1
|
Kumar A, Estes Bright LM, Garren MRS, Manuel J, Shome A, Handa H. Chemical Modification of Tiopronin for Dual Management of Cystinuria and Associated Bacterial Infections. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43332-43344. [PMID: 37671841 PMCID: PMC10520916 DOI: 10.1021/acsami.3c07160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023]
Abstract
Cystinuria is an inherited autosomal recessive disease of the kidneys of recurring nature that contributes to frequent urinary tract infections due to bacterial growth and biofilm formation surrounding the stone microenvironment. In the past, commonly used strategies for managing cystinuria involved the use of (a) cystine crystal growth inhibitors such as l-cystine dimethyl ester and lipoic acid, and (b) thiol-based small molecules such as N-(2-mercaptopropionyl) glycine, commonly known as tiopronin, that reduce the formation of cystine crystals by reacting with excess cystine and generating more soluble disulfide compounds. However, there is a dearth of simplistic chemical approaches that have focused on the dual treatment of cystinuria and the associated microbial infections. This work strategically exploited a single chemical approach to develop a nitric oxide (NO)-releasing therapeutic compound, S-nitroso-2-mercaptopropionyl glycine (tiopronin-NO), for the dual management of cystine stone formation and the related bacterial infections. The results successfully demonstrated that (a) the antibacterial activity of NO rendered tiopronin-NO effective against the stone microenvironment inhabitants, Escherichia coli and Pseudomonas aeruginosa, and (b) tiopronin-NO retained the ability to undergo disulfide exchange with cystine while being reported to be safe against canine kidney and mouse fibroblast cells. Thus, the synthesis of such a facile molecule aimed at the dual management of cystinuria and related infections is unprecedented in the literature.
Collapse
Affiliation(s)
- Anil Kumar
- School
of Chemical Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Lori M. Estes Bright
- School
of Chemical Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Mark Richard Stephen Garren
- School
of Chemical Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - James Manuel
- School
of Chemical Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Arpita Shome
- School
of Chemical Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Hitesh Handa
- School
of Chemical Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
- Pharmaceutical
and Biomedical Sciences Department, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
2
|
Asif H, Barnett SD, Buxton ILO. Title: β3 Adrenergic Receptor Signaling in the Human Myometrium. Reprod Sci 2022; 30:124-134. [PMID: 35380411 PMCID: PMC8980516 DOI: 10.1007/s43032-022-00917-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/11/2022] [Indexed: 01/06/2023]
Abstract
Preterm labor leading to preterm birth is the leading cause of infant morbidity and mortality. Although β2 adrenergic agonists fail to provide adequate tocolysis, the expression of the β3 adrenergic receptor in myometrium and its unique signaling suggest a role for β3 agonist in the management of preterm labor. Western blot analysis showed that the β3 adrenergic receptor expression increased in human pregnancy myometrium compared to nonpregnant tissues (p < 0.0001). There was no difference in β3 adrenergic receptor expression throughout pregnancy (p > 0.05). The addition of the β3 agonist mirabegron in the tissue bath relaxed oxytocin contracted myometrium with an EC50 of 41.5 µM. Relaxation was partially blocked by the addition of the eNOS blocker Nω-nitro-L-arginine, or the large conductance potassium channel blocker paxilline. Combination of Nω-nitro-L-arginine and paxilline prevented mirabegron-mediated relaxation. Imaging revealed that the β3 adrenergic receptors are expressed by both myocyte and microvascular endothelial cells isolated from human myometrium. Nitric oxide production measured by 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate revealed that mirabegron stimulated nitric oxide production in myometrial endothelial cells. These data suggest that both endothelial and smooth muscle cells contribute to relaxation through disparate signaling pathways. Repurposing of approved medications tested in human myometrium as uterine tocolytics can advance prevention of preterm birth. These data argue that further examination of β3 adrenergic receptor signaling in myometrium may reveal mirabegron as a useful tocolytic in combination tocolysis regimens.
Collapse
Affiliation(s)
- Hazik Asif
- School of Medicine, Department of Pharmacology, Myometrial Function Laboratory, University of Nevada, Reno, NV 89557-0318 USA
| | - Scott D. Barnett
- School of Medicine, Department of Pharmacology, Myometrial Function Laboratory, University of Nevada, Reno, NV 89557-0318 USA
| | - Iain L. O. Buxton
- School of Medicine, Department of Pharmacology, Myometrial Function Laboratory, University of Nevada, Reno, NV 89557-0318 USA
| |
Collapse
|
3
|
Patel JS, Norambuena J, Al-Tameemi H, Ahn YM, Perryman AL, Wang X, Daher SS, Occi J, Russo R, Park S, Zimmerman M, Ho HP, Perlin DS, Dartois V, Ekins S, Kumar P, Connell N, Boyd JM, Freundlich JS. Bayesian Modeling and Intrabacterial Drug Metabolism Applied to Drug-Resistant Staphylococcus aureus. ACS Infect Dis 2021; 7:2508-2521. [PMID: 34342426 DOI: 10.1021/acsinfecdis.1c00265] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We present the application of Bayesian modeling to identify chemical tools and/or drug discovery entities pertinent to drug-resistant Staphylococcus aureus infections. The quinoline JSF-3151 was predicted by modeling and then empirically demonstrated to be active against in vitro cultured clinical methicillin- and vancomycin-resistant strains while also exhibiting efficacy in a mouse peritonitis model of methicillin-resistant S. aureus infection. We highlight the utility of an intrabacterial drug metabolism (IBDM) approach to probe the mechanism by which JSF-3151 is transformed within the bacteria. We also identify and then validate two mechanisms of resistance in S. aureus: one mechanism involves increased expression of a lipocalin protein, and the other arises from the loss of function of an azoreductase. The computational and experimental approaches, discovery of an antibacterial agent, and elucidated resistance mechanisms collectively hold promise to advance our understanding of therapeutic regimens for drug-resistant S. aureus.
Collapse
Affiliation(s)
- Jimmy S. Patel
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University − New Jersey Medical School, 185 South Orange Ave, Newark, New Jersey 07103, United States
| | - Javiera Norambuena
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| | - Hassan Al-Tameemi
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| | - Yong-Mo Ahn
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University − New Jersey Medical School, 185 South Orange Ave, Newark, New Jersey 07103, United States
| | - Alexander L. Perryman
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University − New Jersey Medical School, 185 South Orange Ave, Newark, New Jersey 07103, United States
| | - Xin Wang
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University − New Jersey Medical School, 185 South Orange Ave, Newark, New Jersey 07103, United States
| | - Samer S. Daher
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University − New Jersey Medical School, 185 South Orange Ave, Newark, New Jersey 07103, United States
| | - James Occi
- Department of Medicine, Center for Emerging and Re-emerging Pathogens, Rutgers University − New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Riccardo Russo
- Department of Medicine, Center for Emerging and Re-emerging Pathogens, Rutgers University − New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Steven Park
- Public Health Research Institute, Rutgers University − New Jersey Medical School, 225 Warren St, Newark, New Jersey 07103, United States
| | - Matthew Zimmerman
- Public Health Research Institute, Rutgers University − New Jersey Medical School, 225 Warren St, Newark, New Jersey 07103, United States
| | - Hsin-Pin Ho
- Public Health Research Institute, Rutgers University − New Jersey Medical School, 225 Warren St, Newark, New Jersey 07103, United States
| | - David S. Perlin
- Public Health Research Institute, Rutgers University − New Jersey Medical School, 225 Warren St, Newark, New Jersey 07103, United States
| | - Véronique Dartois
- Public Health Research Institute, Rutgers University − New Jersey Medical School, 225 Warren St, Newark, New Jersey 07103, United States
| | - Sean Ekins
- Collaborations in Chemistry, 5616 Hilltop Needmore Road, Fuquay-Varina, North Carolina 27526, United States
| | - Pradeep Kumar
- Department of Medicine, Center for Emerging and Re-emerging Pathogens, Rutgers University − New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Nancy Connell
- Department of Medicine, Center for Emerging and Re-emerging Pathogens, Rutgers University − New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Jeffrey M. Boyd
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| | - Joel S. Freundlich
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University − New Jersey Medical School, 185 South Orange Ave, Newark, New Jersey 07103, United States
- Department of Medicine, Center for Emerging and Re-emerging Pathogens, Rutgers University − New Jersey Medical School, Newark, New Jersey 07103, United States
| |
Collapse
|
4
|
Liao X, Forghani F, Liu D, Ding T. Cumulative damage by nonthermal plasma (NTP) exceeds the defense barrier of multiple antibiotic-resistant Staphylococcus aureus: a key to achieve complete inactivation. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyaa041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Objectives
The aim of this study was to provide a comprehensive understanding of the nonthermal plasma (NTP)-induced inactivated behaviors on a multiple antibiotic–resistant (MAR) Staphylococcus aureus (S. aureus).
Materials and Methods
A dielectric barrier discharge (DBD) NTP system was employed for the inactivation of a MAR S. aureus under various applied powers of 35, 45, and 55 W, and gas distances of 4, 6, and 8 mm. The inactivation kinetics of S. aureus were estimated with linear and nonlinear predictive models. In addition, degradation of carotenoid pigment, peroxidation of fatty acids, oxidation of nucleic acids and proteins, and alteration in gene expression were analyzed after NTP treatment.
Results and Discussion
The computationally simulated results indicated that the densities of various reactive species increased with enhanced applied powers and decreased discharge distances. These species were further transformed into reactive oxidative and nitrogen species in the gas–liquid interphase and liquid phase. The oxidative and nitrosative stress of NTP resulted in severe damage to cellular components and the morphological structure of S. aureus. On the other hand, the plasma reactive species could also induce the sublethal injury of S. aureus through upregulating the general stress response, antioxidative and antinitrosative defensive systems. Once the cumulative damages overrode the stress tolerance of S. aureus, the completed cell death was finally achieved by NTP.
Conclusions
This work infers the possible risk of inducing the repair and resistant capacity of pathogens when the applied NTP parameters are inappropriate, which helps the optimization of NTP process to achieve sufficient inactivation.
Collapse
|
5
|
Roy HS, Singh R, Ghosh D. Recent advances in nanotherapeutic strategies that target nitric oxide pathway for preventing cartilage degeneration. Nitric Oxide 2021; 109-110:1-11. [PMID: 33571602 DOI: 10.1016/j.niox.2021.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/30/2021] [Accepted: 01/30/2021] [Indexed: 12/14/2022]
Abstract
Nitric oxide (NO) is an important inflammatory mediator involved in the development and progression of osteoarthritis (OA). Increased production of NO in the affected joints promote cartilage damage. As NO synthesis is catalysed by the inducible NO synthase (iNOS) enzyme, iNOS inhibition serves as an attractive therapeutic target to prevent NO release. Despite a number of direct and indirect iNOS inhibitor molecules demonstrating chondro-protective effect, none have reached the clinic. Its limited bioavailability and adverse side effects served as a deterrent for pursuing clinical trials in OA patients. With the advent of nanotechnology, interest in targeting NO for preventing cartilage degeneration has revived. In this article, we discuss the limitations of the existing molecules and provide an insight on recent nanotechnology-based strategies that have been explored for the diagnosis and inhibition of NO in OA. These approaches hold promise in reviving the hitherto under explored potential of targeting NO to address OA.
Collapse
Affiliation(s)
- Himadri Shekhar Roy
- Chemical Biology Unit, Institute of Nanoscience and Technology (INST), Sector-81, Knowledge City, Mohali, Punjab 140306, India
| | - Rupali Singh
- Chemical Biology Unit, Institute of Nanoscience and Technology (INST), Sector-81, Knowledge City, Mohali, Punjab 140306, India
| | - Deepa Ghosh
- Chemical Biology Unit, Institute of Nanoscience and Technology (INST), Sector-81, Knowledge City, Mohali, Punjab 140306, India.
| |
Collapse
|
6
|
Rhizobia: highways to NO. Biochem Soc Trans 2021; 49:495-505. [PMID: 33544133 DOI: 10.1042/bst20200989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/02/2023]
Abstract
The interaction between rhizobia and their legume host plants conduces to the formation of specialized root organs called nodules where rhizobia differentiate into bacteroids which fix atmospheric nitrogen to the benefit of the plant. This beneficial symbiosis is of importance in the context of sustainable agriculture as legumes do not require the addition of nitrogen fertilizer to grow. Interestingly, nitric oxide (NO) has been detected at various steps of the rhizobium-legume symbiosis where it has been shown to play multifaceted roles. Both bacterial and plant partners are involved in NO synthesis in nodules. To better understand the role of NO, and in particular the role of bacterial NO, at all steps of rhizobia-legumes interaction, the enzymatic sources of NO have to be elucidated. In this review, we discuss different enzymatic reactions by which rhizobia may potentially produce NO. We argue that there is most probably no NO synthase activity in rhizobia, and that instead the NO2- reductase nirK, which is part of the denitrification pathway, is the main bacterial source of NO. The nitrate assimilation pathway might contribute to NO production but only when denitrification is active. The different approaches to measure NO in rhizobia are also addressed.
Collapse
|
7
|
Wang W, Zhang J, Ai L, Wu D, Li B, Zhang L, Zhao L. Cyclic Nucleotide-Gated Ion Channel 6 Mediates Thermotolerance in Arabidopsis Seedlings by Regulating Hydrogen Peroxide Production via Cytosolic Calcium Ions. FRONTIERS IN PLANT SCIENCE 2021; 12:708672. [PMID: 34335670 PMCID: PMC8317691 DOI: 10.3389/fpls.2021.708672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/22/2021] [Indexed: 05/18/2023]
Abstract
We previously reported the involvement of cyclic nucleotide-gated ion channel 6 (CNGC6) and hydrogen peroxide (H2O2) in plant responses to heat shock (HS). To demonstrate their relationship with plant thermotolerance, we assessed the effect of HS on several groups of Arabidopsis (Arabidopsis thaliana) seedlings: wild-type, cngc6 mutant, and its complementation line. Under exposure to HS, the level of H2O2 was lower in the cngc6 mutant seedlings than in the wild-type (WT) seedlings but obviously increased in the complementation line. The treatment of Arabidopsis seeds with calcium ions (Ca2+) increased the H2O2 levels in the seedlings under HS treatment, whereas treatment with a Ca2+ chelator (EGTA) inhibited it, indicating that CNGC6 may stimulate the accumulation of H2O2 in a manner dependent on an increase in cytosolic Ca2+ ([Ca2+]cyt). This point was verified by phenotypic observations and thermotolerance testing with transgenic plants overexpressing AtRbohB and AtRbohD (two genes involved in HS-responsive H2O2 production), respectively, in a cngc6 background. Real-time reverse transcription-polymerase chain reactions and Western blotting suggested that CNGC6 enhanced the gene transcription of HS factors (HSFs) and the accumulation of HS proteins (HSPs) via H2O2. These upon results indicate that H2O2 acts downstream of CNGC6 in the HS signaling pathway, increasing our understanding of the initiation of plants responses to high temperatures.
Collapse
Affiliation(s)
- Wenxu Wang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jiaojiao Zhang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Lijuan Ai
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Dan Wu
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Bing Li
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Lingang Zhang
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Liqun Zhao
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- *Correspondence: Liqun Zhao, , orcid.org/0000-0001-6718-8130
| |
Collapse
|
8
|
Orsini SS, James KL, Reyes DJ, Couto‐Rodriguez RL, Gulko MK, Witte A, Carroll RK, Rice KC. Bacterial-like nitric oxide synthase in the haloalkaliphilic archaeon Natronomonas pharaonis. Microbiologyopen 2020; 9:e1124. [PMID: 33306280 PMCID: PMC7658456 DOI: 10.1002/mbo3.1124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022] Open
Abstract
Bacterial nitric oxide (NO) synthases (bNOS) play diverse and important roles in microbial physiology, stress resistance, and virulence. Although bacterial and mammalian NOS enzymes have been well-characterized, comparatively little is known about the prevalence and function of NOS enzymes in Archaea. Analysis of archaeal genomes revealed that highly conserved bNOS homologs were restricted to members of the Halobacteria. Of these, Natronomonas pharaonis NOS (npNOS) was chosen for further characterization. NO production was confirmed in heterologously expressed His-tagged npNOS by coupling nitrite production from N-hydroxy-L-arginine in an H2O2-supported reaction. Additionally, the nos gene was successfully targeted and disrupted to create a Nmn. pharaonis nos mutant by adapting an established Natrialba magadii transformation protocol. Genome re-sequencing of this mutant revealed an additional frameshift in a putative cation-acetate symporter gene, which could contribute to altered acetate metabolism in the nos mutant. Inactivation of Nmn. pharaonis nos was also associated with several phenotypes congruent with bacterial nos mutants (altered growth, increased oxygen consumption, increased pigment, increased UV susceptibility), suggesting that NOS function may be conserved between bacteria and archaea. These studies are the first to describe genetic inactivation and characterization of a Nmn. pharaonis gene and provides enhanced tools for probing its physiology.
Collapse
Affiliation(s)
- Silvia S. Orsini
- Department of Microbiology and Cell ScienceIFASUniversity of FloridaGainesvilleFLUSA
- Present address:
Pharma ServicesViral Vector ServicesThermo Fisher ScientificAlachuaFLUSA
| | - Kimberly L. James
- Department of Microbiology and Cell ScienceIFASUniversity of FloridaGainesvilleFLUSA
| | - Destiny J. Reyes
- Department of Microbiology and Cell ScienceIFASUniversity of FloridaGainesvilleFLUSA
- Present address:
Pharma ServicesViral Vector ServicesThermo Fisher ScientificAlachuaFLUSA
| | | | - Miriam K. Gulko
- Department OesterheltMax Planck Institut für BiochemieMartinsriedGermany
| | - Angela Witte
- Department of Microbiology, Immunobiology and GeneticsMPL LaboratoriesUniversity of ViennaViennaAustria
| | | | - Kelly C. Rice
- Department of Microbiology and Cell ScienceIFASUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
9
|
Peng X, Zhang X, Li B, Zhao L. Cyclic nucleotide-gated ion channel 6 mediates thermotolerance in Arabidopsis seedlings by regulating nitric oxide production via cytosolic calcium ions. BMC PLANT BIOLOGY 2019; 19:368. [PMID: 31429706 PMCID: PMC6702746 DOI: 10.1186/s12870-019-1974-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/13/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND We previously reported the involvement of nitric oxide (NO) and cyclic nucleotide-gated ion channel 6 (CNGC6) in the responses of plants to heat shock (HS) exposure. To elucidate their relationship with heat tolerance in Arabidopsis thaliana, we examined the effects of HS on several groups of seedlings: wild type, cngc6, and cngc6 complementation and overexpression lines. RESULTS After HS exposure, the level of NO was lower in cngc6 seedlings than in wild-type seedlings but significantly elevated in the transgenic lines depending on CNGC6 expression level. The treatment of seeds with calcium ions (Ca2+) enhanced the NO level in Arabidopsis seedlings under HS conditions, whereas treatment with EGTA (a Ca2+ chelator) reduced it, implicating that CNGC6 stimulates the accumulation of NO depending on an increase in cytosolic Ca2+ ([Ca2+]cyt). This idea was proved by phenotypic observations and thermotolerance testing of transgenic plants overexpressing NIA2 and NOA1, respectively, in a cngc6 background. Western blotting indicated that CNGC6 stimulated the accumulation of HS proteins via NO. CONCLUSION These data indicate that CNGC6 acts upstream of NO in the HS pathway, which improves our insufficient knowledge of the initiation of plant responses to high temerature.
Collapse
Affiliation(s)
- Xuan Peng
- College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaona Zhang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Bing Li
- College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Liqun Zhao
- College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
10
|
Brun P, Bernabè G, Marchiori C, Scarpa M, Zuin M, Cavazzana R, Zaniol B, Martines E. Antibacterial efficacy and mechanisms of action of low power atmospheric pressure cold plasma: membrane permeability, biofilm penetration and antimicrobial sensitization. J Appl Microbiol 2018; 125:398-408. [PMID: 29655267 DOI: 10.1111/jam.13780] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/15/2018] [Accepted: 04/04/2018] [Indexed: 12/22/2022]
Abstract
AIM The objective of this study was to determine the efficacy and mechanisms of inactivation of two clinically relevant ESKAPE bacteria namely Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus by atmospheric pressure cold plasma. METHODS AND RESULTS Plasma was generated between two brass grids by applying a radiofrequency electric field to a flow of helium. Intracellular generation of reactive species, alterations in cell membrane, and inactivation of bacteria in planktonic or biofilm growth were studied. Results were compared with commonly used antimicrobial drugs. Plasma exposure generated reactive oxygen and nitrogen species in bacteria, disrupted membrane integrity and reduced bacterial load. The efficacy in bacterial inactivation was comparable to antibiotics but exhibited a quicker killing rate. The antibacterial effect of plasma synergistically increased in association with antibiotics and did not diminish over repeated exposures, suggesting no development in bacterial resistance. CONCLUSIONS Through generation of reactive species, cold plasma altered cell membrane and effectively inactivated clinically important bacteria, both in suspension and in biofilms. SIGNIFICANCE AND IMPACT OF THE STUDY As cold plasma damages different targets in bacterial cells, it emerges as an effective strategy used alone or in combination with antimicrobial drugs to control microbial infections and prevent the selection of resistant bacterial strains.
Collapse
Affiliation(s)
- P Brun
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - G Bernabè
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - C Marchiori
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - M Scarpa
- Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - M Zuin
- Consorzio RFX, Padova, Italy
| | | | | | | |
Collapse
|