1
|
Hosamani R, Swamy BK, Dsouza A, Sathasivam M. Plant responses to hypergravity: a comprehensive review. PLANTA 2022; 257:17. [PMID: 36534189 DOI: 10.1007/s00425-022-04051-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Hypergravity is an effective novel stimulus to elucidate plant gravitational and mechanobiological behaviour. Here, we review the current understanding of phenotypic, physio-biochemical, and molecular plant responses to simulated hypergravity. Plants readily respond to altered gravity conditions, such as microgravity or hypergravity. Hypergravity-a gravitational force higher than that on the Earth's surface (> 1g)-can be simulated using centrifuges. Exposing seeds, seedlings, or plant cell cultures to hypergravity elicits characteristic morphological, physio-biochemical, and molecular changes. While several studies have provided insights into plant responses and underlying mechanisms, much is still elusive, including the interplay of hypergravity with gravitropism. Moreover, hypergravity is of great significance for mechano- and space/gravitational biologists to elucidate fundamental plant behaviour. In this review, we provide an overview of the phenotypic, physiological, biochemical, and molecular responses of plants to hypergravity. We then discuss the involvement of hypergravity in plant gravitropism-the directional growth along the gravity vector. Finally, we highlight future research directions to expand our understanding of hypergravity in plant biology.
Collapse
Affiliation(s)
- Ravikumar Hosamani
- Institute of Agricultural Biotechnology (IABT), University of Agricultural Sciences, Dharwad, 580005, India.
| | - Basavalingayya K Swamy
- Institute of Agricultural Biotechnology (IABT), University of Agricultural Sciences, Dharwad, 580005, India
| | - Ajwal Dsouza
- Controlled Environment Systems Research Facility, School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Malarvizhi Sathasivam
- Institute of Agricultural Biotechnology (IABT), University of Agricultural Sciences, Dharwad, 580005, India
- College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
2
|
Swamy BK, Hosamani R, Sathasivam M, Chandrashekhar SS, Reddy UG, Moger N. Novel hypergravity treatment enhances root phenotype and positively influences physio-biochemical parameters in bread wheat (Triticum aestivum L.). Sci Rep 2021; 11:15303. [PMID: 34315977 PMCID: PMC8316474 DOI: 10.1038/s41598-021-94771-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Hypergravity-an evolutionarily novel environment has been exploited to comprehend the response of living organisms including plants in the context of extra-terrestrial applications. Recently, researchers have shown that hypergravity induces desired phenotypic variability in seedlings. In the present study, we tested the utility of hypergravity as a novel tool in inducing reliable phenotype/s for potential terrestrial crop improvement applications. To investigate, bread wheat seeds (UAS-375 genotype) were subjected to hypergravity treatment (10×g for 12, and 24 h), and evaluated for seedling vigor and plant growth parameters in both laboratory and greenhouse conditions. It was also attempted to elucidate the associated biochemical and hormonal changes at different stages of vegetative growth. Resultant data revealed that hypergravity treatment (10×g for 12 h) significantly enhanced root length, root volume, and root biomass in response to hypergravity. The robust seedling growth phenotype may be attributed to increased alpha-amylase and TDH enzyme activities observed in seeds treated with hypergravity. Elevated total chlorophyll content and Rubisco (55 kDa) protein expression across different stages of vegetative growth in response to hypergravity may impart physiological benefits to wheat growth. Further, hypergravity elicited robust endogenous phytohormones dynamics in root signifying altered phenotype/s. Collectively, this study for the first time describes the utility of hypergravity as a novel tool in inducing reliable root phenotype that could be potentially exploited for improving wheat varieties for better water usage management.
Collapse
Affiliation(s)
- Basavalingayya K Swamy
- Institute of Agricultural Biotechnology (IABT), University of Agricultural Sciences, Dharwad, Karnataka, 580005, India
| | - Ravikumar Hosamani
- Institute of Agricultural Biotechnology (IABT), University of Agricultural Sciences, Dharwad, Karnataka, 580005, India.
| | - Malarvizhi Sathasivam
- Institute of Agricultural Biotechnology (IABT), University of Agricultural Sciences, Dharwad, Karnataka, 580005, India
| | - S S Chandrashekhar
- Department of Seed Science and Technology, University of Agricultural Sciences, Dharwad, Karnataka, 580005, India
| | - Uday G Reddy
- AICRP on Wheat, University of Agricultural Sciences, Dharwad, Karnataka, 580005, India
| | - Narayan Moger
- Institute of Agricultural Biotechnology (IABT), University of Agricultural Sciences, Dharwad, Karnataka, 580005, India
| |
Collapse
|
3
|
van Wyk AS, Prinsloo G. Challenging current interpretation of sunflower movements. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6049-6056. [PMID: 31504705 DOI: 10.1093/jxb/erz381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
In the literature, Helianthus annuus L. (sunflower) movements are generally described as heliotropic. It is generally believed that the leaves and flowers of the growing H. annuus plant track the sun as the sun moves across the sky from east to west. This paper, however, challenges current interpretation regarding H. annuus movements, as the literature generally excludes the rotation of the earth around its own axis, gravity, and the possible role of gravitation. The general exclusion of the earth's rotation in the literature may also have resulted in flawed research design in studies conducted on H. annuus movements, which in turn may have directed researchers towards the misinterpretation of results. This paper aims to include the possible role of the Earth's rotation, gravity, and gravitation when describing H. annuus movements and to provide possible alternative explanations for the results achieved by researchers. This paper further includes concepts and examples relevant to plant movements, such as the rhythms often associated with plant movements, the physiology of plant movements, referring to turgor pressure as the main force behind plant movements, and plant rhythmic clocks and their characteristics, in order to explain the alternative views and to relate them to H. annuus movements.
Collapse
Affiliation(s)
- Anne S van Wyk
- Department of Environmental Sciences, University of South Africa, Florida campus, Florida, South Africa
| | - Gerhard Prinsloo
- Department of Agriculture and Animal Health, University of South Africa, Florida campus, Florida, South Africa
| |
Collapse
|
4
|
Miyamoto K, Inui A, Uheda E, Oka M, Kamada M, Yamazaki C, Shimazu T, Kasahara H, Sano H, Suzuki T, Higashibata A, Ueda J. Polar auxin transport is essential to maintain growth and development of etiolated pea and maize seedlings grown under 1 g conditions: Relevance to the international space station experiment. LIFE SCIENCES IN SPACE RESEARCH 2019; 20:1-11. [PMID: 30797426 DOI: 10.1016/j.lssr.2018.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/19/2018] [Accepted: 11/14/2018] [Indexed: 06/09/2023]
Abstract
We conducted "Auxin Transport" space experiments in 2016 and 2017 in the Japanese Experiment Module (JEM) on the International Space Station (ISS), with the principal objective being integrated analyses of the growth and development of etiolated pea (Pisum sativum L. cv Alaska) and maize (Zea mays L. cv Golden Cross Bantam) seedlings under true microgravity conditions in space relative to auxin dynamics. Etiolated pea seedlings grown under microgravity conditions in space for 3 days showed automorphogenesis. Epicotyls and roots bent ca. 45° and 20° toward the direction away from the cotyledons, respectively, whereas those grown under artificial 1 g conditions produced by a centrifuge in the Cell Biology Experimental Facility (CBEF) in space showed negative and positive gravitropic response in epicotyls and in roots, respectively. On the other hand, the coleoptiles of 4-day-old etiolated maize seedlings grew almost straight, but the mesocotyls curved and grew toward a random direction under microgravity conditions in space. In contrast, the coleoptiles and mesocotyls of etiolated maize seedlings grown under 1 g conditions on Earth were almost straight and grew upward or toward the direction against the gravity vector. The polar auxin transport activity in etiolated pea epicotyls and in maize shoots was significantly inhibited and enhanced, respectively, under microgravity conditions in space as compared with artificial 1 g conditions in space or 1 g conditions on Earth. An inhibitor of polar auxin transport, 2,3,5-triiodobenzoic acid (TIBA) substantially affected the growth direction and polar auxin transport activity in etiolated pea seedlings grown under both artificial 1 g and microgravity conditions in space. These results strongly suggest that adequate polar auxin transport is essential for gravitropic response in plants. Possible mechanisms enhancing polar auxin transport in etiolated maize seedlings grown under microgravity conditions in space are also proposed.
Collapse
Affiliation(s)
- Kensuke Miyamoto
- Faculty of Liberal Arts and Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan; Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Akinori Inui
- Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Eiji Uheda
- Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Mariko Oka
- Faculty of Agriculture, Tottori University, 4-101 Koyamacho-minami, Tottori 680-8553, Japan
| | - Motoshi Kamada
- Future Development Division, Advanced Engineering Services Co., Ltd., 1-6-1 Takezono, Tsukuba, Ibaraki 305-0032, Japan
| | - Chiaki Yamazaki
- Technology and Research Promotion Department, Japan Space Forum, Shin-Otemachi Bldg. 7F, 2-2-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Toru Shimazu
- Technology and Research Promotion Department, Japan Space Forum, Shin-Otemachi Bldg. 7F, 2-2-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Haruo Kasahara
- Utilization Engineering Department, Japan Manned Space System Corporation, Space Station Test Building, Tsukuba Space Center, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Hiromi Sano
- Utilization Engineering Department, Japan Manned Space System Corporation, Space Station Test Building, Tsukuba Space Center, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Tomomi Suzuki
- Kibo Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Akira Higashibata
- Kibo Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Junichi Ueda
- Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
5
|
Soga K, Wakabayashi K, Hoson T. Growth and cortical microtubule dynamics in shoot organs under microgravity and hypergravity conditions. PLANT SIGNALING & BEHAVIOR 2018; 13:e1422468. [PMID: 29286875 PMCID: PMC5790418 DOI: 10.1080/15592324.2017.1422468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The body shape of plants varied in proportion to the logarithm of the magnitude of gravity in the range from microgravity to hypergravity to resist the gravitational force. Here we discuss the roles of cortical microtubule and 65 kDa microtubule-associated protein-1 (MAP65-1) in gravity-induced modification of growth anisotropy. Microgravity stimulated elongation growth and suppressed lateral expansion in shoot organs, such as hypocotyls and epicotyls. On the other hand, hypergravity inhibited elongation growth and promoted lateral expansion in shoot organs. The number of cells with transverse microtubules was increased by microgravity, but decreased by hypergravity. Furthermore, the levels of MAP65-1, which is involved in the maintenance of the transverse microtubule orientation, were increased by microgravity, but decreased by hypergravity. Therefore, the regulation of orientation of cortical microtubules via changes in the levels of MAP65-1 may contribute to the modification of the body shape of plants to resist the gravitational force.
Collapse
Affiliation(s)
- Kouichi Soga
- Graduate School of Science, Osaka City University, Osaka, Japan
- CONTACT Kouichi Soga Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | | | - Takayuki Hoson
- Graduate School of Science, Osaka City University, Osaka, Japan
| |
Collapse
|
6
|
Soga K, Yamazaki C, Kamada M, Tanigawa N, Kasahara H, Yano S, Kojo KH, Kutsuna N, Kato T, Hashimoto T, Kotake T, Wakabayashi K, Hoson T. Modification of growth anisotropy and cortical microtubule dynamics in Arabidopsis hypocotyls grown under microgravity conditions in space. PHYSIOLOGIA PLANTARUM 2018; 162:135-144. [PMID: 28862767 DOI: 10.1111/ppl.12640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 05/11/2023]
Abstract
We carried out a space experiment, denoted as Aniso Tubule, to examine the effects of microgravity on the growth anisotropy and cortical microtubule dynamics in Arabidopsis hypocotyls, using lines in which microtubules are visualized by labeling tubulin or microtubule-associated proteins (MAPs) with green fluorescent protein (GFP). In all lines, GFP-tubulin6 (TUB6)-, basic proline-rich protein1 (BPP1)-GFP- and spira1-like3 (SP1L3)-GFP-expressing using a constitutive promoter, and spiral2 (SPR2)-GFP- and GFP-65 kDa MAP-1 (MAP65-1)-expressing using a native promoter, the length of hypocotyls grown under microgravity conditions in space was longer than that grown at 1 g conditions on the ground. In contrast, the diameter of hypocotyls grown under microgravity conditions was smaller than that of the hypocotyls grown at 1 g. The percentage of cells with transverse microtubules was increased under microgravity conditions, irrespective of the lines. Also, the average angle of the microtubules with respect to the transverse cell axis was decreased in hypocotyls grown under microgravity conditions. When GFP fluorescence was quantified in hypocotyls of GFP-MAP65-1 and SPR2-GFP lines, microgravity increased the levels of MAP65-1, which appears to be involved in the maintenance of transverse microtubule orientation. However, the levels of SPR2 under microgravity conditions were comparable to those at 1 g. These results suggest that the microgravity-induced increase in the levels of MAP65-1 is involved in increase in the transverse microtubules, which may lead to modification of growth anisotropy, thereby developing longer and thinner hypocotyls under microgravity conditions in space.
Collapse
Affiliation(s)
- Kouichi Soga
- Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
| | | | - Motoshi Kamada
- Advanced Engineering Services Co., Ltd, Tsukuba, 305-0032, Japan
| | | | - Haruo Kasahara
- Japan Manned Space Systems Corporation, Tokyo, 100-0004, Japan
| | - Sachiko Yano
- Japan Aerospace Exploration Agency, Tsukuba, 305-8505, Japan
| | - Kei H Kojo
- Graduate School of Science and Technology, Sophia University, Tokyo, 102-8554, Japan
| | - Natsumaro Kutsuna
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
- LPixel Inc, Tokyo, 113-0033, Japan
| | - Takehide Kato
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Takashi Hashimoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Toshihisa Kotake
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | | | - Takayuki Hoson
- Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
| |
Collapse
|
7
|
Murakami M, Soga K, Kotake T, Kato T, Hashimoto T, Wakabayashi K, Hoson T. Roles of MAP65-1 and BPP1 in Gravity Resistance of Arabidopsis hypocotyls. ACTA ACUST UNITED AC 2016. [DOI: 10.2187/bss.30.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
| | - Kouichi Soga
- Graduate School of Science, Osaka City University
| | | | - Takehide Kato
- Graduate School of Biological Sciences, Nara Institute of Science and Technology
| | - Takashi Hashimoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology
| | | | | |
Collapse
|
8
|
Soga K, Club B, Kurita A, Yano S, Ichikawa T, Kamada M, Takaoki M. Growth and Morphogenesis of Azuki Bean Seedlings in Space during SSAF2013 Program. ACTA ACUST UNITED AC 2014. [DOI: 10.2187/bss.28.6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Ueda J, Miyamoto K, Uheda E, Oka M, Yano S, Higashibata A, Ishioka N. Close relationships between polar auxin transport and graviresponse in plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16 Suppl 1:43-49. [PMID: 24128007 DOI: 10.1111/plb.12101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 07/18/2013] [Indexed: 06/02/2023]
Abstract
Gravitational force on Earth is one of the major environmental factors affecting plant growth and development. Spacecraft and the International Space Station (ISS), and a three-dimensional (3-D) clinostat have been available to clarify the effects of gravistimulation on plant growth and development in space and on ground conditions, respectively. Under a stimulus-free environment such as space conditions, plants show a growth and developmental habit designated as 'automorphosis' or 'automorphogenesis'. Recent studies in hormonal physiology, together with space and molecular biology, have demonstrated the close relationships between automorphosis and polar auxin transport. Reduced polar auxin transport in space conditions, or induced by the application of polar auxin transport inhibitors, substantially induced automorphosis or automorphosis-like growth and development, indicating that polar auxin transport is responsible for graviresponse in plants. This concise review covers graviresponse in plants and automorphosis observed in space conditions, and polar auxin transport related to graviresponse in etiolated Alaska and ageotropum pea seedlings. Molecular aspects of polar auxin transport clarified in recent studies are also described.
Collapse
Affiliation(s)
- J Ueda
- Graduate School of Science, Osaka Prefecture University, Naka-ku, Sakai, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Soga K. Resistance of plants to gravitational force. JOURNAL OF PLANT RESEARCH 2013; 126:589-96. [PMID: 23732635 DOI: 10.1007/s10265-013-0572-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 04/08/2013] [Indexed: 05/04/2023]
Abstract
Developing resistance to gravitational force is a critical response for terrestrial plants to survive under 1 × g conditions. We have termed this reaction "gravity resistance" and have analyzed its nature and mechanisms using hypergravity conditions produced by centrifugation and microgravity conditions in space. Our results indicate that plants develop a short and thick body and increase cell wall rigidity to resist gravitational force. The modification of body shape is brought about by the rapid reorientation of cortical microtubules that is caused by the action of microtubule-associated proteins in response to the magnitude of the gravitational force. The modification of cell wall rigidity is regulated by changes in cell wall metabolism that are caused by alterations in the levels of cell wall enzymes and in the pH of apoplastic fluid (cell wall fluid). Mechanoreceptors on the plasma membrane may be involved in the perception of the gravitational force. In this review, we discuss methods for altering gravitational conditions and describe the nature and mechanisms of gravity resistance in plants.
Collapse
Affiliation(s)
- Kouichi Soga
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Japan.
| |
Collapse
|