1
|
He X, Chen X, Wang H, Du G, Sun X. Recent advances in respiratory immunization: A focus on COVID-19 vaccines. J Control Release 2023; 355:655-674. [PMID: 36787821 PMCID: PMC9937028 DOI: 10.1016/j.jconrel.2023.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023]
Abstract
The development of vaccines has always been an essential task worldwide since vaccines are regarded as powerful weapons in protecting the global population. Although the vast majority of currently authorized human vaccinations are administered intramuscularly or subcutaneously, exploring novel routes of immunization has been a prominent area of study in recent years. This is particularly relevant in the face of pandemic diseases, such as COVID-19, where respiratory immunization offers distinct advantages, such as inducing systemic and mucosal responses to prevent viral infections in both the upper and lower respiratory tracts and also leading to higher patient compliance. However, the development of respiratory vaccines confronts challenges due to the physiological barriers of the respiratory tract, with most of these vaccines still in the research and development stage. In this review, we detail the structure of the respiratory tract and the mechanisms of mucosal immunity, as well as the obstacles to respiratory vaccination. We also examine the considerations necessary in constructing a COVID-19 respiratory vaccine, including the dosage form of the vaccines, potential excipients and mucosal adjuvants, and delivery systems and devices for respiratory vaccines. Finally, we present a comprehensive overview of the COVID-19 respiratory vaccines currently under clinical investigation. We hope this review can provide valuable insights and inspiration for the future development of respiratory vaccinations.
Collapse
Affiliation(s)
- Xiyue He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaoyan Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hairui Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guangsheng Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Kawasaki T, Ikegawa M, Yunoki K, Otani H, Ori D, Ishii KJ, Kuroda E, Takamura S, Kitabatake M, Ito T, Isotani A, Kawai T. Alveolar macrophages instruct CD8 + T cell expansion by antigen cross-presentation in lung. Cell Rep 2022; 41:111828. [PMID: 36516765 DOI: 10.1016/j.celrep.2022.111828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 10/31/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Lung CD8+ memory T cells play central roles in protective immunity to respiratory viruses, such as influenza A virus (IAV). Here, we find that alveolar macrophages (AMs) function as antigen-presenting cells that support the expansion of lung CD8+ memory T cells. Intranasal antigen administration to mice subcutaneously immunized with antigen results in a rapid expansion of antigen-specific CD8+ T cells in the lung, which is dependent on antigen cross-presentation by AMs. AMs highly express interleukin-18 (IL-18), which mediates subsequent formation of CD103+CD8+ resident memory T (TRM) cells in the lung. In a mouse model of IAV infection, AMs are required for expansion of virus-specific CD8+ T cells and CD103+CD8+ TRM cells and inhibiting virus replication in the lungs during secondary infection. These results suggest that AMs instruct a rapid expansion of antigen-specific CD8+ T cells in lung, which protect the host from respiratory virus infection.
Collapse
Affiliation(s)
- Takumi Kawasaki
- Laboratory of Molecular Immunobiology, Nara Institute of Science and Technology (NAIST), Ikoma 630-0192, Japan.
| | - Moe Ikegawa
- Laboratory of Molecular Immunobiology, Nara Institute of Science and Technology (NAIST), Ikoma 630-0192, Japan
| | - Kosuke Yunoki
- Laboratory of Molecular Immunobiology, Nara Institute of Science and Technology (NAIST), Ikoma 630-0192, Japan
| | - Hifumi Otani
- Laboratory of Molecular Immunobiology, Nara Institute of Science and Technology (NAIST), Ikoma 630-0192, Japan
| | - Daisuke Ori
- Laboratory of Molecular Immunobiology, Nara Institute of Science and Technology (NAIST), Ikoma 630-0192, Japan
| | - Ken J Ishii
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Etsushi Kuroda
- Department of Immunology, Hyogo College of Medicine, Nishinomiya 663-8501, Japan
| | - Shiki Takamura
- Department of Immunology, Faculty of Medicine, Kindai University, Osaka-Sayama 589-8511, Japan; Laboratory for Immunological Memory, Research Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, Yokohama 230-0045, Japan
| | - Masahiro Kitabatake
- Department of Immunology, Nara Medical University, Kashihara 634-8521, Japan
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Kashihara 634-8521, Japan
| | - Ayako Isotani
- Organ Developmental Engineering, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma 630-0192, Japan
| | - Taro Kawai
- Laboratory of Molecular Immunobiology, Nara Institute of Science and Technology (NAIST), Ikoma 630-0192, Japan.
| |
Collapse
|
3
|
Marasini N, Kaminskas LM. Subunit-based mucosal vaccine delivery systems for pulmonary delivery - Are they feasible? Drug Dev Ind Pharm 2019; 45:882-894. [PMID: 30767591 DOI: 10.1080/03639045.2019.1583758] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pulmonary infections are the most common cause of death globally. However, the development of mucosal vaccines that provide protective immunity against respiratory pathogens are limited. In contrast to needle-based vaccines, efficient vaccines that are delivered via noninvasive mucosal routes (such as via the lungs and nasal passage) produce both antigen-specific local mucosal IgA and systemic IgG protective antibodies. One major challenge in the development of pulmonary vaccines using subunit antigens however, is the production of optimal immune responses. Subunit vaccines therefore rely upon use of adjuvants to potentiate immune responses. While the lack of suitable mucosal adjuvants has hindered progress in the development of efficient pulmonary vaccines, particle-based systems can provide an alternative approach for the safe and efficient delivery of subunit vaccines. In particular, the rational engineering of particulate vaccines with optimal physicochemical characteristics can produce long-term protective immunity. These protect antigens against enzymatic degradation, target antigen presenting cells and initiate optimal humoral and cellular immunity. This review will discuss our current understanding of pulmonary immunology and developments in fabricating particle characteristics that may evoke potent and durable pulmonary immunity.
Collapse
Affiliation(s)
- Nirmal Marasini
- a School of Biomedical Sciences, Faculty of medicine, The University of Queensland , St Lucia , Australia
| | - Lisa M Kaminskas
- a School of Biomedical Sciences, Faculty of medicine, The University of Queensland , St Lucia , Australia
| |
Collapse
|