1
|
Cao M, Platre MP, Tsai HH, Zhang L, Nobori T, Armengot L, Chen Y, He W, Brent L, Coll NS, Ecker JR, Geldner N, Busch W. Spatial IMA1 regulation restricts root iron acquisition on MAMP perception. Nature 2024; 625:750-759. [PMID: 38200311 PMCID: PMC11181898 DOI: 10.1038/s41586-023-06891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/22/2023] [Indexed: 01/12/2024]
Abstract
Iron is critical during host-microorganism interactions1-4. Restriction of available iron by the host during infection is an important defence strategy, described as nutritional immunity5. However, this poses a conundrum for externally facing, absorptive tissues such as the gut epithelium or the plant root epidermis that generate environments that favour iron bioavailability. For example, plant roots acquire iron mostly from the soil and, when iron deficient, increase iron availability through mechanisms that include rhizosphere acidification and secretion of iron chelators6-9. Yet, the elevated iron bioavailability would also be beneficial for the growth of bacteria that threaten plant health. Here we report that microorganism-associated molecular patterns such as flagellin lead to suppression of root iron acquisition through a localized degradation of the systemic iron-deficiency signalling peptide Iron Man 1 (IMA1) in Arabidopsis thaliana. This response is also elicited when bacteria enter root tissues, but not when they dwell on the outer root surface. IMA1 itself has a role in modulating immunity in root and shoot, affecting the levels of root colonization and the resistance to a bacterial foliar pathogen. Our findings reveal an adaptive molecular mechanism of nutritional immunity that affects iron bioavailability and uptake, as well as immune responses.
Collapse
Affiliation(s)
- Min Cao
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Matthieu Pierre Platre
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Huei-Hsuan Tsai
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Ling Zhang
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Tatsuya Nobori
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Laia Armengot
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain
| | - Yintong Chen
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Wenrong He
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Lukas Brent
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Nuria S Coll
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Joseph R Ecker
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Niko Geldner
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
2
|
Tola AJ, Missihoun TD. Iron Availability Influences Protein Carbonylation in Arabidopsis thaliana Plants. Int J Mol Sci 2023; 24:ijms24119732. [PMID: 37298684 DOI: 10.3390/ijms24119732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Protein carbonylation is an irreversible form of post-translational modification triggered by reactive oxygen species in animal and plant cells. It occurs either through the metal-catalyzed oxidation of Lys, Arg, Pro, and Thr side chains or the addition of α, β-unsaturated aldehydes and ketones to the side chains of Cys, Lys, and His. Recent genetic studies concerning plants pointed to an implication of protein carbonylation in gene regulation through phytohormones. However, for protein carbonylation to stand out as a signal transduction mechanism, such as phosphorylation and ubiquitination, it must be controlled in time and space by a still unknown trigger. In this study, we tested the hypothesis that the profile and extent of protein carbonylation are influenced by iron homeostasis in vivo. For this, we compared the profile and the contents of the carbonylated proteins in the Arabidopsis thaliana wild-type and mutant-deficient in three ferritin genes under normal and stress conditions. Additionally, we examined the proteins specifically carbonylated in wild-type seedlings exposed to iron-deficient conditions. Our results indicated that proteins were differentially carbonylated between the wild type and the triple ferritin mutant Fer1-3-4 in the leaves, stems, and flowers under normal growth conditions. The profile of the carbonylated proteins was also different between the wild type and the ferritin triple mutant exposed to heat stress, thus pointing to the influence of iron on the carbonylation of proteins. Consistent with this, the exposure of the seedlings to iron deficiency and iron excess greatly influenced the carbonylation of certain proteins involved in intracellular signal transduction, translation, and iron deficiency response. Overall, the study underlined the importance of iron homeostasis in the occurrence of protein carbonylation in vivo.
Collapse
Affiliation(s)
- Adesola J Tola
- Groupe de Recherche en Biologie Végétale (GRBV), Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Boul. des Forges, Trois-Rivières, QC G9A 5H7, Canada
| | - Tagnon D Missihoun
- Groupe de Recherche en Biologie Végétale (GRBV), Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Boul. des Forges, Trois-Rivières, QC G9A 5H7, Canada
| |
Collapse
|
3
|
Rodrigues-dos Santos AS, Rebelo-Romão I, Zhang H, Vílchez JI. Discerning Transcriptomic and Biochemical Responses of Arabidopsis thaliana Treated with the Biofertilizer Strain Priestia megaterium YC4-R4: Boosting Plant Central and Secondary Metabolism. PLANTS (BASEL, SWITZERLAND) 2022; 11:3039. [PMID: 36432768 PMCID: PMC9697256 DOI: 10.3390/plants11223039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
As a response to the current challenges in agriculture, the application of alternatives to a more sustainable management is required. Thus, biofertilizers begin to emerge as a reliable alternative to improve crop development and resistance to stresses. Among other effects on the plant, the use of beneficial strains may cause changes in their metabolic regulation, as in cell wall biogenesis and in nutrient/ion transportation, improving their growth process. Previous works showed that inoculation with the strain Priestia megaterium YC4-R4 effectively promoted vegetative growth of Arabidopsis thaliana Col-0 plants. Hence, the present work recorded a strain-mediated induction of several pathways of the central and secondary metabolism of the plant, as the induction of lipid, cellulose, phenol, and flavonoid biosynthesis, by using transcriptomic and biochemical analyses.
Collapse
Affiliation(s)
| | - Inês Rebelo-Romão
- Instituto de Tecnologia Química e Biológica (ITQB)-NOVA Lisboa, 2780-157 Oeiras, Portugal
| | - Huiming Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai 200032, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Juan Ignacio Vílchez
- Instituto de Tecnologia Química e Biológica (ITQB)-NOVA Lisboa, 2780-157 Oeiras, Portugal
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|