1
|
Peña-Gómez MJ, Rodríguez-Martín Y, del Rio Oliva M, Wijesekara Hanthi Y, Berrada S, Freire R, Masson JY, Reyes JC, Costanzo V, Rosado IV. HMCES corrupts replication fork stability during base excision repair in homologous recombination-deficient cells. SCIENCE ADVANCES 2025; 11:eads3227. [PMID: 40138423 PMCID: PMC11939059 DOI: 10.1126/sciadv.ads3227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/21/2025] [Indexed: 03/29/2025]
Abstract
Apurinic/apyrimidinic (AP) sites and single-strand breaks arising from base excision repair (BER) during the misincorporation of damaged nucleobases may hinder replication fork stability in homologous recombination-deficient (HRD) cells. At templated AP sites, cross-links between the DNA and 5-hydroxymethylcytosine binding, embryonic stem cell-specific (HMCES) regulate replication fork speed, avoiding cytotoxic double-strand breaks. While the role of HMCES at the template DNA strand is well studied, its effects on nascent DNA are not. We provide evidence that HMCES-DNA-protein cross-links (DPCs) are detrimental to the BER-mediated removal of 5-hydroxymethyl-2'-deoxycytidine (5hmdC)-derived 5-hydroxymethyl-2'-deoxyuridine from replication forks. HRD cells have heightened HMCES-DPCs, which increase further upon 5hmdC exposure, suggesting that HMCES binds both spontaneous and 5hmdC-induced AP sites. HMCES depletion substantially suppresses 5hmdC-mediated replication fork defects, chromosomal aberrations, and cell death in HRD cells. This reveals that HMCES-DPCs are a source of BER-initiated single-stranded DNA gaps, which indicates that endogenous DPCs contribute to genomic instability in HRD tumors.
Collapse
Affiliation(s)
- María José Peña-Gómez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville 41092, Spain
- Departamento de Genética, Facultad de Biologia, Universidad de Sevilla, Seville 41012, Spain
| | - Yaiza Rodríguez-Martín
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville 41092, Spain
- Departamento de Genética, Facultad de Biologia, Universidad de Sevilla, Seville 41012, Spain
| | - Marta del Rio Oliva
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville 41092, Spain
- Departamento de Genética, Facultad de Biologia, Universidad de Sevilla, Seville 41012, Spain
| | - Yodhara Wijesekara Hanthi
- IFOM, The AIRC Institute of Molecular Oncology, Milan, Italy
- Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | - Sara Berrada
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Investigación Sanitaria de Canarias (IISC), La Laguna, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Campus Ciencias de la Salud, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Jean Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| | - José Carlos Reyes
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville 41092, Spain
| | - Vincenzo Costanzo
- IFOM, The AIRC Institute of Molecular Oncology, Milan, Italy
- Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | - Iván V. Rosado
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville 41092, Spain
- Departamento de Genética, Facultad de Biologia, Universidad de Sevilla, Seville 41012, Spain
| |
Collapse
|
2
|
Rodemoyer B, Kariyawasam G, Subramanian V, Schmidt K. Condensin II interacts with BLM helicase in S phase to maintain genome stability. Commun Biol 2025; 8:492. [PMID: 40133469 PMCID: PMC11937517 DOI: 10.1038/s42003-025-07916-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
Vertebrates possess two condensins, I and II, that are essential for chromosome condensation and segregation. Condensin II has also been implicated in maintaining genome integrity outside of mitosis, though the underlying mechanisms are unclear. Here, we found that condensin II interacts with a short linear motif in the disordered N-terminal tail of the Bloom syndrome helicase BLM, contributing to BLM association with nascent DNA and genome stability. Disrupting the BLM-condensin II interaction reduced replication speed, increased fork stalling and sister-chromatid exchanges, delayed repair of DNA double-strand breaks, and led to micronuclei. In S phase, interactions of SMC2 with other condensin II subunits and with BLM weakened temporarily, suggesting a conformational change followed by phosphorylation-induced disruption of BLM interactions with TOP2A and RPA. Our findings suggest a new way by which BLM contributes to genome integrity and implicates condensin II in interphase functions linked to genome stability.
Collapse
Affiliation(s)
- Brian Rodemoyer
- Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Ave., Tampa, FL, 33620, USA
| | - Ganesha Kariyawasam
- Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Ave., Tampa, FL, 33620, USA
| | - Veena Subramanian
- Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Ave., Tampa, FL, 33620, USA
| | - Kristina Schmidt
- Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Ave., Tampa, FL, 33620, USA.
- Cancer Biology & Evolution Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
3
|
Bonnet C, Dian AL, Leriche M, Uguen P, Vagner S. Protocol to study the direct binding of proteins to RNA:DNA hybrids or RNA-DNA chimeras in living cells using cross-linking immunoprecipitation. STAR Protoc 2024; 5:103292. [PMID: 39264804 PMCID: PMC11422765 DOI: 10.1016/j.xpro.2024.103292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/16/2024] [Accepted: 08/14/2024] [Indexed: 09/14/2024] Open
Abstract
RNA-binding proteins (RBPs) are involved in many biological processes. The direct interaction between protein and RNA can be studied using cross-linking immunoprecipitation (CLIP) techniques in living cells. Here, we present a protocol to characterize the direct binding of proteins to RNA:DNA hybrids or RNA-DNA chimeras in living cells using CLIP. We describe steps for RNA-protein UV-C cross-linking in living cells, isolating RNA-protein complexes, RNA labeling, and extracting nucleic acid. We then detail procedures for nuclease treatment and nucleic acid migration.
Collapse
Affiliation(s)
- Clara Bonnet
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, Orsay, France; Université Paris-Saclay, CNRS UMR 3348, INSERM U1278, Orsay, France; Equipe labellisée Ligue contre le Cancer, Orsay, France
| | - Ana Luisa Dian
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, Orsay, France; Université Paris-Saclay, CNRS UMR 3348, INSERM U1278, Orsay, France; Equipe labellisée Ligue contre le Cancer, Orsay, France
| | - Mélissa Leriche
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, Orsay, France; Université Paris-Saclay, CNRS UMR 3348, INSERM U1278, Orsay, France; Equipe labellisée Ligue contre le Cancer, Orsay, France
| | - Patricia Uguen
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, Orsay, France; Université Paris-Saclay, CNRS UMR 3348, INSERM U1278, Orsay, France; Equipe labellisée Ligue contre le Cancer, Orsay, France.
| | - Stéphan Vagner
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, Orsay, France; Université Paris-Saclay, CNRS UMR 3348, INSERM U1278, Orsay, France; Equipe labellisée Ligue contre le Cancer, Orsay, France.
| |
Collapse
|
4
|
Kochenova OV, D’Alessandro G, Pilger D, Schmid E, Richards SL, Garcia MR, Jhujh SS, Voigt A, Gupta V, Carnie CJ, Wu RA, Gueorguieva N, Stewart GS, Walter JC, Jackson SP. USP37 prevents premature disassembly of stressed replisomes by TRAIP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611025. [PMID: 39282314 PMCID: PMC11398331 DOI: 10.1101/2024.09.03.611025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The E3 ubiquitin ligase TRAIP associates with the replisome and helps this molecular machine deal with replication stress. Thus, TRAIP promotes DNA inter-strand crosslink repair by triggering the disassembly of CDC45-MCM2-7-GINS (CMG) helicases that have converged on these lesions. However, disassembly of single CMGs that have stalled temporarily would be deleterious, suggesting that TRAIP must be carefully regulated. Here, we demonstrate that human cells lacking the de-ubiquitylating enzyme USP37 are hypersensitive to topoisomerase poisons and other replication stress-inducing agents. We further show that TRAIP loss rescues the hypersensitivity of USP37 knockout cells to topoisomerase inhibitors. In Xenopus egg extracts depleted of USP37, TRAIP promotes premature CMG ubiquitylation and disassembly when converging replisomes stall. Finally, guided by AlphaFold-Multimer, we discovered that binding to CDC45 mediates USP37's response to topological stress. In conclusion, we propose that USP37 protects genome stability by preventing TRAIP-dependent CMG unloading when replication stress impedes timely termination.
Collapse
Affiliation(s)
- Olga V. Kochenova
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute; Boston, MA 02115, USA
- Howard Hughes Medical Institute; Boston, MA 02115, USA
| | - Giuseppina D’Alessandro
- Cancer Research UK Cambridge Institute, Li Ka Shing Building, Robinson Way, Cambridge CB2 0RE, UK
| | - Domenic Pilger
- The Gurdon Institute and Department of Biochemistry, University of Cambridge
| | - Ernst Schmid
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute; Boston, MA 02115, USA
| | - Sean L. Richards
- Cancer Research UK Cambridge Institute, Li Ka Shing Building, Robinson Way, Cambridge CB2 0RE, UK
| | - Marcos Rios Garcia
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Satpal S. Jhujh
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Andrea Voigt
- Cancer Research UK Cambridge Institute, Li Ka Shing Building, Robinson Way, Cambridge CB2 0RE, UK
| | - Vipul Gupta
- Cancer Research UK Cambridge Institute, Li Ka Shing Building, Robinson Way, Cambridge CB2 0RE, UK
| | - Christopher J. Carnie
- Cancer Research UK Cambridge Institute, Li Ka Shing Building, Robinson Way, Cambridge CB2 0RE, UK
| | - R. Alex Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute; Boston, MA 02115, USA
| | - Nadia Gueorguieva
- Cancer Research UK Cambridge Institute, Li Ka Shing Building, Robinson Way, Cambridge CB2 0RE, UK
| | - Grant S. Stewart
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Johannes C. Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute; Boston, MA 02115, USA
- Howard Hughes Medical Institute; Boston, MA 02115, USA
| | - Stephen P. Jackson
- Cancer Research UK Cambridge Institute, Li Ka Shing Building, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
5
|
Ramakrishnan N, Weaver TM, Aubuchon LN, Woldegerima A, Just T, Song K, Vindigni A, Freudenthal BD, Verma P. Nucleolytic processing of abasic sites underlies PARP inhibitor hypersensitivity in ALC1-deficient BRCA mutant cancer cells. Nat Commun 2024; 15:6343. [PMID: 39068174 PMCID: PMC11283519 DOI: 10.1038/s41467-024-50673-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
Clinical success with poly (ADP-ribose) polymerase inhibitors (PARPi) is impeded by inevitable resistance and associated cytotoxicity. Depletion of Amplified in Liver Cancer 1 (ALC1), a chromatin-remodeling enzyme, can overcome these limitations by hypersensitizing BReast CAncer genes 1/2 (BRCA1/2) mutant cells to PARPi. Here, we demonstrate that PARPi hypersensitivity upon ALC1 loss is reliant on its role in promoting the repair of chromatin buried abasic sites. We show that ALC1 enhances the ability of the abasic site processing enzyme, Apurinic/Apyrimidinic endonuclease 1 (APE1) to cleave nucleosome-occluded abasic sites. However, unrepaired abasic sites in ALC1-deficient cells are readily accessed by APE1 at the nucleosome-free replication forks. APE1 cleavage leads to fork breakage and trapping of PARP1/2 upon PARPi treatment, resulting in hypersensitivity. Collectively, our studies reveal how cells overcome the chromatin barrier to repair abasic lesions and uncover cleavage of abasic sites as a mechanism to overcome limitations of PARPi.
Collapse
Affiliation(s)
- Natasha Ramakrishnan
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Tyler M Weaver
- Department of Biochemistry and Molecular Biology, Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- University of Kansas Cancer Center, Kansas City, KS, 66160, USA
| | - Lindsey N Aubuchon
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Cancer Biology Graduate Program, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ayda Woldegerima
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Taylor Just
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kevin Song
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Cancer Biology Graduate Program, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- University of Kansas Cancer Center, Kansas City, KS, 66160, USA
| | - Priyanka Verma
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Cancer Biology Graduate Program, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
6
|
Cho T, Hoeg L, Setiaputra D, Durocher D. NFATC2IP is a mediator of SUMO-dependent genome integrity. Genes Dev 2024; 38:233-252. [PMID: 38503515 PMCID: PMC11065178 DOI: 10.1101/gad.350914.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
The post-translational modification of proteins by SUMO is crucial for cellular viability and mammalian development in part due to the contribution of SUMOylation to genome duplication and repair. To investigate the mechanisms underpinning the essential function of SUMO, we undertook a genome-scale CRISPR/Cas9 screen probing the response to SUMOylation inhibition. This effort identified 130 genes whose disruption reduces or enhances the toxicity of TAK-981, a clinical-stage inhibitor of the SUMO E1-activating enzyme. Among the strongest hits, we validated and characterized NFATC2IP, an evolutionarily conserved protein related to the fungal Esc2 and Rad60 proteins that harbors tandem SUMO-like domains. Cells lacking NFATC2IP are viable but are hypersensitive to SUMO E1 inhibition, likely due to the accumulation of mitotic chromosome bridges and micronuclei. NFATC2IP primarily acts in interphase and associates with nascent DNA, suggesting a role in the postreplicative resolution of replication or recombination intermediates. Mechanistically, NFATC2IP interacts with the SMC5/6 complex and UBC9, the SUMO E2, via its first and second SUMO-like domains, respectively. AlphaFold-Multimer modeling suggests that NFATC2IP positions and activates the UBC9-NSMCE2 complex, the SUMO E3 ligase associated with SMC5/SMC6. We conclude that NFATC2IP is a key mediator of SUMO-dependent genomic integrity that collaborates with the SMC5/6 complex.
Collapse
Affiliation(s)
- Tiffany Cho
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Lisa Hoeg
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Dheva Setiaputra
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada;
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
7
|
Mórocz M, Qorri E, Pekker E, Tick G, Haracska L. Exploring RAD18-dependent replication of damaged DNA and discontinuities: A collection of advanced tools. J Biotechnol 2024; 380:1-19. [PMID: 38072328 DOI: 10.1016/j.jbiotec.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/21/2023]
Abstract
DNA damage tolerance (DDT) pathways mitigate the effects of DNA damage during replication by rescuing the replication fork stalled at a DNA lesion or other barriers and also repair discontinuities left in the newly replicated DNA. From yeast to mammalian cells, RAD18-regulated translesion synthesis (TLS) and template switching (TS) represent the dominant pathways of DDT. Monoubiquitylation of the polymerase sliding clamp PCNA by HRAD6A-B/RAD18, an E2/E3 protein pair, enables the recruitment of specialized TLS polymerases that can insert nucleotides opposite damaged template bases. Alternatively, the subsequent polyubiquitylation of monoubiquitin-PCNA by Ubc13-Mms2 (E2) and HLTF or SHPRH (E3) can lead to the switching of the synthesis from the damaged template to the undamaged newly synthesized sister strand to facilitate synthesis past the lesion. When immediate TLS or TS cannot occur, gaps may remain in the newly synthesized strand, partly due to the repriming activity of the PRIMPOL primase, which can be filled during the later phases of the cell cycle. The first part of this review will summarize the current knowledge about RAD18-dependent DDT pathways, while the second part will offer a molecular toolkit for the identification and characterization of the cellular functions of a DDT protein. In particular, we will focus on advanced techniques that can reveal single-stranded and double-stranded DNA gaps and their repair at the single-cell level as well as monitor the progression of single replication forks, such as the specific versions of the DNA fiber and comet assays. This collection of methods may serve as a powerful molecular toolkit to monitor the metabolism of gaps, detect the contribution of relevant pathways and molecular players, as well as characterize the effectiveness of potential inhibitors.
Collapse
Affiliation(s)
- Mónika Mórocz
- HCEMM-HUN-REN BRC Mutagenesis and Carcinogenesis Research Group, HUN-REN Biological Research Centre, Szeged H-6726, Hungary.
| | - Erda Qorri
- HCEMM-HUN-REN BRC Mutagenesis and Carcinogenesis Research Group, HUN-REN Biological Research Centre, Szeged H-6726, Hungary; Faculty of Science and Informatics, Doctoral School of Biology, University of Szeged, Szeged H-6720, Hungary.
| | - Emese Pekker
- HCEMM-HUN-REN BRC Mutagenesis and Carcinogenesis Research Group, HUN-REN Biological Research Centre, Szeged H-6726, Hungary; Doctoral School of Interdisciplinary Medicine, University of Szeged, Korányi fasor 10, 6720 Szeged, Hungary.
| | - Gabriella Tick
- Mutagenesis and Carcinogenesis Research Group, HUN-REN Biological Research Centre, Szeged H-6726, Hungary.
| | - Lajos Haracska
- HCEMM-HUN-REN BRC Mutagenesis and Carcinogenesis Research Group, HUN-REN Biological Research Centre, Szeged H-6726, Hungary; National Laboratory for Drug Research and Development, Magyar tudósok krt. 2. H-1117 Budapest, Hungary.
| |
Collapse
|
8
|
Longo MA, Roy S, Chen Y, Tomaszowski KH, Arvai AS, Pepper JT, Boisvert RA, Kunnimalaiyaan S, Keshvani C, Schild D, Bacolla A, Williams GJ, Tainer JA, Schlacher K. RAD51C-XRCC3 structure and cancer patient mutations define DNA replication roles. Nat Commun 2023; 14:4445. [PMID: 37488098 PMCID: PMC10366140 DOI: 10.1038/s41467-023-40096-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023] Open
Abstract
RAD51C is an enigmatic predisposition gene for breast, ovarian, and prostate cancer. Currently, missing structural and related functional understanding limits patient mutation interpretation to homology-directed repair (HDR) function analysis. Here we report the RAD51C-XRCC3 (CX3) X-ray co-crystal structure with bound ATP analog and define separable RAD51C replication stability roles informed by its three-dimensional structure, assembly, and unappreciated polymerization motif. Mapping of cancer patient mutations as a functional guide confirms ATP-binding matching RAD51 recombinase, yet highlights distinct CX3 interfaces. Analyses of CRISPR/Cas9-edited human cells with RAD51C mutations combined with single-molecule, single-cell and biophysics measurements uncover discrete CX3 regions for DNA replication fork protection, restart and reversal, accomplished by separable functions in DNA binding and implied 5' RAD51 filament capping. Collective findings establish CX3 as a cancer-relevant replication stress response complex, show how HDR-proficient variants could contribute to tumor development, and identify regions to aid functional testing and classification of cancer mutations.
Collapse
Affiliation(s)
- Michael A Longo
- Department of Molecular & Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Sunetra Roy
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Yue Chen
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | | | - Andrew S Arvai
- The Department of Integrative Structural & Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jordan T Pepper
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Rebecca A Boisvert
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | | | - Caezanne Keshvani
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - David Schild
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Albino Bacolla
- Department of Molecular & Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Gareth J Williams
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - John A Tainer
- Department of Molecular & Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX, USA.
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX, USA.
| | - Katharina Schlacher
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
9
|
Nieminuszczy J, Martin PR, Broderick R, Krwawicz J, Kanellou A, Mocanu C, Bousgouni V, Smith C, Wen KK, Woodward B, Bakal C, Shackley F, Aguilera A, Stewart G, Vyas Y, Niedzwiedz W. Actin nucleators safeguard replication forks by limiting nascent strand degradation. Nucleic Acids Res 2023; 51:6337-6354. [PMID: 37224534 PMCID: PMC10325910 DOI: 10.1093/nar/gkad369] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/17/2023] [Accepted: 05/11/2023] [Indexed: 05/26/2023] Open
Abstract
Accurate genome replication is essential for all life and a key mechanism of disease prevention, underpinned by the ability of cells to respond to replicative stress (RS) and protect replication forks. These responses rely on the formation of Replication Protein A (RPA)-single stranded (ss) DNA complexes, yet this process remains largely uncharacterized. Here, we establish that actin nucleation-promoting factors (NPFs) associate with replication forks, promote efficient DNA replication and facilitate association of RPA with ssDNA at sites of RS. Accordingly, their loss leads to deprotection of ssDNA at perturbed forks, impaired ATR activation, global replication defects and fork collapse. Supplying an excess of RPA restores RPA foci formation and fork protection, suggesting a chaperoning role for actin nucleators (ANs) (i.e. Arp2/3, DIAPH1) and NPFs (i.e, WASp, N-WASp) in regulating RPA availability upon RS. We also discover that β-actin interacts with RPA directly in vitro, and in vivo a hyper-depolymerizing β-actin mutant displays a heightened association with RPA and the same dysfunctional replication phenotypes as loss of ANs/NPFs, which contrasts with the phenotype of a hyper-polymerizing β-actin mutant. Thus, we identify components of actin polymerization pathways that are essential for preventing ectopic nucleolytic degradation of perturbed forks by modulating RPA activity.
Collapse
Affiliation(s)
- Jadwiga Nieminuszczy
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Peter R Martin
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Ronan Broderick
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Joanna Krwawicz
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Alexandra Kanellou
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Camelia Mocanu
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Vicky Bousgouni
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Charlotte Smith
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Kuo-Kuang Wen
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Penn State College of Medicine, Penn State Health Children's Hospital, Hershey, PA 17033, USA
| | - Beth L Woodward
- Genome Stability and Human Disease Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Chris Bakal
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Fiona Shackley
- Paediatric Immunology, Allergy and Infectious Diseases, Sheffield Children's Hospital NHS Foundation Trust, Sheffield, UK
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Grant S Stewart
- Genome Stability and Human Disease Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Yatin M Vyas
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Penn State College of Medicine, Penn State Health Children's Hospital, Hershey, PA 17033, USA
| | - Wojciech Niedzwiedz
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| |
Collapse
|
10
|
Zelceski A, Francica P, Lingg L, Mutlu M, Stok C, Liptay M, Alexander J, Baxter JS, Brough R, Gulati A, Haider S, Raghunandan M, Song F, Sridhar S, Forment JV, O'Connor MJ, Davies BR, van Vugt MATM, Krastev DB, Pettitt SJ, Tutt ANJ, Rottenberg S, Lord CJ. MND1 and PSMC3IP control PARP inhibitor sensitivity in mitotic cells. Cell Rep 2023; 42:112484. [PMID: 37163373 DOI: 10.1016/j.celrep.2023.112484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/22/2022] [Accepted: 04/24/2023] [Indexed: 05/12/2023] Open
Abstract
The PSMC3IP-MND1 heterodimer promotes meiotic D loop formation before DNA strand exchange. In genome-scale CRISPR-Cas9 mutagenesis and interference screens in mitotic cells, depletion of PSMC3IP or MND1 causes sensitivity to poly (ADP-Ribose) polymerase inhibitors (PARPi) used in cancer treatment. PSMC3IP or MND1 depletion also causes ionizing radiation sensitivity. These effects are independent of PSMC3IP/MND1's role in mitotic alternative lengthening of telomeres. PSMC3IP- or MND1-depleted cells accumulate toxic RAD51 foci in response to DNA damage, show impaired homology-directed DNA repair, and become PARPi sensitive, even in cells lacking both BRCA1 and TP53BP1. Epistasis between PSMC3IP-MND1 and BRCA1/BRCA2 defects suggest that abrogated D loop formation is the cause of PARPi sensitivity. Wild-type PSMC3IP reverses PARPi sensitivity, whereas a PSMC3IP p.Glu201del mutant associated with D loop defects and ovarian dysgenesis does not. These observations suggest that meiotic proteins such as MND1 and PSMC3IP have a greater role in mitotic DNA repair.
Collapse
Affiliation(s)
- Anabel Zelceski
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK; Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Paola Francica
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; Departement of Biomedical Research (DBMR), Cancer Therapy Resistance Cluster, University of Bern, 3012 Bern, Switzerland
| | - Lea Lingg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; Departement of Biomedical Research (DBMR), Cancer Therapy Resistance Cluster, University of Bern, 3012 Bern, Switzerland
| | - Merve Mutlu
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Colin Stok
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Martin Liptay
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - John Alexander
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Joseph S Baxter
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK; Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Rachel Brough
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK; Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Aditi Gulati
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Syed Haider
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Maya Raghunandan
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Feifei Song
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK; Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Sandhya Sridhar
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK; Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | | | | | | | | | - Dragomir B Krastev
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK; Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Stephen J Pettitt
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK; Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK.
| | - Andrew N J Tutt
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK.
| | - Sven Rottenberg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; Departement of Biomedical Research (DBMR), Cancer Therapy Resistance Cluster, University of Bern, 3012 Bern, Switzerland; Division of Molecular Pathology, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Bern Center for Precision Medicine, University of Bern, 3012 Bern, Switzerland.
| | - Christopher J Lord
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK; Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK.
| |
Collapse
|
11
|
Saxena S, Zou L. Hallmarks of DNA replication stress. Mol Cell 2022; 82:2298-2314. [PMID: 35714587 DOI: 10.1016/j.molcel.2022.05.004] [Citation(s) in RCA: 171] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/15/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022]
Abstract
Faithful DNA replication is critical for the maintenance of genomic integrity. Although DNA replication machinery is highly accurate, the process of DNA replication is constantly challenged by DNA damage and other intrinsic and extrinsic stresses throughout the genome. A variety of cellular stresses interfering with DNA replication, which are collectively termed replication stress, pose a threat to genomic stability in both normal and cancer cells. To cope with replication stress and maintain genomic stability, cells have evolved a complex network of cellular responses to alleviate and tolerate replication problems. This review will focus on the major sources of replication stress, the impacts of replication stress in cells, and the assays to detect replication stress, offering an overview of the hallmarks of DNA replication stress.
Collapse
Affiliation(s)
- Sneha Saxena
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|