms23020926] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 01/27/2023] Open
Abstract
Glial tumors are one of the most common lesions of the central nervous system. Despite the implementation of appropriate treatment, the prognosis is not successful. As shown in the literature, maximal tumor resection is a key element in improving therapeutic outcome. One of the methods to achieve it is the use of fluorescent intraoperative navigation with 5-aminolevulinic acid. Unfortunately, often the level of fluorescence emitted is not satisfactory, resulting in difficulties in the course of surgery. This article summarizes currently available knowledge regarding differences in the level of emitted fluorescence. It may depend on both the histological type and the genetic profile of the tumor, which is reflected in the activity and expression of enzymes involved in the intracellular metabolism of fluorescent dyes, such as PBGD, FECH, UROS, and ALAS. The transport of 5-aminolevulinic acid and its metabolites across the blood–brain barrier and cell membranes mediated by transporters, such as ABCB6 and ABCG2, is also important. Accompanying therapies, such as antiepileptic drugs or steroids, also have an impact on light emission by tumor cells. Accurate determination of the factors influencing the fluorescence of 5-aminolevulinic acid-treated cells may contribute to the improvement of fluorescence navigation in patients with highly malignant gliomas.
Collapse
|
22
|
Nanomedicine in Clinical Photodynamic Therapy for the Treatment of Brain Tumors. Biomedicines 2022; 10:biomedicines10010096. [PMID: 35052776 PMCID: PMC8772938 DOI: 10.3390/biomedicines10010096] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 02/01/2023] Open
Abstract
The current treatment for malignant brain tumors includes surgical resection, radiotherapy, and chemotherapy. Nevertheless, the survival rate for patients with glioblastoma multiforme (GBM) with a high grade of malignancy is less than one year. From a clinical point of view, effective treatment of GBM is limited by several challenges. First, the anatomical complexity of the brain influences the extent of resection because a fine balance must be struck between maximal removal of malignant tissue and minimal surgical risk. Second, the central nervous system has a distinct microenvironment that is protected by the blood–brain barrier, restricting systemically delivered drugs from accessing the brain. Additionally, GBM is characterized by high intra-tumor and inter-tumor heterogeneity at cellular and histological levels. This peculiarity of GBM-constituent tissues induces different responses to therapeutic agents, leading to failure of targeted therapies. Unlike surgical resection and radiotherapy, photodynamic therapy (PDT) can treat micro-invasive areas while protecting sensitive brain regions. PDT involves photoactivation of photosensitizers (PSs) that are selectively incorporated into tumor cells. Photo-irradiation activates the PS by transfer of energy, resulting in production of reactive oxygen species to induce cell death. Clinical outcomes of PDT-treated GBM can be advanced in terms of nanomedicine. This review discusses clinical PDT applications of nanomedicine for the treatment of GBM.
Collapse
|
23
|
Bulin AL, Adam JF, Elleaume H. Stereotaxic Implantation of F98 Cells in Fischer Rats: A Syngeneic Model to Investigate Photodynamic Therapy Response in Glioma. Methods Mol Biol 2022; 2451:203-210. [PMID: 35505020 DOI: 10.1007/978-1-0716-2099-1_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
When investigating the promise of novel therapeutic modalities, the choice of an appropriate and reproducible in vivo model is critical to determine the relevance of the findings. In the case of glioblastoma, a high-grade glioma tumor that is clinically characterized by a high infiltrative pattern, no existing model exactly mimics the clinical features of these tumors. However, a syngeneic rat model of glioblastoma in which F98 cells are orthotopically implanted can recapitulate most of the characteristics of glioma as observed in patients, including a highly aggressive nature, a high degree of infiltration of cancer cells into healthy tissue, and a strong resistance to commonly used treatments including radiotherapy and chemotherapy. Here, we provide a detailed protocol to stereotaxically implant F98 cells in the rat brain and obtain a reproducible and clinically representative glioma model in rodents.
Collapse
Affiliation(s)
- Anne-Laure Bulin
- Inserm UA07, Synchrotron Radiation for Biomedicine, University Grenoble Alpes, Grenoble, France.
| | - Jean-François Adam
- Inserm UA07, Synchrotron Radiation for Biomedicine, University Grenoble Alpes, Grenoble, France
| | - Hélène Elleaume
- Inserm UA07, Synchrotron Radiation for Biomedicine, University Grenoble Alpes, Grenoble, France
| |
Collapse
|
24
|
Fabrication of photosensitizer-polyethylene glycol-conjugated gold nanostars for simultaneous photothermal and photodynamic cancer therapy under near-infrared laser irradiation. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Multifunctional lipidic nanocarriers for effective therapy of glioblastoma: recent advances in stimuli-responsive, receptor and subcellular targeted approaches. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00548-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Background
Glioblastoma, or glioblastoma multiforme (GBM), remains a fatal cancer type despite the remarkable progress in understanding the genesis and propagation of the tumor. Current treatment modalities, comprising mainly of surgery followed by adjuvant chemoradiation, are insufficient for improving patients' survival owing to existing hurdles, including the blood–brain barrier (BBB). In contemporary practice, the prospect of long-term survival or cure continues to be a challenge for patients suffering from GBM. This review provides an insight into the drug delivery strategies and the significant efforts made in lipid-based nanoplatform research to circumvent the challenges in optimal drug delivery in GBM.
Area covered
Owing to the unique properties of lipid-based nanoplatforms and advancements in clinical translation, this article describes the application of various stimuli-responsive lipid nanocarriers and tumor subcellular organelle-targeted therapy to give an idea about the strategies that can be applied to enhance site-specific drug delivery for GBM. Furthermore, active targeting of drugs via surface-modified lipid-based nanostructures and recent findings in alternative therapeutic platforms such as gene therapy, immunotherapy, and multimodal therapy have also been overviewed.
Expert opinion
Lipid-based nanoparticles stand out among the other nanocarriers explored for GBM drug delivery, as they support both passive and active drug targeting by crossing/bypassing the BBB at the same time minimizing toxicity and projects better pharmacological parameters. Although these nanocarriers could be a plausible choice for treating GBM, in-depth research is essential to advance neuro-oncology research and enhance outcomes in patients with brain tumors.
Collapse
|
26
|
Targeting glioblastoma stem cells: The first step of photodynamic therapy. Photodiagnosis Photodyn Ther 2021; 36:102585. [PMID: 34687963 DOI: 10.1016/j.pdpdt.2021.102585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/22/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023]
Abstract
Glioblastoma is one of the most malignant types of brain cancer. Evidence suggests that within gliomas there is a small subpopulation of cells with the capacity for self-renewal, called glioma stem cells. These cells could be responsible for tumorigenesis, chemo and radioresistance, and finally for the recurrence of the tumor. Fluorescence-guided resection have improved the results of treatment against this disease, prolonging the survival of patients by a few months. Also, clinical trials have reported potential improvements in the therapeutic response after photodynamic therapy. Thus far, there are few published works that show the response of glioblastoma stem-like cells to photodynamic therapy. Here, we present a brief review exclusively commenting on the therapeutic approaches to eliminate glioblastoma stem cells and on the research publications about this topic of glioblastoma stem cells in relation to photodynamic therapy. It is our hope that this review will be useful to provide an overview about what is known to date on the topic and to promote the generation of new ideas for the eradication of glioblastoma stem cells by photodynamic treatment.
Collapse
|
27
|
Jeong H, Park W, Kim DH, Na K. Dynamic nanoassemblies of nanomaterials for cancer photomedicine. Adv Drug Deliv Rev 2021; 177:113954. [PMID: 34478780 DOI: 10.1016/j.addr.2021.113954] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/09/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022]
Abstract
Photomedicine has long been used for treating cancerous diseases. With advances in chemical and material sciences, various types of light-activated photosensitizers (PSs) have been developed for effective photodynamic therapy (PDT) and photothermal therapy (PTT). However, conventional organic/inorganic materials-based PSs lack disease recognition capability and show limited therapeutic effects in addition to side effects. Recently, intelligent dynamic nanoassemblies that are activated in a tumor environment have been extensively researched to target diseased tissues more effectively, for increasing therapeutic effectiveness while minimizing side effects. This paper presents the latest dynamic nanoassemblies for effective PDT or PTT and combination phototherapies, including immunotherapy and image-guided therapy. Dynamic self-assembly exhibits great potential for clinical translation in diagnosis and treatment through its integrated versatility. Nanoassemblies based on multidisciplinary technology are a promising technique for treating incurable cancerous diseases in the future.
Collapse
Affiliation(s)
- Hayoon Jeong
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi 14662, Republic of Korea
| | - Wooram Park
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi 14662, Republic of Korea
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA; Department of Biomedical Engineering, McCormick School of Engineering, Evanston, IL 60208, USA; Department of Bioengineering, The University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Kun Na
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi 14662, Republic of Korea.
| |
Collapse
|
28
|
Fujita Y, Nagashima H, Tanaka K, Hashiguchi M, Itoh T, Sasayama T. Hyperintense signal on diffusion-weighted imaging for monitoring the acute response and local recurrence after photodynamic therapy in malignant gliomas. J Neurooncol 2021; 155:81-92. [PMID: 34550511 DOI: 10.1007/s11060-021-03845-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/11/2021] [Indexed: 01/22/2023]
Abstract
PURPOSE Photodynamic therapy (PDT) subsequent to surgical tumor removal is a novel localized treatment for malignant glioma that provides effective local control. The acute response of malignant glioma to PDT can be detected as linear transient hyperintense signal on diffusion-weighted imaging (DWI) and a decline in apparent diffusion coefficient values without symptoms. However, their long-term clinical significance has not yet been examined. The aim of this study was to clarify the link between hyperintense signal on DWI as an acute response and recurrence after PDT in malignant glioma. METHODS Thirty patients (16 men; median age, 60.5 years) underwent PDT for malignant glioma at our institution between 2017 and 2020. We analyzed the signal changes on DWI after PDT and the relationship between these findings and the recurrence pattern. RESULTS All patients showed linear hyperintense signal on DWI at the surface of the resected cavity from day 1 after PDT. These changes disappeared in about 30 days without any neurological deterioration. During a mean post-PDT follow-up of 14.3 months, 19 patients (63%) exhibited recurrence: 10 local, 1 distant, and 8 disseminated. All of the local recurrences arose from areas that did not show hyperintense signal on DWI obtained on day 1 after PDT. CONCLUSIONS The local recurrence in malignant glioma after PDT occurs in an area without hyperintense signal on DWI as an acute response to PDT. This characteristic finding could aid in the monitoring of local recurrence after PDT.
Collapse
Affiliation(s)
- Yuichi Fujita
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan.
| | - Hiroaki Nagashima
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Kazuhiro Tanaka
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Mitsuru Hashiguchi
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Tomoo Itoh
- Department of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Takashi Sasayama
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|
29
|
Carriero F, Martinelli C, Gabriele F, Barbieri G, Zanoletti L, Milanesi G, Casali C, Azzalin A, Manai F, Paolillo M, Comincini S. Berberine Photo-Activation Potentiates Cytotoxicity in Human Astrocytoma Cells through Apoptosis Induction. J Pers Med 2021; 11:942. [PMID: 34683083 PMCID: PMC8541605 DOI: 10.3390/jpm11100942] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 12/14/2022] Open
Abstract
Photodynamic therapy (PDT) has recently attracted interest as an innovative and adjuvant treatment for different cancers including malignant gliomas. Among these, Glioblastoma (GBM) is the most prevalent neoplasm in the central nervous system. Despite conventional therapeutic approaches that include surgical removal, radiation, and chemotherapy, GBM is characterized by an extremely poor prognosis and a high rate of recurrence. PDT is a physical process that induces tumor cell death through the genesis and accumulation of reactive oxygen species (ROS) produced by light energy interaction with a photosensitizing agent. In this contribution, we explored the potentiality of the plant alkaloid berberine (BBR) as a photosensitizing and cytotoxic agent coupled with a PDT scheme using a blue light source in human established astrocytoma cell lines. Our data mainly indicated for the combined BBR-PDT scheme a potent activation of the apoptosis pathway, through a massive ROS production, a great extent of mitochondria depolarization, and the sub-sequent activation of caspases. Altogether, these results demonstrated that BBR is an efficient photosensitizer agent and that its association with PDT may be a potential anticancer strategy for high malignant gliomas.
Collapse
Affiliation(s)
- Francesca Carriero
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (F.C.); (C.M.); (F.G.); (G.B.); (L.Z.); (G.M.); (C.C.); (A.A.); (F.M.)
| | - Carolina Martinelli
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (F.C.); (C.M.); (F.G.); (G.B.); (L.Z.); (G.M.); (C.C.); (A.A.); (F.M.)
- SKYTEC Srl, 20147 Milan, Italy
| | - Fabio Gabriele
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (F.C.); (C.M.); (F.G.); (G.B.); (L.Z.); (G.M.); (C.C.); (A.A.); (F.M.)
| | - Giulia Barbieri
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (F.C.); (C.M.); (F.G.); (G.B.); (L.Z.); (G.M.); (C.C.); (A.A.); (F.M.)
| | - Lisa Zanoletti
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (F.C.); (C.M.); (F.G.); (G.B.); (L.Z.); (G.M.); (C.C.); (A.A.); (F.M.)
| | - Gloria Milanesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (F.C.); (C.M.); (F.G.); (G.B.); (L.Z.); (G.M.); (C.C.); (A.A.); (F.M.)
| | - Claudio Casali
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (F.C.); (C.M.); (F.G.); (G.B.); (L.Z.); (G.M.); (C.C.); (A.A.); (F.M.)
| | - Alberto Azzalin
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (F.C.); (C.M.); (F.G.); (G.B.); (L.Z.); (G.M.); (C.C.); (A.A.); (F.M.)
| | - Federico Manai
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (F.C.); (C.M.); (F.G.); (G.B.); (L.Z.); (G.M.); (C.C.); (A.A.); (F.M.)
| | - Mayra Paolillo
- Department of Drug Science, University of Pavia, 27100 Pavia, Italy;
| | - Sergio Comincini
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (F.C.); (C.M.); (F.G.); (G.B.); (L.Z.); (G.M.); (C.C.); (A.A.); (F.M.)
| |
Collapse
|
30
|
Algorri JF, Ochoa M, Roldán-Varona P, Rodríguez-Cobo L, López-Higuera JM. Photodynamic Therapy: A Compendium of Latest Reviews. Cancers (Basel) 2021; 13:4447. [PMID: 34503255 PMCID: PMC8430498 DOI: 10.3390/cancers13174447] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising therapy against cancer. Even though it has been investigated for more than 100 years, scientific publications have grown exponentially in the last two decades. For this reason, we present a brief compendium of reviews of the last two decades classified under different topics, namely, overviews, reviews about specific cancers, and meta-analyses of photosensitisers, PDT mechanisms, dosimetry, and light sources. The key issues and main conclusions are summarized, including ways and means to improve therapy and outcomes. Due to the broad scope of this work and it being the first time that a compendium of the latest reviews has been performed for PDT, it may be of interest to a wide audience.
Collapse
Affiliation(s)
- José Francisco Algorri
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Mario Ochoa
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Pablo Roldán-Varona
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | | | - José Miguel López-Higuera
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| |
Collapse
|
31
|
Iron Hydroxide/Oxide-Reduced Graphene Oxide Nanocomposite for Dual-Modality Photodynamic and Photothermal Therapy In Vitro and In Vivo. NANOMATERIALS 2021; 11:nano11081947. [PMID: 34443776 PMCID: PMC8402170 DOI: 10.3390/nano11081947] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/14/2021] [Accepted: 07/27/2021] [Indexed: 11/22/2022]
Abstract
Minimal invasive phototherapy utilising near-infrared (NIR) laser to generate local reactive oxygen species (ROS) and heat has few associated side effects and is a precise treatment in cancer therapy. However, high-efficiency and safe phototherapeutic tumour agents still need developing. The application of iron hydroxide/oxide immobilised on reduced graphene oxide (FeOxH–rGO) nanocomposites as a therapeutic agent in integration photodynamic cancer therapy (PDT) and photothermal cancer therapy (PTT) was discussed. Under 808 nm NIR irradiation, FeOxH–rGO offers a high ROS generation and light-to-heat conversion efficiency because of its strong NIR absorption. These phototherapeutic effects lead to irreversible damage in FeOxH–rGO-treated T47D cells. Using a tumour-bearing mouse model, NIR ablated the breast tumour effectively in the presence of FeOxH–rGO. The tumour treatment response was evaluated to be 100%. We integrated PDT and PTT into a single nanodevice to facilitate effective cancer therapy. Our FeOxH–rGO, which integrates the merits of FeOxH and rGO, displays an outstanding tumoricidal capacity, suggesting the utilization of this nanocomposites in future medical applications.
Collapse
|
32
|
Broadwater D, Medeiros HCD, Lunt RR, Lunt SY. Current Advances in Photoactive Agents for Cancer Imaging and Therapy. Annu Rev Biomed Eng 2021; 23:29-60. [PMID: 34255992 DOI: 10.1146/annurev-bioeng-122019-115833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Photoactive agents are promising complements for both early diagnosis and targeted treatment of cancer. The dual combination of diagnostics and therapeutics is known as theranostics. Photoactive theranostic agents are activated by a specific wavelength of light and emit another wavelength, which can be detected for imaging tumors, used to generate reactive oxygen species for ablating tumors, or both. Photodynamic therapy (PDT) combines photosensitizer (PS) accumulation and site-directed light irradiation for simultaneous imaging diagnostics and spatially targeted therapy. Although utilized since the early 1900s, advances in the fields of cancer biology, materials science, and nanomedicine have expanded photoactive agents to modern medical treatments. In this review we summarize the origins of PDT and the subsequent generations of PSs and analyze seminal research contributions that have provided insight into rational PS design, such as photophysics, modes of cell death, tumor-targeting mechanisms, and light dosing regimens. We highlight optimizable parameters that, with further exploration, can expand clinical applications of photoactive agents to revolutionize cancer diagnostics and treatment.
Collapse
Affiliation(s)
- Deanna Broadwater
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Hyllana C D Medeiros
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Richard R Lunt
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA; , .,Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - Sophia Y Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA.,Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA; ,
| |
Collapse
|
33
|
Ibarra LE, Vilchez ML, Caverzán MD, Milla Sanabria LN. Understanding the glioblastoma tumor biology to optimize photodynamic therapy: From molecular to cellular events. J Neurosci Res 2020; 99:1024-1047. [PMID: 33370846 DOI: 10.1002/jnr.24776] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/29/2020] [Indexed: 12/19/2022]
Abstract
Photodynamic therapy (PDT) has recently gained attention as an alternative treatment of malignant gliomas. Glioblastoma (GBM) is the most prevalent within tumors of the central nervous system (CNS). Conventional treatments for this CNS tumor include surgery, radiation, and chemotherapy. Surgery is still being considered as the treatment of choice. Even so, the poor prognosis and/or recurrence of the disease after applying any of these treatments highlight the urgency of exploring new therapies and/or improving existing ones to achieve the definitive eradication of tumor masses and remaining cells. PDT is a therapeutic modality that involves the destruction of tumor cells by reactive oxygen species induced by light, which were previously treated with a photosensitizing agent. However, in recent years, its experimental application has expanded to other effects that could improve overall performance against GBM. In the current review, we revisit the main advances of PDT for GBM management and also, the recent mechanistic insights about cellular and molecular aspects related to tumoral resistance to PDT of GBM.
Collapse
Affiliation(s)
- Luis Exequiel Ibarra
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto, Argentina.,Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, UNRC, Río Cuarto, Argentina
| | - María Laura Vilchez
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto, Argentina.,Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, UNRC, Río Cuarto, Argentina
| | - Matías Daniel Caverzán
- Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, UNRC, Río Cuarto, Argentina
| | - Laura Natalia Milla Sanabria
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto, Argentina.,Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, UNRC, Río Cuarto, Argentina
| |
Collapse
|
34
|
Girotti AW, Fahey JM, Korytowski W. Negative effects of tumor cell nitric oxide on anti-glioblastoma photodynamic therapy. JOURNAL OF CANCER METASTASIS AND TREATMENT 2020; 6:52. [PMID: 33564720 PMCID: PMC7869587 DOI: 10.20517/2394-4722.2020.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glioblastomas are highly aggressive brain tumors that can persist after exposure to conventional chemotherapy or radiotherapy. Nitric oxide (NO) produced by inducible NO synthase (iNOS/NOS2) in these tumors is known to foster malignant cell proliferation, migration, and invasion as well as resistance to chemo- and radiotherapy. Minimally invasive photodynamic therapy (PDT) sensitized by 5-aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) is a highly effective anti-glioblastoma modality, but it is also subject to NO-mediated resistance. Studies by the authors have revealed that glioblastoma U87 and U251 cells use endogenous iNOS/NO to not only resist photokilling after an ALA/light challenge, but also to promote proliferation and migration/invasion of surviving cells. Stress-upregulated iNOS/NO was found to play a major role in these negative responses to PDT-like treatment. Our studies have revealed a tight network of upstream signaling events leading to iNOS induction in photostressed cells and transition to a more aggressive phenotype. These events include activation or upregulation of pro-survival/ pro-expansion effector proteins such as NF-κB, phosphoinositide-3-kinase (PI3K), protein kinase-B (Akt), p300, Survivin, and Brd4. In addition to this upstream signaling and its regulation, pharmacologic approaches for directly suppressing iNOS at its activity vs. transcriptional level are discussed. One highly effective agent in the latter category is bromodomain and extra-terminal (BET) inhibitor, JQ1, which was found to minimize iNOS upregulation in photostressed U87 cells. By acting similarly at the clinical level, a BET inhibitor such as JQ1 should markedly improve the efficacy of anti-glioblastoma PDT.
Collapse
Affiliation(s)
- Albert W. Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Jonathan M. Fahey
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Witold Korytowski
- Department of Biophysics, Jagiellonian University, Krakow 30-387, Poland
| |
Collapse
|
35
|
Mazurek M, Kulesza B, Stoma F, Osuchowski J, Mańdziuk S, Rola R. Characteristics of Fluorescent Intraoperative Dyes Helpful in Gross Total Resection of High-Grade Gliomas-A Systematic Review. Diagnostics (Basel) 2020; 10:E1100. [PMID: 33339439 PMCID: PMC7766001 DOI: 10.3390/diagnostics10121100] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Background: A very important aspect in the treatment of high-grade glioma is gross total resection to reduce the risk of tumor recurrence. One of the methods to facilitate this task is intraoperative fluorescence navigation. The aim of the study was to compare the dyes used in this technique fluorescent intraoperative navigation in terms of the mechanism of action and influence on the treatment of patients. Methods: The review was carried out on the basis of articles found in PubMed, Google Scholar, and BMC search engines, as well as those identified by searched bibliographies and suggested by experts during the preparation of the article. The database analysis was performed for the following phrases: "glioma", "glioblastoma", "ALA", "5ALA", "5-ALA", "aminolevulinic acid", "levulinic acid", "fluorescein", "ICG", "indocyanine green", and "fluorescence navigation". Results: After analyzing 913 citations identified on the basis of the search criteria, we included 36 studies in the review. On the basis of the analyzed articles, we found that 5-aminolevulinic acid and fluorescein are highly effective in improving the percentage of gross total resection achieved in high-grade glioma surgery. At the same time, the limitations resulting from the use of these methods are marked-higher costs of the procedure and the need to have neurosurgical microscope in combination with a special light filter in the case of 5-aminolevulinic acid (5-ALA), and low specificity for neoplastic cells and the dependence on the degree of damage to the blood-brain barrier in the intensity of fluorescence in the case of fluorescein. The use of indocyanine green in the visualization of glioma cells is relatively unknown, but some researchers have suggested its utility and the benefits of using it simultaneously with other dyes. Conclusion: The use of intraoperative fluorescence navigation with the use of 5-aminolevulinic acid and fluorescein allows the range of high-grade glioma resection to be increased.
Collapse
Affiliation(s)
- Marek Mazurek
- Chair and Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (F.S.); (J.O.); (R.R.)
| | - Bartłomiej Kulesza
- Chair and Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (F.S.); (J.O.); (R.R.)
| | - Filip Stoma
- Chair and Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (F.S.); (J.O.); (R.R.)
| | - Jacek Osuchowski
- Chair and Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (F.S.); (J.O.); (R.R.)
| | - Sławomir Mańdziuk
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Radosław Rola
- Chair and Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (F.S.); (J.O.); (R.R.)
| |
Collapse
|
36
|
Konovalov NA, Timonin SY, Zelenkov PV, Goryainov SA, Asyutin DS, Zakirov BA, Kaprovoy SV. [Visual fluorescence combined with laser spectroscopy in surgery for intramedullary spinal cord tumors]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2020; 84:5-14. [PMID: 33306295 DOI: 10.17116/neiro2020840615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Surgical treatment of intramedullary spinal cord tumors is aimed at total resection of tumor with maximum preservation of neurological and functional status. In some cases, intramedullary tumors have unclear dissection plane or gliosis zone. This area is not a tumor and does not require resection. However, it is difficult to distinguish visually intact spinal cord tissue and tumor at the last surgical stages. Thus, we evaluated the effectiveness of fluorescence combined with laser spectroscopy in surgical treatment of intramedullary spinal cord tumors. OBJECTIVE To determine the effectiveness of visual fluorescence combined with laser spectroscopy in surgery for intramedullary spinal cord tumors. MATERIAL AND METHODS There were 850 patients with intramedullary spinal cord tumors for the period 2001-2019. In 35 cases, intraoperative fluoroscopy with laser spectroscopy were used. All patients underwent a comprehensive pre- and postoperative clinical and instrumental examination (general and neurological status, McCormick grade, spinal cord MRI). Carl Zeiss OPMI Pentero microscope with a fluorescent module was used for intraoperative fluorescence diagnosis. A domestic preparation 5-ALA «ALASENS» (State Research Center NIOPIK, Moscow, Russia) was used for induction of visible fluorescence. Laser spectroscopy was carried out using a LESA-01-BIOSPEK spectrum analyzer. Morphological analysis of intramedullary spinal cord tumors was performed in the neuromorphology laboratory of the Burdenko Neurosurgery Center. RESULTS Intramedullary anaplastic ependymoma and astrocytoma, as well as conventional ependymoma were characterized by the highest index of 5-ALA accumulation. Intramedullary hemangioblastoma and cavernoma do not accumulate 5-aminolevulinic acid due to morphological structure of these tumors. In particular, there are no cells capable of capturing and processing 5-ALA in these tumors. Sensitivity of visual fluorescence combined with laser spectroscopy varies from 0% to 100% depending on the histological type of tumor: hemangiogblastoma and cavernoma - 0%, low-grade astrocytoma - 70%, high-grade astrocytoma - 80%, ependymoma - 92%, anaplastic ependymoma 100%. Dissection plane is absent in anaplastic ependymoma, high-grade astrocytoma. We often observed gliosis during resection of ependymoma. This tissue is not a part of tumor. Intraoperative metabolic navigation with neurophysiological monitoring are advisable for total tumor resection in case of unclear dissection plane and peritumoral gliosis. CONCLUSION Visual fluorescence combined with laser spectroscopy is a perspective method for intraoperative imaging of tumor remnants and total resection of intramedullary spinal cord tumors with minimum risk of neurological impairment.
Collapse
Affiliation(s)
| | | | | | | | - D S Asyutin
- Burdenko Neurosurgical Center, Moscow, Russia
| | - B A Zakirov
- Burdenko Neurosurgical Center, Moscow, Russia
| | | |
Collapse
|
37
|
Borah BM, Cacaccio J, Durrani FA, Bshara W, Turowski SG, Spernyak JA, Pandey RK. Sonodynamic therapy in combination with photodynamic therapy shows enhanced long-term cure of brain tumor. Sci Rep 2020; 10:21791. [PMID: 33311561 PMCID: PMC7732989 DOI: 10.1038/s41598-020-78153-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/20/2020] [Indexed: 11/09/2022] Open
Abstract
This article presents the construction of a multimodality platform that can be used for efficient destruction of brain tumor by a combination of photodynamic and sonodynamic therapy. For in vivo studies, U87 patient-derived xenograft tumors were implanted subcutaneously in SCID mice. For the first time, it has been shown that the cell-death mechanism by both treatment modalities follows two different pathways. For example, exposing the U87 cells after 24 h incubation with HPPH [3-(1'-hexyloxy)ethyl-3-devinyl-pyropheophorbide-a) by ultrasound participate in an electron-transfer process with the surrounding biological substrates to form radicals and radical ions (Type I reaction); whereas in photodynamic therapy, the tumor destruction is mainly caused by highly reactive singlet oxygen (Type II reaction). The combination of photodynamic therapy and sonodynamic therapy both in vitro and in vivo have shown an improved cell kill/tumor response, that could be attributed to an additive and/or synergetic effect(s). Our results also indicate that the delivery of the HPPH to tumors can further be enhanced by using cationic polyacrylamide nanoparticles as a delivery vehicle. Exposing the nano-formulation with ultrasound also triggered the release of photosensitizer. The combination of photodynamic therapy and sonodynamic therapy strongly affects tumor vasculature as determined by dynamic contrast enhanced imaging using HSA-Gd(III)DTPA.
Collapse
Affiliation(s)
- Ballav M Borah
- Photolitec, LLC, 73 High Street, Buffalo, NY, 14203, USA
| | - Joseph Cacaccio
- Department of Cell Stress Biology, Photodynamic Therapy Center, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Farukh A Durrani
- Department of Cell Stress Biology, Photodynamic Therapy Center, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Wiam Bshara
- Department of Pathology, Pathology Network Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Steven G Turowski
- Translational Imaging Shared Resource, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | | | - Ravindra K Pandey
- Department of Cell Stress Biology, Photodynamic Therapy Center, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| |
Collapse
|
38
|
Rafaelyan AA, Alekseev DE, Martynov BV, Kholyavin AI, Papayan GV, Lytkin MV, Svistov DV, Zheleznyak IS, Imyanitov EN. [Stereotactic photodynamic therapy for recurrent glioblastoma. Case report and literature review]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2020; 84:81-88. [PMID: 33095536 DOI: 10.17116/neiro20208405181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We report a patient with recurrent glioblastoma in eloquent brain area. Stereotactic fluorescence biospectroscopy and stereotactic photodynamic therapy of tumor in opercular area of the left frontal lobe under neurophysiological monitoring were carried out. Literature data on this issue were analyzed.
Collapse
Affiliation(s)
- A A Rafaelyan
- Kirov Military Medical Academy, St. Petersburg, Russia
| | - D E Alekseev
- Kirov Military Medical Academy, St. Petersburg, Russia
| | - B V Martynov
- Kirov Military Medical Academy, St. Petersburg, Russia
| | - A I Kholyavin
- Kirov Military Medical Academy, St. Petersburg, Russia.,Bekhtereva Institute of Human Brain, St. Petersburg, Russia
| | - G V Papayan
- Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia.,Almazov National Medical Research Center, St. Petersburg, Russia
| | - M V Lytkin
- Kirov Military Medical Academy, St. Petersburg, Russia
| | - D V Svistov
- Kirov Military Medical Academy, St. Petersburg, Russia
| | | | - E N Imyanitov
- Petrov National Medical Research Oncology Center, St. Petersburg, Russia
| |
Collapse
|
39
|
Novel Photosensitizer β-Mannose-Conjugated Chlorin e6 as a Potent Anticancer Agent for Human Glioblastoma U251 Cells. Pharmaceuticals (Basel) 2020; 13:ph13100316. [PMID: 33081106 PMCID: PMC7602738 DOI: 10.3390/ph13100316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
A photosensitizer is a molecular drug for photodynamic diagnosis and photodynamic therapy (PDT) against cancer. Many studies have developed photosensitizers, but improvements in their cost, efficacy, and side effects are needed for better PDT of patients. In the present study, we developed a novel photosensitizer β-mannose-conjugated chlorin e6 (β-M-Ce6) and investigated its PDT effects in human glioblastoma U251 cells. U251 cells were incubated with β-M-Ce6, followed by laser irradiation. Cell viability was determined using the Cell Counting Kit-8 assay. The PDT effects of β-M-Ce6 were compared with those of talaporfin sodium (TS) and our previously reported photosensitizer β-glucose-conjugated chlorin e6 (β-G-Ce6). Cellular uptake of each photosensitizer and subcellular distribution were analyzed by fluorescence microscopy. β-M-Ce6 showed 1000× more potent PDT effects than those of TS, and these were similar to those of β-G-Ce6. β-M-Ce6 accumulation in U251 cells was much faster than TS accumulation and distributed to several organelles such as the Golgi apparatus, mitochondria, and lysosomes. This rapid cellular uptake was inhibited by low temperature, which suggested that β-M-Ce6 uptake uses biological machinery. β-M-Ce6 showed potent PDT anti-cancer effects compared with clinically approved TS, which is a possible candidate as a next generation photosensitizer in cancer therapy.
Collapse
|
40
|
Caverzán MD, Beaugé L, Chesta CA, Palacios RE, Ibarra LE. Photodynamic therapy of Glioblastoma cells using doped conjugated polymer nanoparticles: An in vitro comparative study based on redox status. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 212:112045. [PMID: 33022469 DOI: 10.1016/j.jphotobiol.2020.112045] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022]
Abstract
Due to their superb light absorption and photostability conjugated polymer nanoparticles are promising photosensitizers (PS) for their use in Photodynamic therapy (PDT). Recently, we developed metallated porphyrin-doped conjugated polymer nanoparticles (CPNs) for PDT that efficiently eliminate tumor cells through reactive oxygen species (ROS) mediated photoinduced damage of apoptotic nature. These nanoaggregates act as densely packed multi-chromophoric systems having exceptional light harvesting and (intra-particle) energy transfer capabilities which lead to efficient photosensitized formation of ROS. In general, three key components; light, PS, and oxygen; are considered in the prediction of the PDT outcome. However, recent studies led to the discovery of a profound genetic heterogeneity among glioblastoma (GBM) cells which include the adaptation to ROS. Thus, tumor heterogeneity and their associated difference in sensitivity to ROS-producing therapeutic agents must be considered in the design of PDT protocols for the prediction of its outcome. In this study, anticancer activity through ROS-mediated PDT using CPNs was compared in three GBM cell lines with different initial redox status. T98G cells were the most effective incorporating nanoparticles but also were the most resistant to CPN-PDT effect. In part, this feature could be attributed to the differential basal and PDT-induced antioxidant enzyme levels found in these cells measured by gene expression analysis. Furthermore, considering that cell-specific antioxidant enzyme status is a significant feature of GBM heterogeneity, establishing its correlation with CPN-PDT outcome might be important for designing novel and improved CPN-based treatments.
Collapse
Affiliation(s)
- Matías Daniel Caverzán
- Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Río Cuarto 5800, Córdoba, Argentina
| | - Lucía Beaugé
- Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Río Cuarto 5800, Córdoba, Argentina
| | - Carlos Alberto Chesta
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), UNRC y Consejo Nacional de, Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto 5800, Córdoba, Argentina.; Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Río Cuarto 5800, Córdoba, Argentina
| | - Rodrigo Emiliano Palacios
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), UNRC y Consejo Nacional de, Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto 5800, Córdoba, Argentina.; Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Río Cuarto 5800, Córdoba, Argentina..
| | - Luis Exequiel Ibarra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Río Cuarto 5800, Córdoba, Argentina; Instituto de Biotecnología Ambiental y Salud (INBIAS), UNRC y CONICET, Río Cuarto 5800, Córdoba, Argentina.
| |
Collapse
|
41
|
Preparation of Multifunctional Dopamine-Coated Zerovalent Iron/Reduced Graphene Oxide for Targeted Phototheragnosis in Breast Cancer. NANOMATERIALS 2020; 10:nano10101957. [PMID: 33019538 PMCID: PMC7601037 DOI: 10.3390/nano10101957] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/22/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022]
Abstract
The present study aimed to develop a multifunctional nanoparticle platform with properties that are beneficial in imaging, targeting, and synergistic cancer phototherapy. To this end, we synthesized novel nanoparticles composed of polydopamine, nano zero-valent iron (nZVI), and reduced graphene oxide (rGO). We immobilized nZVI on the surface of GO (nZVI/GO), then further modified nZVI/GO with dopamine to form polydopamine-conjugated nZVI/rGO (nZVI/rGO@pDA). Because nZVI/rGO@pDA absorbs near infrared radiation (NIR) and binds biomolecules of cancer cells, this platform is highly efficacious in photothermal and photodynamic cancer therapy and enables specific targeting of breast cancer cells. Use of nZVI/rGO@pDA at a low concentration (10 μg/mL) resulted in irreversible damage to MCF-7 cells under NIR irradiation (808 nm) without inducing cytotoxic effects in normal cells. Furthermore, nZVI/rGO@pDA showed high sensitivity in magnetic resonance imaging (MRI), comparable to nZVI@pDA, even at low concentration. Monitoring the treatment response through evaluation of MRI signal intensity of nZVI/rGO@pDA in phototherapeutic therapy revealed that the novel material combines the advantages of nZVI, rGO, and pDA to provide specific targeting capabilities, excellent biocompatibility, and cancer phototherapeutic and tumor imaging abilities. Thus, this platform offers great potential in terms of imaging and therapeutic effects in phototherapy treatment for breast cancer.
Collapse
|
42
|
Clinical application of the mirror irradiation technique in photodynamic therapy for malignant glioma. Photodiagnosis Photodyn Ther 2020; 31:101956. [PMID: 32818648 DOI: 10.1016/j.pdpdt.2020.101956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/22/2020] [Accepted: 08/10/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND Intraoperative photodynamic therapy (PDT) using talaporfin sodium for malignant glioma is effective both in the experimental and in the clinical setting. Because the irradiation unit is fixed to the objective lens of the operating microscope, blind spots for irradiation exist. To overcome this problem, we developed a mirror reflecting system using a modified dental mirror. METHODS The developed mirror is made of stainless steel, has a mirror-polished surface, and is rhodium coated on 1 side, which is the reflecting surface. The reflection rate was measured using He-Ne laser irradiation. The reflection intensity was measured using a laser power meter when the incident angle to the mirror was changed to 60°, 45°, and 30°, and the reflectance was calculated by the direct received light intensity from the laser. After confirming the safety of the fundamental experiment, PDT was performed with this developed mirror on 9 patients with malignant glioma (4 with recurrence and 5 newly diagnosed). RESULTS The energy efficiency of the mirror was approximately 70 %, and apparent irregular reflection was not observed. Even during clinical use, apparent complications, such as irregular reflection, did not occur upon using the mirror in any of the patients. In all patients, recurrence did not occur in the site where mirror irradiation was performed, but in a deep site or a distant site to which sufficient laser irradiation did not reach. CONCLUSION PDT using our newly developed mirror involves few instrumental changes compared with the conventional irradiation method, and is effective, safe, and inexpensive.
Collapse
|
43
|
Müller P, Abdel Gaber SA, Zimmermann W, Wittig R, Stepp H. ABCG2 influence on the efficiency of photodynamic therapy in glioblastoma cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 210:111963. [PMID: 32795847 DOI: 10.1016/j.jphotobiol.2020.111963] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Photodynamic therapy with 5-aminolevulinic acid (5-ALA PDT) is a promising novel therapeutic approach in the therapy of malignant brain tumors. 5-ALA occurs as a natural precursor of protoporphyrin IX (PpIX), a tumor-selective photosensitizer. The ATP-binding cassette transporter ABCG2 plays a physiologically significant role in porphyrin efflux from living cells. ABCG2 is also associated with stemness properties. Here we investigate the role of ABCG2 on the susceptibility of glioblastoma cells to 5-ALA PDT. METHODS Accumulation of PpIX in doxycycline-inducible U251MG glioblastoma cells with or without induction of ABCG2 expression or ABCG2 inhibition by KO143 was analyzed using flow cytometry. In U251MG cells, ABCG2 was inducible by doxycycline after stable transfection with a tet-on expression plasmid. U251MG cells with high expression of ABCG2 were enriched and used for further experiments (sU251MG-V). PDT was performed on monolayer cell cultures by irradiation with laser light at 635 nm. RESULTS Elevated levels of ABCG2 in doxycycline induced sU251MG-V cells led to a diminished accumulation of PpIX and higher light doses were needed to reduce cell viability. By inhibiting the ABCG2 transporter with the efficient and non-toxic ABCG2 inhibitor KO143, PpIX accumulation and PDT efficiency could be strongly enhanced. CONCLUSION Glioblastoma cells with high ABCG2 expression accumulate less photosensitizer and require higher light doses to be eliminated. Inhibition of ABCG2 during photosensitizer accumulation and irradiation promises to restore full susceptibility of this crucial tumor cell population to photodynamic treatment.
Collapse
Affiliation(s)
- Patricia Müller
- Laser Forschungslabor, LIFE Center, University Hospital, LMU Munich, Fraunhoferstr. 20, 82152 Planegg, Germany; Labor für Tumorimmunologie, LIFE Center, University Hospital, LMU Munich, Fraunhoferstr. 20, 82152, Planegg, Germany.
| | - Sara A Abdel Gaber
- Laser Forschungslabor, LIFE Center, University Hospital, LMU Munich, Fraunhoferstr. 20, 82152 Planegg, Germany; Nanomedicine Department, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Wolfgang Zimmermann
- Labor für Tumorimmunologie, LIFE Center, University Hospital, LMU Munich, Fraunhoferstr. 20, 82152, Planegg, Germany; Department of Urology, University Hospital, LMU Munich, Fraunhoferstr. 20, 82152 Planegg, Germany
| | - Rainer Wittig
- Institut für Lasertechnologien in der Medizin und Messtechnik an der Universität Ulm, Helmholtzstr. 12, 89081 Ulm, Germany
| | - Herbert Stepp
- Laser Forschungslabor, LIFE Center, University Hospital, LMU Munich, Fraunhoferstr. 20, 82152 Planegg, Germany; Department of Urology, University Hospital, LMU Munich, Fraunhoferstr. 20, 82152 Planegg, Germany
| |
Collapse
|
44
|
Ibarra LE, Beaugé L, Arias-Ramos N, Rivarola VA, Chesta CA, López-Larrubia P, Palacios RE. Trojan horse monocyte-mediated delivery of conjugated polymer nanoparticles for improved photodynamic therapy of glioblastoma. Nanomedicine (Lond) 2020; 15:1687-1707. [DOI: 10.2217/nnm-2020-0106] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: To assess monocyte-based delivery of conjugated polymer nanoparticles (CPNs) for improved photodynamic therapy (PDT) in glioblastoma (GBM). Materials & methods: Human monocyte cells (THP-1) and murine monocytes isolated from bone marrow (mBMDMs) were employed as stealth CPN carriers to penetrate into GBM spheroids and an orthotopic model of the tumor. The success of PDT, using this cell-mediated targeting strategy, was determined by its effect on the spheroids. Results: CPNs did not affect monocyte viability in the absence of light and did not show nonspecific release after cell loading. Activated monocytes incorporated CPNs in a higher proportion than monocytes in their naive state, without a loss of cellular functionality. In vitro PDT efficacy using cell-mediated delivery was superior to that using non vehiculized CPNs. Conclusion: CPN-loaded monocytes could efficiently deliver CPNs into GBM spheroids and the orthotopic model. Improved PDT in spheroids was confirmed using this delivery strategy.
Collapse
Affiliation(s)
- Luis E Ibarra
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto, 5800, Córdoba, Argentina
- Departamento de Biología Molecular, Facultad de Ciencias Exactas Fisicoquímicas y Naturales, UNRC, Río Cuarto, 5800, Córdoba, Argentina
| | - Lucía Beaugé
- Departamento de Biología Molecular, Facultad de Ciencias Exactas Fisicoquímicas y Naturales, UNRC, Río Cuarto, 5800, Córdoba, Argentina
| | - Nuria Arias-Ramos
- Instituto de Investigaciones Biomédicas “Alberto Sols”, CSIC/UAM, Madrid, 28029, España
| | - Viviana A Rivarola
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto, 5800, Córdoba, Argentina
- Departamento de Biología Molecular, Facultad de Ciencias Exactas Fisicoquímicas y Naturales, UNRC, Río Cuarto, 5800, Córdoba, Argentina
| | - Carlos A Chesta
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC) y CONICET, Río Cuarto, 5800, Córdoba, Argentina
- Departamento de Química, Facultad de Ciencias Exactas Fisicoquímicas y Naturales, UNRC, Río Cuarto, 5800, Córdoba, Argentina
| | - Pilar López-Larrubia
- Instituto de Investigaciones Biomédicas “Alberto Sols”, CSIC/UAM, Madrid, 28029, España
| | - Rodrigo E Palacios
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC) y CONICET, Río Cuarto, 5800, Córdoba, Argentina
- Departamento de Química, Facultad de Ciencias Exactas Fisicoquímicas y Naturales, UNRC, Río Cuarto, 5800, Córdoba, Argentina
| |
Collapse
|
45
|
Akter S, Saito S, Inai M, Honda N, Hazama H, Nishikawa T, Kaneda Y, Awazu K. Efficient photodynamic therapy against drug-resistant prostate cancer using replication-deficient virus particles and talaporfin sodium. Lasers Med Sci 2020; 36:743-750. [PMID: 32592133 DOI: 10.1007/s10103-020-03076-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/16/2020] [Indexed: 10/24/2022]
Abstract
To enhance the potency of photosensitizer, we developed a novel photosensitizer, Laserphyrin®-HVJ-E (L-HVJ-E), by incorporating talaporfin sodium (Laserphyrin®, Meiji Seika Pharma) into hemagglutinating virus of Japan envelope (HVJ-E). In this study, we examined the optimal Laserphyrin® concentration for preparation of Laserphyrin®-HVJ-E which had photocytotoxicity and maintained direct cytotoxicity derived from HVJ-E. Then, potency of Laserphyrin®-HVJ-E and Laserphyrin® were compared in vitro using castration-resistant prostate cancer cell line (PC-3). A laser diode (L660P120, Thorlabs, USA) with a wavelength of 664 nm was used for light activation of Laserphyrin®, which corresponds to an absorption peak of Laserphyrin® and provides a high therapeutic efficiency. The photocytotoxicity and direct cytotoxicity of Laserphyrin®-HVJ-E prepared using various Laserphyrin® concentrations were evaluated using PC-3 cell in vitro. We categorized the treatment groups as Group 1: 50 μL of D-MEM treatment group, Group 2: HVJ-E treatment group, Group 3: Laserphyrin®-HVJ-E treatment group, and Group 4: Laserphyrin® treatment group. Group 3 was subjected to different concentrations of Laserphyrin®-HVJ-E suspension, and all groups were subjected to different incubation periods (24, 48 h), (30 min, 1 h, or 3 h,) respectively, without and after PDT. Laserphyrin®-HVJ-E prepared using 15 mM Laserphyrin® had high photocytotoxicity and maintained HVJ-E's ability to induce direct cytotoxicity. Therapeutic effect of Laserphyrin®-HVJ-E was substantially equivalent to that of Laserphyrin® alone even at half Laserphyrin® concentration. By utilizing Laserphyrin®-HVJ-E, PDT could be performed with lower Laserphyrin® concentration. In addition, Laserphyrin®-HVJ-E showed higher potency than Laserphyrin® by combining cytotoxicities of HVJ-E and PDT.
Collapse
Affiliation(s)
- Sharmin Akter
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Department of Physiology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Sachiko Saito
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mizuho Inai
- Graduate School of Frontier Biosciences, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Norihiro Honda
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Institute for Academic Initiatives, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hisanao Hazama
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomoyuki Nishikawa
- Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasufumi Kaneda
- Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kunio Awazu
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Graduate School of Frontier Biosciences, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
46
|
Shinoda Y, Aoki K, Shinkai A, Seki K, Takahashi T, Tsuneoka Y, Akimoto J, Fujiwara Y. Synergistic effect of dichloroacetate on talaporfin sodium-based photodynamic therapy on U251 human astrocytoma cells. Photodiagnosis Photodyn Ther 2020; 31:101850. [PMID: 32497773 DOI: 10.1016/j.pdpdt.2020.101850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/12/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Talaporfin sodium (TS) is an authorized photosensitizer for photodynamic therapy (PDT) against some tumors in Japan; however, the drawbacks of the drug include its high cost and side effects. Thus, reducing the dose of TS in each round of TS-PDT against tumors is important for reducing treatment costs and improving patients' quality of life. Dichloroacetate (DCA) is approved for treating lactic acidosis and hereditary mitochondrial diseases, and it is known to enhance reactive oxygen species production and induce apoptosis in cancer cells. Therefore, DCA has the potential to enhance the effects of TS-PDT and permit the use of lower TS doses without reducing the anti-cancer effect. METHODS U251 human astrocytoma cells were simultaneously incubated with TS and DCA using different concentrations, administration schedules, and treatment durations, followed by laser irradiation. Cell viability was determined using the CCK-8 assay. RESULTS The combinational use of DCA and TS resulted in synergistically enhanced TS-PDT effects in U251 cells. The duration of DCA treatment before TS-PDT slightly enhanced the efficacy of TS-PDT. The intensity of laser irradiation was not associated with the synergistic effect of DCA on TS-PDT. In addition, the relationship between the elapsed time after TS/DCA combination treatment and PDT ineffectiveness was identical to that of TS monotherapy. CONCLUSIONS DCA synergistically enhanced the anti-cancer effect of TS-PDT, illustrating its potential for drug repositioning in cancer therapy in combination with PDT.
Collapse
Affiliation(s)
- Yo Shinoda
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| | - Kohei Aoki
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Ayaka Shinkai
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Kumi Seki
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Tsutomu Takahashi
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Yayoi Tsuneoka
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Jiro Akimoto
- Department of Neurosurgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku, Tokyo, 160-0023, Japan
| | - Yasuyuki Fujiwara
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| |
Collapse
|
47
|
Yu HH, Lin CH, Chen YC, Chen HH, Lin YJ, Lin KYA. Dopamine-Modified Zero-Valent Iron Nanoparticles for Dual-Modality Photothermal and Photodynamic Breast Cancer Therapy. ChemMedChem 2020; 15:1645-1651. [PMID: 32338431 DOI: 10.1002/cmdc.202000192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/23/2020] [Indexed: 12/12/2022]
Abstract
Phototherapy has the advantages of minimal invasion, few side effects, and improved accuracy for cancer therapy. The application of a polydopamine (PDA)-modified nano zero-valent iron (nZVI@PDA) as a new synergistic agent in combination with photodynamic/photothermal (PD/PT) therapy to kill cancer cells is discussed here. The nZVI@PDA offered high light-to-heat conversion and ROS generation efficiency under near-infrared (NIR) irradiation (808 nm), thus leading to irreversible damage to nZVI@PDA-treated MCF-7 cells at low concentration, without inducing apoptosis in normal cells. Irradiation of nZVI@PDA using an NIR laser converted the energy of the photons to heat and ROS. Our results showed that modification of the PDA on the surface of nZVI can improve the biocompatibility of the nZVI@PDA. This work integrated the PD and PT effects into a single nanodevice to afford a highly efficient cancer treatment. Meanwhile, nZVI@PDA, which combines the advantages of PDA and nZVI, displayed excellent biocompatibility and tumoricidal ability, thus suggesting its huge potential for future clinical research in cancer therapy.
Collapse
Affiliation(s)
- Hsin Her Yu
- Department of Biotechnology, National Formosa University, No. 64, Wenhua Rd., Huwei Township, Yunlin County, 632, Taiwan
| | - Chia-Hua Lin
- Department of Biotechnology, National Formosa University, No. 64, Wenhua Rd., Huwei Township, Yunlin County, 632, Taiwan
| | - Yi-Chun Chen
- Department of Biotechnology, National Formosa University, No. 64, Wenhua Rd., Huwei Township, Yunlin County, 632, Taiwan
| | - Hung-Hsiang Chen
- Department of Biotechnology, National Formosa University, No. 64, Wenhua Rd., Huwei Township, Yunlin County, 632, Taiwan
| | - Yu-Jing Lin
- Department of Biotechnology, National Formosa University, No. 64, Wenhua Rd., Huwei Township, Yunlin County, 632, Taiwan
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, No. 145, Xingda Rd. South Dist., Taichung City, 402, Taiwan
| |
Collapse
|
48
|
Application of photodynamic therapy in complex treatment of purulent diseases of the hand. BIOMEDICAL PHOTONICS 2020. [DOI: 10.24931/2413-9432-2020-9-1-13-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
49
|
Interaction Between Near-Infrared Radiation and Temozolomide in a Glioblastoma Multiform Cell Line: A Treatment Strategy? Cell Mol Neurobiol 2020; 41:91-104. [PMID: 32236902 DOI: 10.1007/s10571-020-00835-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023]
Abstract
Photodynamic therapy (PDT) is a potential therapeutic modality against cancer, resulting from the interaction of a photosensitizer (PS) and radiation that generates damage to tumor cells. The use of near-infrared radiation (IR-A) is relevant because presents recognized biological effects, such as antioxidant, neuroprotective and antitumor effects. Glioblastoma is the most aggressive central nervous system (CNS) neoplasm with high proliferation and tissue invasion capacity and is resistant to radio and chemotherapy. Here, we evaluated in vitro the possible interaction of temozolomide (TMZ) with IR-A in a glioblastoma cell line (C6) and in a human keratinocyte cell line (HaCat) how non-tumor cell model, in an attempt to search for a new treatment strategy. The effects of TMZ, IR-A and the interaction between TMZ and IR-A was evaluated by viability exclusion with trypan blue. To perform the interaction experiments, we have chosen 10 μM TMZ and 4.5 J/cm2 of IR-A. From this, we evaluated cytotoxicity, cell proliferation, intracellular reactive oxygen species levels (ROS), as well as the process of cell migration and the P-gp and MRP-1 activity. Cell death mainly due to apoptosis, followed by necrosis, decreased cell proliferation, increased ROS levels, decreased cell migration and decreased P-gp and MRP1 activity were observed only when there was interaction between TMZ and IR-A in the C6 cell line. The interaction between TMZ and IR-A was not able to affect cell proliferation in the HaCat non-tumor cell line. Our results suggest that this interaction could be a promising approach and that in the future may serve as an antitumor strategy for PDT application.
Collapse
|
50
|
Nath S, Pigula M, Khan AP, Hanna W, Ruhi MK, Dehkordy FM, Pushpavanam K, Rege K, Moore K, Tsujita Y, Conrad C, Inci F, del Carmen MG, Franco W, Celli JP, Demirci U, Hasan T, Huang HC, Rizvi I. Flow-induced Shear Stress Confers Resistance to Carboplatin in an Adherent Three-Dimensional Model for Ovarian Cancer: A Role for EGFR-Targeted Photoimmunotherapy Informed by Physical Stress. J Clin Med 2020; 9:jcm9040924. [PMID: 32231055 PMCID: PMC7230263 DOI: 10.3390/jcm9040924] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023] Open
Abstract
A key reason for the persistently grim statistics associated with metastatic ovarian cancer is resistance to conventional agents, including platinum-based chemotherapies. A major source of treatment failure is the high degree of genetic and molecular heterogeneity, which results from significant underlying genomic instability, as well as stromal and physical cues in the microenvironment. Ovarian cancer commonly disseminates via transcoelomic routes to distant sites, which is associated with the frequent production of malignant ascites, as well as the poorest prognosis. In addition to providing a cell and protein-rich environment for cancer growth and progression, ascitic fluid also confers physical stress on tumors. An understudied area in ovarian cancer research is the impact of fluid shear stress on treatment failure. Here, we investigate the effect of fluid shear stress on response to platinum-based chemotherapy and the modulation of molecular pathways associated with aggressive disease in a perfusion model for adherent 3D ovarian cancer nodules. Resistance to carboplatin is observed under flow with a concomitant increase in the expression and activation of the epidermal growth factor receptor (EGFR) as well as downstream signaling members mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK) and extracellular signal-regulated kinase (ERK). The uptake of platinum by the 3D ovarian cancer nodules was significantly higher in flow cultures compared to static cultures. A downregulation of phospho-focal adhesion kinase (p-FAK), vinculin, and phospho-paxillin was observed following carboplatin treatment in both flow and static cultures. Interestingly, low-dose anti-EGFR photoimmunotherapy (PIT), a targeted photochemical modality, was found to be equally effective in ovarian tumors grown under flow and static conditions. These findings highlight the need to further develop PIT-based combinations that target the EGFR, and sensitize ovarian cancers to chemotherapy in the context of flow-induced shear stress.
Collapse
Affiliation(s)
- Shubhankar Nath
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.N.); (M.P.); (A.P.K.); (M.K.R.); (F.M.D.); (K.M.); (Y.T.); (W.F.); (T.H.)
| | - Michael Pigula
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.N.); (M.P.); (A.P.K.); (M.K.R.); (F.M.D.); (K.M.); (Y.T.); (W.F.); (T.H.)
| | - Amjad P. Khan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.N.); (M.P.); (A.P.K.); (M.K.R.); (F.M.D.); (K.M.); (Y.T.); (W.F.); (T.H.)
| | - William Hanna
- Department of Physics, College of Science and Mathematics, University of Massachusetts at Boston, Boston, MA 02125, USA; (W.H.); (J.P.C.)
| | - Mustafa Kemal Ruhi
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.N.); (M.P.); (A.P.K.); (M.K.R.); (F.M.D.); (K.M.); (Y.T.); (W.F.); (T.H.)
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC 27599, USA
| | - Farzaneh Mahmoodpoor Dehkordy
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.N.); (M.P.); (A.P.K.); (M.K.R.); (F.M.D.); (K.M.); (Y.T.); (W.F.); (T.H.)
| | - Karthik Pushpavanam
- School for Engineering of Matter, Transport and Energy, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85287, USA; (K.P.); (K.R.)
| | - Kaushal Rege
- School for Engineering of Matter, Transport and Energy, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85287, USA; (K.P.); (K.R.)
| | - Kaitlin Moore
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.N.); (M.P.); (A.P.K.); (M.K.R.); (F.M.D.); (K.M.); (Y.T.); (W.F.); (T.H.)
| | - Yujiro Tsujita
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.N.); (M.P.); (A.P.K.); (M.K.R.); (F.M.D.); (K.M.); (Y.T.); (W.F.); (T.H.)
- Department of Urology, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Christina Conrad
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (C.C.); (H.-C.H.)
| | - Fatih Inci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology School of Medicine Stanford University, Palo Alto, CA 94304, USA; (F.I.); (U.D.)
| | - Marcela G. del Carmen
- Division of Gynecologic Oncology, Vincent Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Walfre Franco
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.N.); (M.P.); (A.P.K.); (M.K.R.); (F.M.D.); (K.M.); (Y.T.); (W.F.); (T.H.)
| | - Jonathan P. Celli
- Department of Physics, College of Science and Mathematics, University of Massachusetts at Boston, Boston, MA 02125, USA; (W.H.); (J.P.C.)
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology School of Medicine Stanford University, Palo Alto, CA 94304, USA; (F.I.); (U.D.)
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.N.); (M.P.); (A.P.K.); (M.K.R.); (F.M.D.); (K.M.); (Y.T.); (W.F.); (T.H.)
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (C.C.); (H.-C.H.)
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Imran Rizvi
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.N.); (M.P.); (A.P.K.); (M.K.R.); (F.M.D.); (K.M.); (Y.T.); (W.F.); (T.H.)
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Correspondence:
| |
Collapse
|