1
|
Ehx G, Ritacco C, Baron F. Pathophysiology and preclinical relevance of experimental graft-versus-host disease in humanized mice. Biomark Res 2024; 12:139. [PMID: 39543777 PMCID: PMC11566168 DOI: 10.1186/s40364-024-00684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Graft-versus-host disease (GVHD) is a life-threatening complication of allogeneic hematopoietic cell transplantations (allo-HCT) used for the treatment of hematological malignancies and other blood-related disorders. Until recently, the discovery of actionable molecular targets to treat GVHD and their preclinical testing was almost exclusively based on modeling allo-HCT in mice by transplanting bone marrow and splenocytes from donor mice into MHC-mismatched recipient animals. However, due to fundamental differences between human and mouse immunology, the translation of these molecular targets into the clinic can be limited. Therefore, humanized mouse models of GVHD were developed to circumvent this limitation. In these models, following the transplantation of human peripheral blood mononuclear cells (PBMCs) into immunodeficient mice, T cells recognize and attack mouse organs, inducing GVHD. Thereby, humanized mice provide a platform for the evaluation of the effects of candidate therapies on GVHD mediated by human immune cells in vivo. Understanding the pathophysiology of this xenogeneic GVHD is therefore crucial for the design and interpretation of experiments performed with this model. In this article, we comprehensively review the cellular and molecular mechanisms governing GVHD in the most commonly used model of xenogeneic GVHD: PBMC-engrafted NOD/LtSz-PrkdcscidIL2rγtm1Wjl (NSG) mice. By re-analyzing public sequencing data, we also show that the clonal expansion and the transcriptional program of T cells in humanized mice closely reflect those in humans. Finally, we highlight the strengths and limitations of this model, as well as arguments in favor of its biological relevance for studying T-cell reactions against healthy tissues or cancer cells.
Collapse
Affiliation(s)
- Grégory Ehx
- Laboratory of Hematology, GIGA Institute, University of Liege, Liege, Belgium.
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium.
| | - Caroline Ritacco
- Laboratory of Hematology, GIGA Institute, University of Liege, Liege, Belgium
| | - Frédéric Baron
- Laboratory of Hematology, GIGA Institute, University of Liege, Liege, Belgium
- Department of Medicine, Division of Hematology, CHU of Liege, University of Liege, Liege, Belgium
| |
Collapse
|
2
|
Gopallawa I, Gupta C, Jawa R, Cyril A, Jawa V, Chirmule N, Gujar V. Applications of Organoids in Advancing Drug Discovery and Development. J Pharm Sci 2024; 113:2659-2667. [PMID: 39002723 DOI: 10.1016/j.xphs.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/15/2024]
Abstract
Organoids are small, self-organizing three-dimensional cell cultures that are derived from stem cells or primary organs. These cultures replicate the complexity of an organ, which cannot be achieved by single-cell culture systems. Organoids can be used in testing of new drugs instead of animals. Development and validation of organoids is thus important to reduce the reliance on animals for drug testing. In this review, we have discussed the developmental and regulatory aspects of organoids and highlighted their importance in drug development. We have first summarized different types of culture-based organoid systems such as submerged Matrigel, micro-fluidic 3D cultures, inducible pluripotent stem cells, and air-liquid interface cultures. These systems help us understand the intricate interplay between cells and their surrounding milieu for identifying functions of target receptors, soluble factors, and spatial interactions. Further, we have discussed the advances in humanized severe-combined immunodeficiency mouse models and their applications in the pharmacology of immune-oncology. Since regulatory aspects are important in using organoids for drug development, we have summarized FDA and EMA regulations on organoid research to support pre-clinical studies. Finally, we have included some unique studies highlighting the use of organoids in studying infectious diseases, cancer, and fundamental biology. These studies also exemplify the latest technological advances in organoid development resulting in improved efficiency. Overall, this review comprehensively summarizes the applications of organoids in early drug development during discovery and pre-clinical studies.
Collapse
Affiliation(s)
- Indiwari Gopallawa
- Clinical Pharmacology & Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, USA
| | | | - Rayan Jawa
- University of Pennsylvania, Philadelphia, PA, USA
| | - Arya Cyril
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Vibha Jawa
- Bristol Myers Squibb, Lawrenceville, NY, USA.
| | | | - Vikramsingh Gujar
- Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| |
Collapse
|
3
|
Papazian I, Kourouvani M, Dagkonaki A, Gouzouasis V, Dimitrakopoulou L, Markoglou N, Badounas F, Tselios T, Anagnostouli M, Probert L. Spontaneous human CD8 T cell and autoimmune encephalomyelitis-induced CD4/CD8 T cell lesions in the brain and spinal cord of HLA-DRB1*15-positive multiple sclerosis humanized immune system mice. eLife 2024; 12:RP88826. [PMID: 38900149 PMCID: PMC11189630 DOI: 10.7554/elife.88826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Autoimmune diseases of the central nervous system (CNS) such as multiple sclerosis (MS) are only partially represented in current experimental models and the development of humanized immune mice is crucial for better understanding of immunopathogenesis and testing of therapeutics. We describe a humanized mouse model with several key features of MS. Severely immunodeficient B2m-NOG mice were transplanted with peripheral blood mononuclear cells (PBMCs) from HLA-DRB1-typed MS and healthy (HI) donors and showed rapid engraftment by human T and B lymphocytes. Mice receiving cells from MS patients with recent/ongoing Epstein-Barr virus reactivation showed high B cell engraftment capacity. Both HLA-DRB1*15 (DR15) MS and DR15 HI mice, not HLA-DRB1*13 MS mice, developed human T cell infiltration of CNS borders and parenchyma. DR15 MS mice uniquely developed inflammatory lesions in brain and spinal cord gray matter, with spontaneous, hCD8 T cell lesions, and mixed hCD8/hCD4 T cell lesions in EAE immunized mice, with variation in localization and severity between different patient donors. Main limitations of this model for further development are poor monocyte engraftment and lack of demyelination, lymph node organization, and IgG responses. These results show that PBMC humanized mice represent promising research tools for investigating MS immunopathology in a patient-specific approach.
Collapse
Affiliation(s)
- Irini Papazian
- Laboratory of Molecular Genetics, Hellenic Pasteur InstituteAthensGreece
| | - Maria Kourouvani
- Laboratory of Molecular Genetics, Hellenic Pasteur InstituteAthensGreece
- Athens International Master’s Programme in Neurosciences, Department of Biology, National and Kapodistrian University of AthensAthensGreece
| | | | - Vasileios Gouzouasis
- Laboratory of Molecular Genetics, Hellenic Pasteur InstituteAthensGreece
- Department of Molecular Biology and Genetics, Democritus University of ThraceAlexandroupolisGreece
| | - Lila Dimitrakopoulou
- Department of Hematology, Laiko General Hospital, National and Kapodistrian University of AthensAthensGreece
| | - Nikolaos Markoglou
- Research Immunogenetics Laboratory, Multiple Sclerosis and Demyelinating Diseases Unit, First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, NKUA, Aeginition University HospitalAthensGreece
| | - Fotis Badounas
- Laboratory of Molecular Genetics, Hellenic Pasteur InstituteAthensGreece
- Transgenic Technology Unit, Hellenic Pasteur InstituteAthensGreece
| | | | - Maria Anagnostouli
- Research Immunogenetics Laboratory, Multiple Sclerosis and Demyelinating Diseases Unit, First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, NKUA, Aeginition University HospitalAthensGreece
| | - Lesley Probert
- Laboratory of Molecular Genetics, Hellenic Pasteur InstituteAthensGreece
| |
Collapse
|
4
|
Xu Y, Shan W, Luo Q, Zhang M, Huo D, Chen Y, Li H, Ye Y, Yu X, Luo Y, Huang H. Establishment of a humanized mouse model using steady-state peripheral blood-derived hematopoietic stem and progenitor cells facilitates screening of cancer-targeted T-cell repertoires. CANCER INNOVATION 2024; 3:e118. [PMID: 38947755 PMCID: PMC11212321 DOI: 10.1002/cai2.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/19/2023] [Accepted: 01/19/2024] [Indexed: 07/02/2024]
Abstract
Background Cancer-targeted T-cell receptor T (TCR-T) cells hold promise in treating cancers such as hematological malignancies and breast cancers. However, approaches to obtain cancer-reactive TCR-T cells have been unsuccessful. Methods Here, we developed a novel strategy to screen for cancer-targeted TCR-T cells using a special humanized mouse model with person-specific immune fingerprints. Rare steady-state circulating hematopoietic stem and progenitor cells were expanded via three-dimensional culture of steady-state peripheral blood mononuclear cells, and then the expanded cells were applied to establish humanized mice. The human immune system was evaluated according to the kinetics of dendritic cells, monocytes, T-cell subsets, and cytokines. To fully stimulate the immune response and to obtain B-cell precursor NAML-6- and triple-negative breast cancer MDA-MB-231-targeted TCR-T cells, we used the inactivated cells above to treat humanized mice twice a day every 7 days. Then, human T cells were processed for TCR β-chain (TRB) sequencing analysis. After the repertoires had been constructed, features such as the fraction, diversity, and immune signature were investigated. Results The results demonstrated an increase in diversity and clonality of T cells after treatment. The preferential usage and features of TRBV, TRBJ, and the V-J combination were also changed. The stress also induced highly clonal expansion. Tumor burden and survival analysis demonstrated that stress induction could significantly inhibit the growth of subsequently transfused live tumor cells and prolong the survival of the humanized mice. Conclusions We constructed a personalized humanized mouse model to screen cancer-targeted TCR-T pools. Our platform provides an effective source of cancer-targeted TCR-T cells and allows for the design of patient-specific engineered T cells. It therefore has the potential to greatly benefit cancer treatment.
Collapse
Affiliation(s)
- Yulin Xu
- Bone Marrow Transplantation Center, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang UniversityHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity TherapyHangzhouChina
- School of MedicineZhejiang UniversityHangzhouChina
| | - Wei Shan
- Bone Marrow Transplantation Center, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang UniversityHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity TherapyHangzhouChina
- School of MedicineZhejiang UniversityHangzhouChina
| | - Qian Luo
- Bone Marrow Transplantation Center, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang UniversityHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity TherapyHangzhouChina
- School of MedicineZhejiang UniversityHangzhouChina
| | - Meng Zhang
- Bone Marrow Transplantation Center, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang UniversityHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity TherapyHangzhouChina
- School of MedicineZhejiang UniversityHangzhouChina
| | - Dawei Huo
- Bone Marrow Transplantation Center, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang UniversityHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity TherapyHangzhouChina
- School of MedicineZhejiang UniversityHangzhouChina
| | - Yijin Chen
- Bone Marrow Transplantation Center, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang UniversityHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity TherapyHangzhouChina
- School of MedicineZhejiang UniversityHangzhouChina
| | - Honghu Li
- Bone Marrow Transplantation Center, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang UniversityHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity TherapyHangzhouChina
- School of MedicineZhejiang UniversityHangzhouChina
| | - Yishan Ye
- Bone Marrow Transplantation Center, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang UniversityHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity TherapyHangzhouChina
- School of MedicineZhejiang UniversityHangzhouChina
| | - Xiaohong Yu
- Liangzhu LaboratoryZhejiang UniversityHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity TherapyHangzhouChina
- School of MedicineZhejiang UniversityHangzhouChina
| | - Yi Luo
- Bone Marrow Transplantation Center, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang UniversityHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity TherapyHangzhouChina
- School of MedicineZhejiang UniversityHangzhouChina
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang UniversityHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity TherapyHangzhouChina
- School of MedicineZhejiang UniversityHangzhouChina
| |
Collapse
|
5
|
Arora J, Ayyappan S, Yin C, Smith BJ, Lemke-Miltner CD, Wang Z, Farooq U, Weiner GJ. T-cell help in the tumor microenvironment enhances rituximab-mediated NK-cell ADCC. Blood 2024; 143:1816-1824. [PMID: 38457360 PMCID: PMC11076912 DOI: 10.1182/blood.2023023370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/10/2024] Open
Abstract
ABSTRACT Rituximab (RTX) and other monoclonal antibodies (mAbs) that bind directly to malignant cells are of great clinical value but are not effective for all patients. A major mechanism of action of RTX is antibody-dependent cellular cytotoxicity (ADCC) mediated by natural killer (NK) cells. Prior in vitro studies in our laboratory demonstrated that T cells contribute to maintaining the viability and cytotoxic potential of NK cells activated by anti-CD20-coated target B cells. Here, we conducted studies using a novel mouse model and clinical correlative analysis to assess whether T-cell help contribute to RTX-mediated NK-cell ADCC in the tumor microenvironment (TME) in vivo. A humanized mouse model was developed using Raji lymphoma cells and normal donor peripheral blood mononuclear cells that allows for control of T-cell numbers in the lymphoma TME. In this model, NK-cell viability and CD16 and CD25 expression dropped after RTX in the absence of T cells but increased in the presence of T cells. RTX therapy was more effective when T cells were present and was ineffective when NK cells were depleted. In patients with indolent lymphoma, fine needle aspirates were obtained before and ∼1 week after treatment with a RTX-containing regimen. There was a strong correlation between CD4+ T cells as well as total T cells in the pretherapy TME and an increase in NK-cell CD16 and CD25 expression after RTX. We conclude that T-cell help in the TME enhances RTX-mediated NK-cell viability and ADCC.
Collapse
Affiliation(s)
- Jyoti Arora
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA
| | - Sabarish Ayyappan
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
- Department of Internal Medicine, University of Iowa, Iowa City, IA
| | - Chaobo Yin
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
| | - Brian J. Smith
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
- Department of Biostatistics, University of Iowa, Iowa City, IA
| | | | - Zhaoming Wang
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
| | - Umar Farooq
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
- Department of Internal Medicine, University of Iowa, Iowa City, IA
| | - George J. Weiner
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
- Department of Internal Medicine, University of Iowa, Iowa City, IA
| |
Collapse
|
6
|
Stribbling SM, Beach C, Ryan AJ. Orthotopic and metastatic tumour models in preclinical cancer research. Pharmacol Ther 2024; 257:108631. [PMID: 38467308 DOI: 10.1016/j.pharmthera.2024.108631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/27/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Mouse models of disease play a pivotal role at all stages of cancer drug development. Cell-line derived subcutaneous tumour models are predominant in early drug discovery, but there is growing recognition of the importance of the more complex orthotopic and metastatic tumour models for understanding both target biology in the correct tissue context, and the impact of the tumour microenvironment and the immune system in responses to treatment. The aim of this review is to highlight the value that orthotopic and metastatic models bring to the study of tumour biology and drug development while pointing out those models that are most likely to be encountered in the literature. Important developments in orthotopic models, such as the increasing use of early passage patient material (PDXs, organoids) and humanised mouse models are discussed, as these approaches have the potential to increase the predictive value of preclinical studies, and ultimately improve the success rate of anticancer drugs in clinical trials.
Collapse
Affiliation(s)
- Stephen M Stribbling
- Department of Chemistry, University College London, Gower Street, London WC1E 6BT, UK.
| | - Callum Beach
- Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Anderson J Ryan
- Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK; Fast Biopharma, Aston Rowant, Oxfordshire, OX49 5SW, UK.
| |
Collapse
|
7
|
Yang Y, Li J, Li D, Zhou W, Yan F, Wang W. Humanized mouse models: A valuable platform for preclinical evaluation of human cancer. Biotechnol Bioeng 2024; 121:835-852. [PMID: 38151887 DOI: 10.1002/bit.28618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/26/2023] [Indexed: 12/29/2023]
Abstract
Animal models are routinely employed to assess the treatments for human cancer. However, due to significant differences in genetic backgrounds, traditional animal models are unable to meet bioresearch needs. To overcome this restriction, researchers have generated and optimized immunodeficient mice, and then engrafted human genes, cells, tissues, or organs in mice so that the responses in the model mice could provide a more reliable reference for treatments. As a bridge connecting clinical application and basic research, humanized mice are increasingly used in the preclinical evaluation of cancer treatments, particularly after gene interleukin 2 receptor gamma mutant mice were generated. Human cancer models established in humanized mice support exploration of the mechanism of cancer occurrence and provide an efficient platform for drug screening. However, it is undeniable that the further application of humanized mice still faces multiple challenges. This review summarizes the construction approaches for humanized mice and their existing limitations. We also report the latest applications of humanized mice in preclinical evaluation for the treatment of cancer and point out directions for future optimization of these models.
Collapse
Affiliation(s)
- Yuening Yang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaqian Li
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Li
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Weilin Zhou
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Feiyang Yan
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Wang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Jia B, Zhao C, Minagawa K, Shike H, Claxton DF, Ehmann WC, Rybka WB, Mineishi S, Wang M, Schell TD, Prabhu KS, Paulson RF, Zhang Y, Shultz LD, Zheng H. Acute Myeloid Leukemia Causes T Cell Exhaustion and Depletion in a Humanized Graft-versus-Leukemia Model. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1426-1437. [PMID: 37712758 DOI: 10.4049/jimmunol.2300111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (alloSCT) is, in many clinical settings, the only curative treatment for acute myeloid leukemia (AML). The clinical benefit of alloSCT greatly relies on the graft-versus-leukemia (GVL) effect. However, AML relapse remains the top cause of posttransplant death; this highlights the urgent need to enhance GVL. Studies of human GVL have been hindered by the lack of optimal clinically relevant models. In this article, we report, the successful establishment of a novel (to our knowledge) humanized GVL model system by transplanting clinically paired donor PBMCs and patient AML into MHC class I/II knockout NSG mice. We observed significantly reduced leukemia growth in humanized mice compared with mice that received AML alone, demonstrating a functional GVL effect. Using this model system, we studied human GVL responses against human AML cells in vivo and discovered that AML induced T cell depletion, likely because of increased T cell apoptosis. In addition, AML caused T cell exhaustion manifested by upregulation of inhibitory receptors, increased expression of exhaustion-related transcription factors, and decreased T cell function. Importantly, combined blockade of human T cell-inhibitory pathways effectively reduced leukemia burden and reinvigorated CD8 T cell function in this model system. These data, generated in a highly clinically relevant humanized GVL model, not only demonstrate AML-induced inhibition of alloreactive T cells but also identify promising therapeutic strategies targeting T cell depletion and exhaustion for overcoming GVL failure and treating AML relapse after alloSCT.
Collapse
Affiliation(s)
- Bei Jia
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA
| | - Chenchen Zhao
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA
| | - Kentaro Minagawa
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA
| | - Hiroko Shike
- Department of Pathology, Penn State University College of Medicine, Hershey, PA
| | - David F Claxton
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA
| | - W Christopher Ehmann
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA
| | - Witold B Rybka
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA
| | - Shin Mineishi
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA
| | - Ming Wang
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Todd D Schell
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA
- Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA
| | - K Sandeep Prabhu
- Department of Veterinary and Biomedical Sciences, Penn State University, University Park, PA
| | - Robert F Paulson
- Department of Veterinary and Biomedical Sciences, Penn State University, University Park, PA
| | - Yi Zhang
- Center for Discovery and Innovation, Hackensack Meridian Health, Edison, NJ
| | - Leonard D Shultz
- Department of Immunology, The Jackson Laboratory, Bar Harbor, ME
| | - Hong Zheng
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA
- Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA
| |
Collapse
|
9
|
Cao Z, Xu D, Harding J, Chen W, Liu X, Wang Z, Wang L, Qi T, Chen S, Guo X, Chen ISY, Guo J, Lu Y, Wen J. Lactate oxidase nanocapsules boost T cell immunity and efficacy of cancer immunotherapy. Sci Transl Med 2023; 15:eadd2712. [PMID: 37820006 PMCID: PMC10720694 DOI: 10.1126/scitranslmed.add2712] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/12/2023] [Indexed: 10/13/2023]
Abstract
Cancer immunotherapy has reshaped the landscape of cancer treatment. However, its efficacy is still limited by tumor immunosuppression associated with the excessive production of lactate by cancer cells. Although extensive efforts have been made to reduce lactate concentrations through inhibition of lactate dehydrogenase, such inhibitors disrupt the metabolism of healthy cells, causing severe nonspecific toxicity. We report herein a nanocapsule enzyme therapeutic based on lactate oxidase, which reduces lactate concentrations and releases immunostimulatory hydrogen peroxide, averting tumor immunosuppression and improving the efficacy of immune checkpoint blockade treatment. As demonstrated in a murine melanoma model and a humanized mouse model of triple-negative breast cancer, this enzyme therapeutic affords an effective tool toward more effective cancer immunotherapy.
Collapse
Affiliation(s)
- Zheng Cao
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles; Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine; UCLA AIDS Institute, University of California Los Angeles; Los Angeles, CA 90095, USA CA 90095, USA
| | - Duo Xu
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles; Los Angeles, CA 90095, USA
| | - Jeffrey Harding
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine; UCLA AIDS Institute, University of California Los Angeles; Los Angeles, CA 90095, USA CA 90095, USA
| | - Wenting Chen
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles; Los Angeles, CA 90095, USA
| | - Xiangsheng Liu
- Division of Nanomedicine, Department of Medicine, University of California Los Angeles; Los Angeles, CA 90095, USA CA 90095, USA
| | - Zi Wang
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles; Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine; UCLA AIDS Institute, University of California Los Angeles; Los Angeles, CA 90095, USA CA 90095, USA
| | - Lan Wang
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine; UCLA AIDS Institute, University of California Los Angeles; Los Angeles, CA 90095, USA CA 90095, USA
| | - Tong Qi
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles; Los Angeles, CA 90095, USA
| | - Shilin Chen
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles; Los Angeles, CA 90095, USA
| | - Xinheng Guo
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles; Los Angeles, CA 90095, USA
| | - Irvin SY Chen
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine; UCLA AIDS Institute, University of California Los Angeles; Los Angeles, CA 90095, USA CA 90095, USA
| | - Jimin Guo
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles; Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine; UCLA AIDS Institute, University of California Los Angeles; Los Angeles, CA 90095, USA CA 90095, USA
| | - Yunfeng Lu
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles; Los Angeles, CA 90095, USA
| | - Jing Wen
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine; UCLA AIDS Institute, University of California Los Angeles; Los Angeles, CA 90095, USA CA 90095, USA
| |
Collapse
|
10
|
Szymula A, Samayoa-Reyes G, Ogolla S, Liu B, Li S, George A, Van Sciver N, Rochford R, Simas JP, Kaye KM. Macrophages drive KSHV B cell latency. Cell Rep 2023; 42:112767. [PMID: 37440412 PMCID: PMC10528218 DOI: 10.1016/j.celrep.2023.112767] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/06/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Kaposi's sarcoma herpesvirus (KSHV) establishes lifelong infection and persists in latently infected B cells. Paradoxically, in vitro B cell infection is inefficient, and cells rapidly die, suggesting the absence of necessary factor(s). KSHV epidemiology unexpectedly mirrors that of malaria and certain helminthic infections, while other herpesviruses are ubiquitous. Elevated circulating monocytes are common in these parasitic infections. Here, we show that KSHV infection of monocytes or M-CSF-differentiated (M2) macrophages is highly efficient. Proteomic analyses demonstrate that infection induces macrophage production of B cell chemoattractants and activating factor. We find that KSHV acts with monocytes or M2 macrophages to stimulate B cell survival, proliferation, and plasmablast differentiation. Further, macrophages drive infected plasma cell differentiation and long-term viral latency. In Kenya, where KSHV is endemic, we find elevated monocyte levels in children with malaria. These findings demonstrate a role for mononuclear phagocytes in KSHV B cell latency and suggest that mononuclear phagocyte abundance may underlie KSHV's geographic disparity.
Collapse
Affiliation(s)
- Agnieszka Szymula
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Program in Virology, Harvard Medical School, Boston, MA 02115, USA
| | - Gabriela Samayoa-Reyes
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Sidney Ogolla
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu 40100, Kenya
| | - Bing Liu
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Program in Virology, Harvard Medical School, Boston, MA 02115, USA
| | - Shijun Li
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Program in Virology, Harvard Medical School, Boston, MA 02115, USA
| | - Athira George
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Program in Virology, Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas Van Sciver
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Program in Virology, Harvard Medical School, Boston, MA 02115, USA
| | - Rosemary Rochford
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu 40100, Kenya
| | - J Pedro Simas
- Instituto de Medicina Molecular, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal; Católica Biomedical Research, Católica Medical School, Universidade Católica Portuguesa, Palma de Cima, 1649-023 Lisboa, Portugal.
| | - Kenneth M Kaye
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Program in Virology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
11
|
Shu Y, Peng F, Zhao B, Liu C, Li Q, Li H, Wang Y, Jiang Y, Lu T, Wang Q, Sun J, Feng H, Lu Z, Liu X, Wang J, Qiu W. Transfer of patient's peripheral blood mononuclear cells (PBMCs) disrupts blood-brain barrier and induces anti-NMDAR encephalitis: a study of novel humanized PBMC mouse model. J Neuroinflammation 2023; 20:164. [PMID: 37443034 DOI: 10.1186/s12974-023-02844-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a severe autoimmune neuropsychiatric disease. Brain access of anti-NMDAR autoantibody through the blood-brain barrier (BBB) is essential for pathogenesis. Most previous animal models limit the investigation of etiologies of BBB damage in patients. METHODS In this study, we established a novel humanized mouse model of anti-NMDAR encephalitis by intraperitoneal injection of patients' peripheral blood mononuclear cells (PBMCs) into BALB/c Rag2-/-Il2rg-/-SirpαNODFlk2-/- mice. RESULTS We found that engraftment of patients' PBMCs not only produced potent anti-GluN1 autoantibodies, but also disrupted BBB integrity to allow brain access of autoantibodies, resulting in a hyperactive locomotor phenotype, anxiety- and depressive-like behaviors, cognitive deficits, as well as functional changes in corresponding brain regions. Transcriptome analysis suggested an exaggerated immune response and impaired neurotransmission in the mouse model and highlighted Il-1β as a hub gene implicated in pathological changes. We further demonstrated that Il-1β was produced by endothelial cells and disrupted BBB by repressing tight junction proteins. Treatment with Anakinra, an Il-1 receptor antagonist, ameliorated BBB damage and neuropsychiatric behaviors. CONCLUSIONS Our study provided a novel and clinically more relevant humanized mouse model of anti-NMDAR encephalitis and revealed an intrinsic pathogenic property of the patient's lymphocytes.
Collapse
Affiliation(s)
- Yaqing Shu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Fuhua Peng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Bingchu Zhao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, China
| | - Chunxin Liu
- Department of Emergency, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Qihui Li
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Huilu Li
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yuge Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yanjun Jiang
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, China
- Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tingting Lu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Qin Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jian Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaCollege of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Huiyu Feng
- Department of Neurology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zhengqi Lu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xiaodong Liu
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, China.
- Institute of Neuroscience and Brain Diseases; Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| |
Collapse
|
12
|
Hye Jeong J, Park S, Lee S, Kim Y, Kyong Shim I, Jeong SY, Kyung Choi E, Kim J, Jun E. Orthotopic model of pancreatic cancer using CD34 + humanized mice and generation of tumor organoids from humanized tumors. Int Immunopharmacol 2023; 121:110451. [PMID: 37331294 DOI: 10.1016/j.intimp.2023.110451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023]
Abstract
In pancreatic cancer (PC) as intractable solid cancer, current research is focused mainly on targeted immunotherapies such as antibodies and immune cell modulators. To identify promising immune-oncological agents, animal models that recapitulate the essential features of human immune status are essential. To this end, we constructed an orthotopic xenograft model using CD34+ human hematopoietic stem cell-based humanized NOD scid gamma mouse (NSG) mice injected with luciferase-expressing PC cell lines AsPC1 and BxPC3. The growth of orthotopic tumors was monitored using noninvasive multimodal imaging, while the subtype profiles of human immune cells in blood and tumor tissues were determined by flow cytometry and immunohistopathology. In addition, the correlations of blood and tumor-infiltrating immune cell count with tumor extracellular matrix density were calculated using Spearman's test. Tumor-derived cell lines and tumor organoids with continuous passage capacity in vitro were isolated from orthotopic tumors. It was further confirmed that these tumor-derived cells and organoids have reduced PD-L1 expression and are suitable for testing the efficacy of specific targeted immunotherapeutic agents. These animal and culture models could facilitate the development and validation of immunotherapeutic agents for intractable solid cancers including PC.
Collapse
Affiliation(s)
- Ji Hye Jeong
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Sujin Park
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Medical Science, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Sangyeon Lee
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Yeounhee Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Medical Science, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - In Kyong Shim
- Department of Convergence Medicine, ASAN Medical Center, Seoul 05505, Republic of Korea
| | - Seong-Yun Jeong
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Convergence Medicine, ASAN Medical Center, Seoul 05505, Republic of Korea; Asan Preclinical Evaluation Center for Cancer TherapeutiX, ASAN Medical Center, Seoul 05505, Republic of Korea
| | - Eun Kyung Choi
- Asan Preclinical Evaluation Center for Cancer TherapeutiX, ASAN Medical Center, Seoul 05505, Republic of Korea; Department of Radiation Oncology, ASAN Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Jinju Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Eunsung Jun
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Convergence Medicine, ASAN Medical Center, Seoul 05505, Republic of Korea; Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea.
| |
Collapse
|
13
|
Xue B, Schüler J, Harrod CM, Lashuk K, Bomya Z, Hribar KC. A Novel Hydrogel-Based 3D In Vitro Tumor Panel of 30 PDX Models Incorporates Tumor, Stromal and Immune Cell Compartments of the TME for the Screening of Oncology and Immuno-Therapies. Cells 2023; 12:1145. [PMID: 37190054 PMCID: PMC10137152 DOI: 10.3390/cells12081145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Human-relevant systems that mimic the 3D tumor microenvironment (TME), particularly the complex mechanisms of immuno-modulation in the tumor stroma, in a reproducible and scalable format are of high interest for the drug discovery industry. Here, we describe a novel 3D in vitro tumor panel comprising 30 distinct PDX models covering a range of histotypes and molecular subtypes and cocultured with fibroblasts and PBMCs in planar (flat) extracellular matrix hydrogels to reflect the three compartments of the TME-tumor, stroma, and immune cells. The panel was constructed in a 96-well plate format and assayed tumor size, tumor killing, and T-cell infiltration using high-content image analysis after 4 days of treatment. We screened the panel first against the chemotherapy drug Cisplatin to demonstrate feasibility and robustness, and subsequently assayed immuno-oncology agents Solitomab (CD3/EpCAM bispecific T-cell engager) and the immune checkpoint inhibitors (ICIs) Atezolizumab (anti-PDL1), Nivolumab (anti-PD1) and Ipilimumab (anti-CTLA4). Solitomab displayed a strong response across many PDX models in terms of tumor reduction and killing, allowing for its subsequent use as a positive control for ICIs. Interestingly, Atezolizumab and Nivolumab demonstrated a mild response compared to Ipilimumab in a subset of models from the panel. We later determined that PBMC spatial proximity in the assay setup was important for the PD1 inhibitor, hypothesizing that both duration and concentration of antigen exposure may be critical. The described 30-model panel represents a significant advancement toward screening in vitro models of the tumor microenvironment that include tumor, fibroblast, and immune cell populations in an extracellular matrix hydrogel, with robust and standardized high content image analysis in a planar hydrogel. The platform is aimed at rapidly screening various combinations and novel agents and forming a critical conduit to the clinic, thus accelerating drug discovery for the next generation of therapeutics.
Collapse
Affiliation(s)
- Bin Xue
- Cypre, Inc., South San Francisco, CA 94080, USA
| | - Julia Schüler
- Charles River Discovery Research Services Germany GmbH, 79108 Freiburg, Germany
| | | | - Kanstantsin Lashuk
- Charles River Discovery Research Services Germany GmbH, 79108 Freiburg, Germany
| | - Zoji Bomya
- Cypre, Inc., South San Francisco, CA 94080, USA
| | | |
Collapse
|
14
|
Chuprin J, Buettner H, Seedhom MO, Greiner DL, Keck JG, Ishikawa F, Shultz LD, Brehm MA. Humanized mouse models for immuno-oncology research. Nat Rev Clin Oncol 2023; 20:192-206. [PMID: 36635480 PMCID: PMC10593256 DOI: 10.1038/s41571-022-00721-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 01/14/2023]
Abstract
Immunotherapy has emerged as a promising treatment paradigm for many malignancies and is transforming the drug development landscape. Although immunotherapeutic agents have demonstrated clinical efficacy, they are associated with variable clinical responses, and substantial gaps remain in our understanding of their mechanisms of action and specific biomarkers of response. Currently, the number of preclinical models that faithfully recapitulate interactions between the human immune system and tumours and enable evaluation of human-specific immunotherapies in vivo is limited. Humanized mice, a term that refers to immunodeficient mice co-engrafted with human tumours and immune components, provide several advantages for immuno-oncology research. In this Review, we discuss the benefits and challenges of the currently available humanized mice, including specific interactions between engrafted human tumours and immune components, the development and survival of human innate immune populations in these mice, and approaches to study mice engrafted with matched patient tumours and immune cells. We highlight the latest advances in the generation of humanized mouse models, with the aim of providing a guide for their application to immuno-oncology studies with potential for clinical translation.
Collapse
Affiliation(s)
- Jane Chuprin
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Molecular, Cell and Cancer Biology, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Hannah Buettner
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Surgery, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Mina O Seedhom
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Dale L Greiner
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | | | | | - Michael A Brehm
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
15
|
Rothemejer FH, Lauritsen NP, Juhl AK, Schleimann MH, König S, Søgaard OS, Bak RO, Tolstrup M. Development of HIV-Resistant CAR T Cells by CRISPR/Cas-Mediated CAR Integration into the CCR5 Locus. Viruses 2023; 15:202. [PMID: 36680242 PMCID: PMC9862650 DOI: 10.3390/v15010202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Adoptive immunotherapy using chimeric antigen receptor (CAR) T cells has been highly successful in treating B cell malignancies and holds great potential as a curative strategy for HIV infection. Recent advances in the use of anti-HIV broadly neutralizing antibodies (bNAbs) have provided vital information for optimal antigen targeting of CAR T cells. However, CD4+ CAR T cells are susceptible to HIV infection, limiting their therapeutic potential. In the current study, we engineered HIV-resistant CAR T cells using CRISPR/Cas9-mediated integration of a CAR cassette into the CCR5 locus. We used a single chain variable fragment (scFv) of the clinically potent bNAb 10-1074 as the antigen-targeting domain in our anti-HIV CAR T cells. Our anti-HIV CAR T cells showed specific lysis of HIV-infected cells in vitro. In a PBMC humanized mouse model of HIV infection, the anti-HIV CAR T cells expanded and transiently limited HIV infection. In conclusion, this study provides proof-of-concept for developing HIV-resistant CAR T cells using CRISPR/Cas9 targeted integration.
Collapse
Affiliation(s)
- Frederik Holm Rothemejer
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Nanna Pi Lauritsen
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Anna Karina Juhl
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Mariane Høgsbjerg Schleimann
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Saskia König
- Department of Biomedicine, Aarhus University, 8200 Aarhus, Denmark
| | - Ole Schmeltz Søgaard
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Rasmus O. Bak
- Department of Biomedicine, Aarhus University, 8200 Aarhus, Denmark
- Aarhus Institute of Advanced Studies, Aarhus University, 8200 Aarhus, Denmark
| | - Martin Tolstrup
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark
| |
Collapse
|
16
|
Fellermeyer M, Anzilotti C, Paluch C, Cornall RJ, Davis SJ, Gileadi U. Combination CD200R/PD-1 blockade in a humanised mouse model. IMMUNOTHERAPY ADVANCES 2023; 3:ltad006. [PMID: 37082107 PMCID: PMC10112683 DOI: 10.1093/immadv/ltad006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/29/2023] [Indexed: 04/22/2023] Open
Abstract
There is an increasing number of immune-checkpoint inhibitors being developed and approved for cancer immunotherapy. Most of the new therapies aim to reactivate tumour-infiltrating T cells, which are responsible for tumour killing. However, in many tumours, the most abundant infiltrating immune cells are macrophages and myeloid cells, which can be tumour-promoting as well as tumouricidal. CD200R was initially identified as a myeloid-restricted, inhibitory immune receptor, but was subsequently also found to be expressed within the lymphoid lineage. Using a mouse model humanised for CD200R and PD-1, we investigated the potential of a combination therapy comprising nivolumab, a clinically approved PD-1 blocking antibody, and OX108, a CD200R antagonist. We produced nivolumab as a murine IgG1 antibody and validated its binding activity in vitro as well as ex vivo. We then tested the combination therapy in the immunogenic colorectal cancer model MC38 as well as the PD-1 blockade-resistant lung cancer model LLC1, which is characterised by a large number of infiltrating myeloid cells, making it an attractive target for CD200R blockade. No significant improvement of overall survival was found in either model, compared to nivolumab mIgG1 monotherapy. There was a trend for more complete responses in the MC38 model, but investigation of the infiltrating immune cells failed to account for this. Importantly, MC38 cells expressed low levels of CD200, whereas LLC1 cells were CD200-negative. Further investigation of CD200R-blocking antibodies in tumours expressing high levels of CD200 could be warranted.
Collapse
Affiliation(s)
- Martin Fellermeyer
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Consuelo Anzilotti
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford, UK
| | - Christopher Paluch
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford, UK
| | - Richard J Cornall
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford, UK
- CAMS Oxford Institute, Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford, UK
| | - Simon J Davis
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Uzi Gileadi
- Correspondence: MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| |
Collapse
|
17
|
Shang P, Yu L, Cao S, Guo C, Zhang W. An improved cell line-derived xenograft humanized mouse model for evaluation of PD-1/PD-L1 blocker BMS202-induced immune responses in colorectal cancer. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1497-1506. [PMID: 36269133 PMCID: PMC9827804 DOI: 10.3724/abbs.2022145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The establishment of an in vivo mouse model mimicking human tumor-immune environments provides a promising platform for immunotherapy assessment, drug discovery and clinical decision guidance. To this end, we construct humanized NCG mice by transplanting human hCD34 + hematopoietic progenitors into non-obese diabetic (NOD) Cg- Prkdc scidIL2rg tm1Wjl /Sz (null; NCG) mice and monitoring the development of human hematopoietic and immune systems (Hu-NCG). The cell line-derived xenograft (CDX) Hu-NCG mouse models are set up to assess the outcome of immunotherapy mediated by the small molecule BMS202. As a PD-1/PD-L1 blocker, BMS202 shows satisfactory antitumour efficacy in the HCT116 and SW480 xenograft Hu-NCG mouse models. Mechanistically, BMS202 exerts antitumour efficacy by improving the tumor microenvironment and enhancing the infiltration of hCD8 + T cells and the release of hIFNγ in tumor tissue. Thus, tumor-bearing Hu-NCG mice are a suitable and important in vivo model for preclinical study, particularly in cancer immunotherapy.
Collapse
Affiliation(s)
- Pengzhao Shang
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjing210009China
| | - Liting Yu
- Department of PharmacyBinzhou Medical UniversityYantai264003China
| | - Shucheng Cao
- School of EngineeringChina Pharmaceutical UniversityNanjing210009China
| | - Changying Guo
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjing210009China,Correspondence address. Tel: +86-15737957481; (W.Z.) / Tel: +86-18252099426; (C.G.) @cpu.edu.cn
| | - Wanheng Zhang
- Department of Pharmacythe First Affiliated Hospitaland College of Clinical Medicine of Henan University of Science and TechnologyLuoyang471003China,Correspondence address. Tel: +86-15737957481; (W.Z.) / Tel: +86-18252099426; (C.G.) @cpu.edu.cn
| |
Collapse
|
18
|
Charbonneau M, Harper K, Brochu-Gaudreau K, Perreault A, McDonald PP, Ekindi-Ndongo N, Jeldres C, Dubois CM. Establishment of a ccRCC patient-derived chick chorioallantoic membrane model for drug testing. Front Med (Lausanne) 2022; 9:1003914. [PMID: 36275794 PMCID: PMC9582329 DOI: 10.3389/fmed.2022.1003914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is an aggressive subtype of renal cell carcinoma accounting for the majority of deaths in kidney cancer patients. Advanced ccRCC has a high mortality rate as most patients progress and develop resistance to currently approved targeted therapies, highlighting the ongoing need for adequate drug testing models to develop novel therapies. Current animal models are expensive and time-consuming. In this study, we investigated the use of the chick chorioallantoic membrane (CAM), a rapid and cost-effective model, as a complementary drug testing model for ccRCC. Our results indicated that tumor samples from ccRCC patients can be successfully cultivated on the chick chorioallantoic membrane (CAM) within 7 days while retaining their histopathological characteristics. Furthermore, treatment of ccRCC xenografts with sunitinib, a tyrosine kinase inhibitor used for the treatment of metastatic RCC, allowed us to evaluate differential responses of individual patients. Our results indicate that the CAM model is a complementary in vivo model that allows for rapid and cost-effective evaluation of ccRCC patient response to drug therapy. Therefore, this model has the potential to become a useful platform for preclinical evaluation of new targeted therapies for the treatment of ccRCC.
Collapse
Affiliation(s)
- Martine Charbonneau
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Kelly Harper
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Karine Brochu-Gaudreau
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alexis Perreault
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | - Claudio Jeldres
- Division of Urology, Department of Surgery, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Claire M. Dubois
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada,*Correspondence: Claire M. Dubois
| |
Collapse
|
19
|
Kanikarla Marie P, Sorokin AV, Bitner LA, Aden R, Lam M, Manyam G, Woods MN, Anderson A, Capasso A, Fowlkes N, Overman MJ, Menter DG, Kopetz S. Autologous humanized mouse models to study combination and single-agent immunotherapy for colorectal cancer patient-derived xenografts. Front Oncol 2022; 12:994333. [PMID: 36212401 PMCID: PMC9532947 DOI: 10.3389/fonc.2022.994333] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/02/2022] [Indexed: 11/24/2022] Open
Abstract
Designing studies of immunotherapy is limited due to a lack of pre-clinical models that reliably predict effective immunotherapy responses. To address this gap, we developed humanized mouse models of colorectal cancer (CRC) incorporating patient-derived xenografts (PDX) with human peripheral blood mononuclear cells (PBMC). Humanized mice with CRC PDXs were generated via engraftment of autologous (isolated from the same patients as the PDXs) or allogeneic (isolated from healthy donors) PBMCs. Human T cells were detected in mouse blood, tissues, and infiltrated the implanted PDXs. The inclusion of anti-PD-1 therapy revealed that tumor responses in autologous but not allogeneic models were more comparable to that of patients. An overall non-specific graft-vs-tumor effect occurred in allogeneic models and negatively correlated with that seen in patients. In contrast, autologous humanized mice more accurately correlated with treatment outcomes by engaging pre-existing tumor specific T-cell populations. As autologous T cells appear to be the major drivers of tumor response thus, autologous humanized mice may serve as models at predicting treatment outcomes in pre-clinical settings for therapies reliant on pre-existing tumor specific T-cell populations.
Collapse
Affiliation(s)
- Preeti Kanikarla Marie
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Alexey V. Sorokin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lea A. Bitner
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rebecca Aden
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael Lam
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ganiraju Manyam
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Melanie N. Woods
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Amanda Anderson
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anna Capasso
- Department of Oncology, The University of Texas Health Austin, Austin, TX, United States
| | - Natalie Fowlkes
- Department of Veterinary Medicine & Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael J. Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - David G. Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- *Correspondence: Scott Kopetz,
| |
Collapse
|
20
|
Janakiraman H, Becker SA, Bradshaw A, Rubinstein MP, Camp ER. Critical evaluation of an autologous peripheral blood mononuclear cell-based humanized cancer model. PLoS One 2022; 17:e0273076. [PMID: 36095023 PMCID: PMC9467357 DOI: 10.1371/journal.pone.0273076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 07/26/2022] [Indexed: 11/29/2022] Open
Abstract
The use of humanized mouse models for oncology is rapidly expanding. Autologous patient-derived systems are particularly attractive as they can model the human cancer's heterogeneity and immune microenvironment. In this study, we developed an autologous humanized mouse cancer model by engrafting NSG mice with patient-derived xenografts and infused matched peripheral blood mononuclear cells (PBMCs). We first defined the time course of xenogeneic graft-versus-host-disease (xGVHD) and determined that only minimal xGVHD was observed for up to 8 weeks. Next, colorectal and pancreatic cancer patient-derived xenograft bearing NSG mice were infused with 5x106 human PBMCS for development of the humanized cancer models (iPDX). Early after infusion of human PBMCs, iPDX mice demonstrated engraftment of human CD4+ and CD8+ T cells in the blood of both colorectal and pancreatic cancer patient-derived models that persisted for up to 8 weeks. At the end of the experiment, iPDX xenografts maintained the features of the primary human tumor including tumor grade and cell type. The iPDX tumors demonstrated infiltration of human CD3+ cells with high PD-1 expression although we observed significant intra and inter- model variability. In summary, the iPDX models reproduced key features of the corresponding human tumor. The observed variability and high PD-1 expression are important considerations that need to be addressed in order to develop a reproducible model system.
Collapse
Affiliation(s)
- Harinarayanan Janakiraman
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, United States of America
| | - Scott A. Becker
- Molecular and Systems Pharmacology, Emory University, Atlanta, GA, United States of America
| | - Alexandra Bradshaw
- Department of Surgery, Medical University Of South Carolina, Charleston, SC, United States of America
| | - Mark P. Rubinstein
- The Pelotonia Institute for Immuno-Oncology, Ohio State University Comprehensive Cancer Center–James, Columbus, OH, United States of America
| | - Ernest Ramsay Camp
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L. Duncan Comprehensive Cancer Center, Houston, Texas, United States of America
- Michael E. DeBakey VA Medical Center, Houston, Texas, United States of America
| |
Collapse
|
21
|
Monzavi SM, Muhammadnejad A, Behfar M, Khorsand AA, Muhammadnejad S, Kajbafzadeh AM. Spontaneous xenogeneic GvHD in Wilms' tumor Patient-Derived xenograft models and potential solutions. Animal Model Exp Med 2022; 5:389-396. [PMID: 35726155 PMCID: PMC9434572 DOI: 10.1002/ame2.12254] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/15/2022] [Indexed: 11/07/2022] Open
Abstract
Severely immunocompromised NOD.Cg-Prkdcscid Il2rgtm1Sug (NOG) mice are among the ideal animal recipients for generation of human cancer models. Transplantation of human solid tumors having abundant tumor-infiltrating lymphocytes (TILs) can induce xenogeneic graft-versus-host disease (xGvHD) following engraftment and expansion of the TILs inside the animal body. Wilms' tumor (WT) has not been recognized as a lymphocyte-predominant tumor. However, 3 consecutive generations of NOG mice bearing WT patient-derived xenografts (PDX) xenotransplanted from a single donor showed different degrees of inflammatory symptoms after transplantation before any therapeutic intervention. In the initial generation, dermatitis, auto-amputation of digits, weight loss, lymphadenopathy, hepatitis, and interstitial pneumonitis were observed. Despite antibiotic treatment, no response was noticed, and thus the animals were prematurely euthanized (day 47 posttransplantation). Laboratory and histopathologic evaluations revealed lymphoid infiltrates positively immunostained with anti-human CD3 and CD8 antibodies in the xenografts and primary tumor, whereas no microbial infection or lymphoproliferative disorder was found. Mice of the next generation that lived longer (91 days) developed sclerotic skin changes and more severe pneumonitis. Cutaneous symptoms were milder in the last generation. The xenografts of the last 2 generations also contained TILs, and lacked lymphoproliferative transformation. The systemic immunoinflammatory syndrome in the absence of microbial infection and posttransplant lymphoproliferative disorder was suggestive of xGvHD. While there are few reports of xGvHD in severely immunodeficient mice xenotransplanted from lymphodominant tumor xenografts, this report for the first time documented serial xGvHD in consecutive passages of WT PDX-bearing models and discussed potential solutions to prevent such an undesired complication.
Collapse
Affiliation(s)
- Seyed Mostafa Monzavi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Pediatric Urology and Regenerative Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Gene Therapy Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahad Muhammadnejad
- Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran.,PDX Platform, Biomarker Evaluation and Supervision Team for Personalized Medicine, Molecular Tumor Board, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Behfar
- Pediatric Cell and Gene Therapy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Arsalan Khorsand
- Gene Therapy Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.,PDX Platform, Biomarker Evaluation and Supervision Team for Personalized Medicine, Molecular Tumor Board, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Samad Muhammadnejad
- Gene Therapy Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.,PDX Platform, Biomarker Evaluation and Supervision Team for Personalized Medicine, Molecular Tumor Board, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran.,Pediatric Cell and Gene Therapy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdol-Mohammad Kajbafzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Pediatric Urology and Regenerative Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,PDX Platform, Biomarker Evaluation and Supervision Team for Personalized Medicine, Molecular Tumor Board, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Compte M, Sanz L, Álvarez-Vallina L. Applications of trimerbodies in cancer immunotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 369:71-87. [PMID: 35777865 DOI: 10.1016/bs.ircmb.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Trimerbodies, with their unique structural and functional properties, are the basis of a new generation of therapeutic antibodies, which due to their small size and plasticity are ideal for the generation of novel biological protein drugs with multiple competitive advantages over conventional full-length monoclonal antibodies. Since their emergence, trimerbodies have been used in preclinical cancer diagnosis and therapy. Trimerbodies are highly adaptable molecules, as they allow target-specific modulation of T cell-mediated anti-tumor immunity to enhance preexisting responses or to generate de novo immune responses. In fact, a tumor-specific humanized 4-1BB-agonistic trimerbody has shown a rather impressive safety and efficacy profile in preclinical studies making it a realistic option for clinical development. Moreover, thanks to the avidity effect they are endowed with considerable therapeutic potential as carriers to deliver cytotoxic payloads to tumors. In addition, molecular imaging studies could benefit from some intermediate-sized trivalent trimerbodies as promising candidates for targeted therapy and tumor imaging.
Collapse
Affiliation(s)
- Marta Compte
- Department of Antibody Engineering, Leadartis S.L., Madrid, Spain
| | - Laura Sanz
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Madrid, Spain
| | - Luis Álvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario12 de Octubre, Madrid, Spain; Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain.
| |
Collapse
|
23
|
Xie X, Lee J, Iwase T, Kai M, Ueno NT. Emerging drug targets for triple-negative breast cancer: A guided tour of the preclinical landscape. Expert Opin Ther Targets 2022; 26:405-425. [PMID: 35574694 DOI: 10.1080/14728222.2022.2077188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is the most fatal molecular subtype of breast cancer because of its aggressiveness and resistance to chemotherapy. FDA-approved therapies for TNBC are limited to poly(ADP-ribose) polymerase inhibitors, immune checkpoint inhibitors, and trophoblast cell surface antigen 2-targeted antibody-drug conjugate. Therefore, developing a novel effective targeted therapy for TNBC is an urgent unmet need. AREAS COVERED In this narrative review, we discuss emerging targets for TNBC treatment discovered in early translational studies. We focus on cancer cell membrane molecules, hyperactive intracellular signaling pathways, and the tumor microenvironment (TME) based on their druggability, therapeutic potency, specificity to TNBC, and application in immunotherapy. EXPERT OPINION The significant challenges in the identification and validation of TNBC-associated targets are 1) application of appropriate genetic, molecular, and immunological approaches for modulating the target, 2) establishment of a proper mouse model that accurately represents the human immune TME, 3) TNBC molecular heterogeneity, and 4) failure translation of preclinical findings to clinical practice. To overcome those difficulties, future research needs to apply novel technology, such as single-cell RNA sequencing, thermostable group II intron reverse transcriptase sequencing, and humanized mouse models. Further, combination treatment targeting multiple pathways in both the TNBC tumor and its TME is essential for effective disease control.
Collapse
Affiliation(s)
- Xuemei Xie
- Section of Translational Breast Cancer Research, Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jangsoon Lee
- Section of Translational Breast Cancer Research, Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Toshiaki Iwase
- Section of Translational Breast Cancer Research, Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Megumi Kai
- Section of Translational Breast Cancer Research, Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Naoto T Ueno
- Section of Translational Breast Cancer Research, Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
24
|
Tsogbadrakh B, Jung JA, Lee M, Lee JA, Seo JH. Identifying serum miRNA biomarkers for radiation exposure in hematopoietic humanized NSG-SGM3 mice. Biochem Biophys Res Commun 2022; 599:51-56. [DOI: 10.1016/j.bbrc.2022.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/03/2022] [Indexed: 01/18/2023]
|
25
|
Jeong BS, Nam H, Lee J, Park HY, Cho KJ, Sheen JH, Song E, Oh M, Lee S, Choi H, Yang JE, Kim M, Oh BH. Structural and functional characterization of a monoclonal antibody blocking TIGIT. MAbs 2022; 14:2013750. [PMID: 35090381 PMCID: PMC8803117 DOI: 10.1080/19420862.2021.2013750] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
TIGIT is an immune checkpoint receptor that is expressed on subsets of activated T cells and natural killer (NK) cells. Several ligands for TIGIT, including poliovirus receptor (PVR), are expressed on cancer cells and mediate inhibitory signaling to suppress antitumor activities of the immune cells. Many studies support that the TIGIT signaling is a potential target for cancer immunotherapy. We developed an IgG4-type monoclonal antibody against human TIGIT, designated as MG1131, using a phage display library of single-chain variable fragments (scFvs). MG1131 interacts with TIGIT much more tightly than PVR does. The crystal structure of a scFv version of MG1131 bound to TIGIT was determined, showing that MG1131 could block the PVR-TIGIT interaction and thus the immunosuppressive signaling of TIGIT. Consistently, MG1131 is bound to TIGIT-expressing cells and interferes with PVR binding to these cells. Moreover, MG1131 increased NK cell-mediated tumor killing activities, inhibited immunosuppressive activity of regulatory T (Treg) cells from healthy donors, and restored interferon-γ secretion from peripheral blood mononuclear cells derived from multiple myeloma patients. MG1131 also increased T cell infiltration to the tumor site and inhibited tumor growth in mice. Collectively, these data indicate that MG1131 modulates the effector functions of T cells and NK cells positively and Treg cells negatively.
Collapse
Affiliation(s)
- Bo-Seong Jeong
- Department of Biological Sciences, Kaist Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Hyemi Nam
- Department of Target ID & Assay Development, Mogam Institute for Biomedical Research, Gyeonggi-do, Republic of Korea
| | - Jeewon Lee
- Department of Target ID & Assay Development, Mogam Institute for Biomedical Research, Gyeonggi-do, Republic of Korea
| | - Hye-Young Park
- Department of Target ID & Assay Development, Mogam Institute for Biomedical Research, Gyeonggi-do, Republic of Korea
| | - Ki Joon Cho
- Department of Target ID & Assay Development, Mogam Institute for Biomedical Research, Gyeonggi-do, Republic of Korea
| | - Joong Hyuk Sheen
- Department of Target ID & Assay Development, Mogam Institute for Biomedical Research, Gyeonggi-do, Republic of Korea
| | - Eunjung Song
- Department of Protein Engineering, Mogam Institute for Biomedical Research, Gyeonggi-do, Republic of Korea
| | - Meesook Oh
- Department of Research and Early Development, Gc Pharma, Gyeonggi-do, Republic of Korea
| | - Sunggeun Lee
- Department of Research and Early Development, Gc Pharma, Gyeonggi-do, Republic of Korea
| | - Hyemin Choi
- Department of Research and Early Development, Gc Pharma, Gyeonggi-do, Republic of Korea
| | - Jung-Eun Yang
- Department of Research and Early Development, Gc Pharma, Gyeonggi-do, Republic of Korea
| | - Munkyung Kim
- Department of Target ID & Assay Development, Mogam Institute for Biomedical Research, Gyeonggi-do, Republic of Korea
| | - Byung-Ha Oh
- Department of Biological Sciences, Kaist Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
26
|
Chen J, Liao S, Zhou H, Yang L, Guo F, Chen S, Li A, Pan Q, Yang C, Liu HF, Pan Q. Humanized Mouse Models of Systemic Lupus Erythematosus: Opportunities and Challenges. Front Immunol 2022; 12:816956. [PMID: 35116040 PMCID: PMC8804209 DOI: 10.3389/fimmu.2021.816956] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/30/2021] [Indexed: 12/11/2022] Open
Abstract
Animal models have played a crucial role in the understanding of the mechanisms and treatments of human diseases; however, owing to the large differences in genetic background and disease-specific characteristics, animal models cannot fully simulate the occurrence and progression of human diseases. Recently, humanized immune system mice, based on immunodeficient mice, have been developed that allow for the partial reconstruction of the human immune system and mimic the human in vivo microenvironment. Systemic lupus erythematosus (SLE) is a complex disease characterized by the loss of tolerance to autoantigens, overproduction of autoantibodies, and inflammation in multiple organ systems. The detailed immunological events that trigger the onset of clinical manifestations in patients with SLE are still not well known. Two methods have been adopted for the development of humanized SLE mice. They include transferring peripheral blood mononuclear cells from patients with SLE to immunodeficient mice or transferring human hematopoietic stem cells to immunodeficient mice followed by intraperitoneal injection with pristane to induce lupus. However, there are still several challenges to be overcome, such as how to improve the efficiency of reconstruction of the human B cell immune response, how to extend the lifespan and improve the survival rate of mice to extend the observation period, and how to improve the development of standardized commercialized models and use them. In summary, there are opportunities and challenges for the development of humanized mouse models of SLE, which will provide novel strategies for understanding the mechanisms and treatments of SLE.
Collapse
Affiliation(s)
- Jiaxuan Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shuzhen Liao
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Huimin Zhou
- Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| | - Lawei Yang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Fengbiao Guo
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shuxian Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Aifen Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Quanren Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chen Yang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hua-feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- *Correspondence: Hua-feng Liu, ; Qingjun Pan,
| | - Qingjun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- *Correspondence: Hua-feng Liu, ; Qingjun Pan,
| |
Collapse
|
27
|
Chang JYF, Tseng CH, Lu PH, Wang YP. Contemporary Molecular Analyses of Malignant Tumors for Precision Treatment and the Implication in Oral Squamous Cell Carcinoma. J Pers Med 2021; 12:jpm12010012. [PMID: 35055327 PMCID: PMC8780757 DOI: 10.3390/jpm12010012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
New molecular tests and methods, in addition to morphology-based diagnosis, are widely used as a new standard of care in many tumors. “One-size-fits-all medicine” is now shifting to precision medicine. This review is intended to discuss the key steps toward to development of precision medicine and its implication in oral squamous cell carcinoma. The challenges and opportunities of precision medicine in oral cancer will be sequentially discussed based on the four steps of precision medicine: identification/detection, diagnosis, treatment and monitoring.
Collapse
Affiliation(s)
- Julia Yu Fong Chang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei 10617, Taiwan; (J.Y.F.C.); (C.-H.T.); (P.H.L.)
- Department of Dentistry, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Huang Tseng
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei 10617, Taiwan; (J.Y.F.C.); (C.-H.T.); (P.H.L.)
- Division of Oral Pathology & Maxillofacial Radiology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Division Oral & Maxillofacial Imaging Center, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Pei Hsuan Lu
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei 10617, Taiwan; (J.Y.F.C.); (C.-H.T.); (P.H.L.)
- Department of Dentistry, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Ping Wang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei 10617, Taiwan; (J.Y.F.C.); (C.-H.T.); (P.H.L.)
- Department of Dentistry, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei 10617, Taiwan
- Correspondence: ; Tel.: +886-2-23123456 (ext. 67987)
| |
Collapse
|
28
|
Cogels MM, Rouas R, Ghanem GE, Martinive P, Awada A, Van Gestel D, Krayem M. Humanized Mice as a Valuable Pre-Clinical Model for Cancer Immunotherapy Research. Front Oncol 2021; 11:784947. [PMID: 34869042 PMCID: PMC8636317 DOI: 10.3389/fonc.2021.784947] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/29/2021] [Indexed: 01/31/2023] Open
Abstract
Immunotherapy with checkpoint inhibitors opened new horizons in cancer treatment. Clinical trials for novel immunotherapies or unexplored combination regimens either need years of development or are simply impossible to perform like is the case in cancer patients with limited life expectancy. Thus, the need for preclinical models that rapidly and safely allow for a better understanding of underlying mechanisms, drug kinetics and toxicity leading to the selection of the best regimen to be translated into the clinic, is of high importance. Humanized mice that can bear both human immune system and human tumors, are increasingly used in recent preclinical immunotherapy studies and represent a remarkably unprecedented tool in this field. In this review, we describe, summarize, and discuss the recent advances of humanized mouse models used for cancer immunotherapy research and the challenges faced during their establishment. We also highlight the lack of preclinical studies using this model for radiotherapy-based research and argue that it can be a great asset to understand and answer many open questions around radiation therapy such as its presumed associated "abscopal effect".
Collapse
Affiliation(s)
- Morgane M. Cogels
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Redouane Rouas
- Laboratory of Cellular Therapy (UTCH), Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Ghanem E. Ghanem
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Philippe Martinive
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Ahmad Awada
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Dirk Van Gestel
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Mohammad Krayem
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
29
|
Romualdo GR, Leroy K, Costa CJS, Prata GB, Vanderborght B, da Silva TC, Barbisan LF, Andraus W, Devisscher L, Câmara NOS, Vinken M, Cogliati B. In Vivo and In Vitro Models of Hepatocellular Carcinoma: Current Strategies for Translational Modeling. Cancers (Basel) 2021; 13:5583. [PMID: 34771745 PMCID: PMC8582701 DOI: 10.3390/cancers13215583] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and the third leading cause of cancer-related death globally. HCC is a complex multistep disease and usually emerges in the setting of chronic liver diseases. The molecular pathogenesis of HCC varies according to the etiology, mainly caused by chronic hepatitis B and C virus infections, chronic alcohol consumption, aflatoxin-contaminated food, and non-alcoholic fatty liver disease associated with metabolic syndrome or diabetes mellitus. The establishment of HCC models has become essential for both basic and translational research to improve our understanding of the pathophysiology and unravel new molecular drivers of this disease. The ideal model should recapitulate key events observed during hepatocarcinogenesis and HCC progression in view of establishing effective diagnostic and therapeutic strategies to be translated into clinical practice. Despite considerable efforts currently devoted to liver cancer research, only a few anti-HCC drugs are available, and patient prognosis and survival are still poor. The present paper provides a state-of-the-art overview of in vivo and in vitro models used for translational modeling of HCC with a specific focus on their key molecular hallmarks.
Collapse
Affiliation(s)
- Guilherme Ribeiro Romualdo
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508-270, Brazil; (G.R.R.); (C.J.S.C.); (T.C.d.S.)
- Department of Structural and Functional Biology, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (G.B.P.); (L.F.B.)
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Kaat Leroy
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (K.L.); (M.V.)
| | - Cícero Júlio Silva Costa
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508-270, Brazil; (G.R.R.); (C.J.S.C.); (T.C.d.S.)
| | - Gabriel Bacil Prata
- Department of Structural and Functional Biology, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (G.B.P.); (L.F.B.)
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Bart Vanderborght
- Gut-Liver Immunopharmacology Unit, Basic and Applied Medical Sciences, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium;
- Hepatology Research Unit, Internal Medicine and Paediatrics, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium;
| | - Tereza Cristina da Silva
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508-270, Brazil; (G.R.R.); (C.J.S.C.); (T.C.d.S.)
| | - Luís Fernando Barbisan
- Department of Structural and Functional Biology, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (G.B.P.); (L.F.B.)
| | - Wellington Andraus
- Department of Gastroenterology, Clinics Hospital, School of Medicine, University of São Paulo (HC-FMUSP), São Paulo 05403-000, Brazil;
| | - Lindsey Devisscher
- Hepatology Research Unit, Internal Medicine and Paediatrics, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium;
| | - Niels Olsen Saraiva Câmara
- Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo (USP), São Paulo 05508-000, Brazil;
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (K.L.); (M.V.)
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508-270, Brazil; (G.R.R.); (C.J.S.C.); (T.C.d.S.)
| |
Collapse
|
30
|
Blidisel A, Marcovici I, Coricovac D, Hut F, Dehelean CA, Cretu OM. Experimental Models of Hepatocellular Carcinoma-A Preclinical Perspective. Cancers (Basel) 2021; 13:3651. [PMID: 34359553 PMCID: PMC8344976 DOI: 10.3390/cancers13153651] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the most frequent form of primary liver carcinoma, is a heterogenous and complex tumor type with increased incidence, poor prognosis, and high mortality. The actual therapeutic arsenal is narrow and poorly effective, rendering this disease a global health concern. Although considerable progress has been made in terms of understanding the pathogenesis, molecular mechanisms, genetics, and therapeutical approaches, several facets of human HCC remain undiscovered. A valuable and prompt approach to acquire further knowledge about the unrevealed aspects of HCC and novel therapeutic candidates is represented by the application of experimental models. Experimental models (in vivo and in vitro 2D and 3D models) are considered reliable tools to gather data for clinical usability. This review offers an overview of the currently available preclinical models frequently applied for the study of hepatocellular carcinoma in terms of initiation, development, and progression, as well as for the discovery of efficient treatments, highlighting the advantages and the limitations of each model. Furthermore, we also focus on the role played by computational studies (in silico models and artificial intelligence-based prediction models) as promising novel tools in liver cancer research.
Collapse
Affiliation(s)
- Alexandru Blidisel
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (A.B.); (F.H.); (O.M.C.)
| | - Iasmina Marcovici
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania;
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - Dorina Coricovac
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania;
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - Florin Hut
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (A.B.); (F.H.); (O.M.C.)
| | - Cristina Adriana Dehelean
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania;
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - Octavian Marius Cretu
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (A.B.); (F.H.); (O.M.C.)
| |
Collapse
|
31
|
Ko Y, Jeong YH, Seo JH, Lee JA. Development of a Bioluminescent Human Osteosarcoma Model in Humanized NSG Mice: A Pilot Study. In Vivo 2021; 35:2151-2157. [PMID: 34182491 DOI: 10.21873/invivo.12485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND/AIM Osteosarcoma is the most common type of bone cancer, but current therapeutic interventions remain largely insufficient. The development of new treatment strategies is needed, and moreover, optimal rodent models are necessary for testing the efficacy of new treatment modalities of osteosarcoma. Humanized mice carry human hematopoietic and immune systems, and are considered an ideal tool to study human diseases including cancer immunology. Herein, we performed a preliminary study toward developing an in vivo bioluminescent osteosarcoma model using humanized immunodeficient (NSG) mice. MATERIALS AND METHODS To establish the xenograft and orthotopic mouse model, NSG mice engrafted with human CD34+ hematopoietic stem cells were injected with luciferase-expressing KHOS/NP cells at two different time points. Bioluminescence images were obtained to monitor in vivo tumor growth and metastasis. Influence of the degree of human cell engraftment on tumor growth and metastatic behavior was analyzed and compared between the two groups. RESULTS KHOS/NP-luc cells injected in humanized NSG mice formed macroscopic tumors. The percentage of human CD45+ cells in these models was similar, but the percentage of human CD45+CD3+ and their subset was higher in the late-injection group compared to that of the early-injection group. The rate of KHOS/NP tumor growth was higher in the early-injection group than in the late-injection group. In the present study, human hematopoietic cell engraftment was not influenced by KHOS/NP cell injection, but KHOS/NP osteosarcoma showed more aggressive behavior in the early-injection group than that in the late-injection group, forming larger tumor volumes and earlier metastases. CONCLUSION The results indicated that tumor growth and progression in humanized NSG mice may have been influenced by higher levels of human cell engraftment, especially T cells. Although there exist some limitations to our study, our preliminary results can provide the basis for the development of a humanized osteosarcoma mouse model.
Collapse
Affiliation(s)
- Yunmi Ko
- Department of Pediatrics, Center for Pediatric Cancer, National Cancer Center, Goyang, Republic of Korea.,Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Yeon Ho Jeong
- Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Jin-Hee Seo
- Laboratory Animal Team, Radiation Medicine Support Center, Division of Fusion Radiology Research, Korea Institute of radiological & Medical Sciences, Seoul, Republic of Korea
| | - Jun Ah Lee
- Department of Pediatrics, Center for Pediatric Cancer, National Cancer Center, Goyang, Republic of Korea;
| |
Collapse
|
32
|
Yue X, Petersen F, Shu Y, Kasper B, Magatsin JDT, Ahmadi M, Yin J, Wax J, Wang X, Heidecke H, Lamprecht P, Müller A, Yu X, Riemekasten G. Transfer of PBMC From SSc Patients Induces Autoantibodies and Systemic Inflammation in Rag2-/-/IL2rg-/- Mice. Front Immunol 2021; 12:677970. [PMID: 34248959 PMCID: PMC8261241 DOI: 10.3389/fimmu.2021.677970] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/07/2021] [Indexed: 11/15/2022] Open
Abstract
Objective The contribution of sustained autologous autoantibody production by B cells to the pathogenesis of systemic sclerosis (SSc) and granulomatosis with polyangiitis (GPA) is not fully understood. To investigate this, a humanized mouse model was generated by transferring patient-derived peripheral blood mononuclear cells (PBMC) into immunocompromised mice. Methods PBMC derived from patients with SSc and GPA as well as healthy controls (HD) were isolated, characterized by flow cytometry, and infused into Rag2-/-/IL2rg-/- mice. In addition, PBMC from SSc patients treated with rituximab were transferred into mice. Twelve weeks later, human autoantibodies were determined in blood of the recipient mice and affected tissues were analyzed for pathological changes by histology and immunohistochemistry. Results Mice engrafted with PBMC derived from SSc patients developed autoantibodies such as antinuclear antibodies (ANA) mimicking the pattern of the respective donors. Moreover, cellular infiltrates dominated by B cells were observed in lung, kidney and muscles of the recipient mice. By contrast, PBMC derived from HD or GPA patients survived in recipient mice after transfer, but neither human autoantibodies nor inflammatory infiltrates in tissues were detected. Furthermore, these pathological changes were absent in mice transferred with PBMC from rituximab-treated SSc patients. Conclusion This humanized mouse model is indicative for cross-reactivity of human lymphocytes to murine autoantigens and argues for a pivotal role of B cells as well as of sustained autoimmunity in the pathogenesis of SSc. It provides a powerful tool to study interstitial lung disease and so far, under-recognized disease manifestations such as myositis and interstitial nephritis.
Collapse
Affiliation(s)
- Xiaoyang Yue
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), Borstel, Germany.,Department of Histology and Embryology, School of Basic Medical Science, Guangxi Medical University, Guangxi, China
| | - Frank Petersen
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), Borstel, Germany
| | - Yaqing Shu
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), Borstel, Germany.,Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Brigitte Kasper
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), Borstel, Germany
| | - Junie D Tchudjin Magatsin
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), Borstel, Germany
| | - Marjan Ahmadi
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), Borstel, Germany
| | - Junping Yin
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), Borstel, Germany
| | - Jacqueline Wax
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), Borstel, Germany
| | - Xiaoqing Wang
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), Borstel, Germany
| | - Harald Heidecke
- CellTrend Gesellschaft mit beschränkter Haftung (GmbH), Im Biotechnologiepark, Luckenwalde, Germany
| | - Peter Lamprecht
- Department of Rheumatology, University of Lübeck, Lübeck, Germany
| | - Antje Müller
- Department of Rheumatology, University of Lübeck, Lübeck, Germany
| | - Xinhua Yu
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), Borstel, Germany
| | | |
Collapse
|
33
|
Compte M, Harwood SL, Erce-Llamazares A, Tapia-Galisteo A, Romero E, Ferrer I, Garrido-Martin EM, Enguita AB, Ochoa MC, Blanco B, Oteo M, Merino N, Nehme-Álvarez D, Hangiu O, Domínguez-Alonso C, Zonca M, Ramírez-Fernández A, Blanco FJ, Morcillo MA, Muñoz IG, Melero I, Rodriguez-Peralto JL, Paz-Ares L, Sanz L, Alvarez-Vallina L. An Fc-free EGFR-specific 4-1BB-agonistic Trimerbody Displays Broad Antitumor Activity in Humanized Murine Cancer Models without Toxicity. Clin Cancer Res 2021; 27:3167-3177. [PMID: 33785484 DOI: 10.1158/1078-0432.ccr-20-4625] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/05/2021] [Accepted: 03/26/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE The induction of 4-1BB signaling by agonistic antibodies can drive the activation and proliferation of effector T cells and thereby enhance a T-cell-mediated antitumor response. Systemic administration of anti-4-1BB-agonistic IgGs, although effective preclinically, has not advanced in clinical development due to their severe hepatotoxicity. EXPERIMENTAL DESIGN Here, we generated a humanized EGFR-specific 4-1BB-agonistic trimerbody, which replaces the IgG Fc region with a human collagen homotrimerization domain. It was characterized by structural analysis and in vitro functional studies. We also assessed pharmacokinetics, antitumor efficacy, and toxicity in vivo. RESULTS In the presence of a T-cell receptor signal, the trimerbody provided potent T-cell costimulation that was strictly dependent on 4-1BB hyperclustering at the point of contact with a tumor antigen-displaying cell surface. It exhibits significant antitumor activity in vivo, without hepatotoxicity, in a wide range of human tumors including colorectal and breast cancer cell-derived xenografts, and non-small cell lung cancer patient-derived xenografts associated with increased tumor-infiltrating CD8+ T cells. The combination of the trimerbody with a PD-L1 blocker led to increased IFNγ secretion in vitro and resulted in tumor regression in humanized mice bearing aggressive triple-negative breast cancer. CONCLUSIONS These results demonstrate the nontoxic broad antitumor activity of humanized Fc-free tumor-specific 4-1BB-agonistic trimerbodies and their synergy with checkpoint blockers, which may provide a way to elicit responses in most patients with cancer while avoiding Fc-mediated adverse reactions.
Collapse
Affiliation(s)
- Marta Compte
- Department of Antibody Engineering, Leadartis SL, Madrid, Spain
| | - Seandean L Harwood
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus, Denmark
| | - Ainhoa Erce-Llamazares
- Department of Antibody Engineering, Leadartis SL, Madrid, Spain.,Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Antonio Tapia-Galisteo
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Madrid, Spain
| | - Eduardo Romero
- Biomedical Applications and Pharmacokinetics Unit, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Irene Ferrer
- H12O-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Sanitaria 12 de Octubre (imas12), and Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain.,Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Madrid, Spain
| | - Eva M Garrido-Martin
- H12O-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Sanitaria 12 de Octubre (imas12), and Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain.,Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Madrid, Spain
| | - Ana B Enguita
- Department of Pathology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Department of Pathology. Universidad Complutense, Madrid, Spain
| | - Maria C Ochoa
- Department of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Belén Blanco
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Marta Oteo
- Biomedical Applications and Pharmacokinetics Unit, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Nekane Merino
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Derio, Spain
| | - Daniel Nehme-Álvarez
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Oana Hangiu
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Carmen Domínguez-Alonso
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Manuela Zonca
- Department of Antibody Engineering, Leadartis SL, Madrid, Spain
| | - Angel Ramírez-Fernández
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Francisco J Blanco
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas, CIB-CSIC, Madrid, Spain
| | - Miguel A Morcillo
- Biomedical Applications and Pharmacokinetics Unit, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Ines G Muñoz
- Crystallography and Protein Engineering Unit, Structural Biology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Ignacio Melero
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Madrid, Spain.,Department of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Department of Immunology, University Clinic, University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - José L Rodriguez-Peralto
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Madrid, Spain.,Department of Pathology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Department of Pathology. Universidad Complutense, Madrid, Spain.,Cutaneous Oncology Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Luis Paz-Ares
- H12O-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Sanitaria 12 de Octubre (imas12), and Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain.,Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Madrid, Spain.,Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Department of Medicine, Universidad Complutense, Madrid, Spain
| | - Laura Sanz
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Madrid, Spain
| | - Luis Alvarez-Vallina
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus, Denmark. .,Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| |
Collapse
|
34
|
Masemann D, Ludwig S, Boergeling Y. Advances in Transgenic Mouse Models to Study Infections by Human Pathogenic Viruses. Int J Mol Sci 2020; 21:E9289. [PMID: 33291453 PMCID: PMC7730764 DOI: 10.3390/ijms21239289] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 02/08/2023] Open
Abstract
Medical research is changing into direction of precision therapy, thus, sophisticated preclinical models are urgently needed. In human pathogenic virus research, the major technical hurdle is not only to translate discoveries from animals to treatments of humans, but also to overcome the problem of interspecies differences with regard to productive infections and comparable disease development. Transgenic mice provide a basis for research of disease pathogenesis after infection with human-specific viruses. Today, humanized mice can be found at the very heart of this forefront of medical research allowing for recapitulation of disease pathogenesis and drug mechanisms in humans. This review discusses progress in the development and use of transgenic mice for the study of virus-induced human diseases towards identification of new drug innovations to treat and control human pathogenic infectious diseases.
Collapse
Affiliation(s)
| | | | - Yvonne Boergeling
- Institute of Virology Muenster, University of Muenster, 48149 Muenster, Germany; (D.M.); (S.L.)
| |
Collapse
|