1
|
Hu M, Lv X, Wang Y, Ma L, Zhang Y, Dai H. Recent advance on lignin-containing nanocelluloses: The key role of lignin. Carbohydr Polym 2024; 343:122460. [PMID: 39174133 DOI: 10.1016/j.carbpol.2024.122460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/13/2024] [Accepted: 07/02/2024] [Indexed: 08/24/2024]
Abstract
Nanocelluloses (NCs) isolated from lignocellulosic resources usually require harsh chemical pretreatments to remove lignin, which face constraints such as high energy consumption and inefficient resource utilization. An alternative strategy involving the partial retention of lignin can be adopted to endow NCs with better versatility and functionality. The resulting lignin-containing nanocelluloses (LNCs) generally possess better mechanical property, thermal stability, barrier property, antioxidant activity, and surface hydrophobicity than lignin-free NCs, which have attracted extensive interest as a promising green nanomaterial for numerous applications. This review provides a comprehensive overview of the recent advances in the preparation, properties, and food application of LNCs. The effect of residual lignin on the preparation and properties of LNCs is discussed. Furthermore, the key roles of lignin in the properties of LNCs, including particle size, crystalline structure, dispersibility, thermal, mechanical, antibacterial, rheological and adhesion properties, are summarized comprehensively. Furthermore, capitalizing on their dietary fiber and nanostructure properties, the food applications of LNCs in the forms of films, gels and emulsions are also discussed. Finally, the challenges and opportunities regarding the development of LNCs are provided.
Collapse
Affiliation(s)
- Mengtao Hu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiangxiang Lv
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuxi Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
2
|
Luo L, Yu W, Yi Y, Xing C, Zeng L, Yang Y, Wang H, Tang Z, Tan Z. The influence of residual pectin composition and content on nanocellulose films from ramie fibers: Micro-nano structure and physical properties. Int J Biol Macromol 2023; 247:125812. [PMID: 37453632 DOI: 10.1016/j.ijbiomac.2023.125812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
In this study, cellulose nanofibril (CNF) films from ramie fibers were prepared with different pectin compositions and contents, and the influence of residual pectin on the overall performances of CNF films was evaluated. There was no significant effect of the residual pectin composition on the properties of obtained CNF films. However, when the content of residual pectin was increased from 0.45 % to 9.16 %, the surface area and water absorption of CNF films were increased from 0.2223 to 0.3300 m2/g, and from 93.51 % to 122.42 %, respectively. Pectin covers the CNF surface and act as a physical barrier between the cellulose fibrils; thus the nanocellulose films with high pectin content will have a loose and porous structure, resulting in a high surface area and a high water absorption. Besides, with the residual pectin content decreasing from 9.16 % to 0.45 %, the UVA light transmittance and tensile strength of CNF films were increased from 30.6 % to 59.9 %, and from 37.67 to 100.26 MPa, respectively. After removal of amorphous pectins in CNFs, the low pectin containing CNFs are able to pack more compactly to form a strong and thin film. This paper provides guidance for the preparation of CNF films with different performance requirements.
Collapse
Affiliation(s)
- Liru Luo
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Wang Yu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Yongjian Yi
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Chen Xing
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Liangbin Zeng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Yuanru Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Hongying Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Zhonghai Tang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Zhijian Tan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| |
Collapse
|
3
|
Liang S, Xu W, Hu L, Yrjänä V, Wang Q, Rosqvist E, Wang L, Peltonen J, Rosenholm JM, Xu C, Latonen RM, Wang X. Aqueous Processable One-Dimensional Polypyrrole Nanostructured by Lignocellulose Nanofibril: A Conductive Interfacing Biomaterial. Biomacromolecules 2023; 24:3819-3834. [PMID: 37437256 PMCID: PMC10428162 DOI: 10.1021/acs.biomac.3c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/29/2023] [Indexed: 07/14/2023]
Abstract
One-dimensional (1D) nanomaterials of conductive polypyrrole (PPy) are competitive biomaterials for constructing bioelectronics to interface with biological systems. Synergistic synthesis using lignocellulose nanofibrils (LCNF) as a structural template in chemical oxidation of pyrrole with Fe(III) ions facilitates surface-confined polymerization of pyrrole on the nanofibril surface within a submicrometer- and micrometer-scale fibril length. It yields a core-shell nanocomposite of PPy@LCNF, wherein the surface of each individual fibril is coated with a thin nanoscale layer of PPy. A highly positive surface charge originating from protonated PPy gives this 1D nanomaterial a durable aqueous dispersity. The fibril-fibril entanglement in the PPy@LCNFs facilely supported versatile downstream processing, e.g., spray thin-coating on glass, flexible membranes with robust mechanics, or three-dimensional cryogels. A high electrical conductivity in the magnitude of several to 12 S·cm-1 was confirmed for the solid-form PPy@LCNFs. The PPy@LCNFs are electroactive and show potential cycling capacity, encompassing a large capacitance. Dynamic control of the doping/undoping process by applying an electric field combines electronic and ionic conductivity through the PPy@LCNFs. The low cytotoxicity of the material is confirmed in noncontact cell culture of human dermal fibroblasts. This study underpins the promises for this nanocomposite PPy@LCNF as a smart platform nanomaterial in constructing interfacing bioelectronics.
Collapse
Affiliation(s)
- Shujun Liang
- Laboratory
of Natural Materials Technology, Faculty of Science and Engineering, Åbo Akademi Unversity, Henrikinkatu 2, Turku FI-20500, Finland
- Pharmaceutical
Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, Turku FI-20520, Finland
| | - Wenyang Xu
- Laboratory
of Natural Materials Technology, Faculty of Science and Engineering, Åbo Akademi Unversity, Henrikinkatu 2, Turku FI-20500, Finland
| | - Liqiu Hu
- Laboratory
of Natural Materials Technology, Faculty of Science and Engineering, Åbo Akademi Unversity, Henrikinkatu 2, Turku FI-20500, Finland
| | - Ville Yrjänä
- Laboratory
of Molecular Science and Engineering, Faculty of Science and Engineering, Åbo Akademi University, Henrikinkatu 2, Turku FI-20500, Finland
| | - Qingbo Wang
- Laboratory
of Natural Materials Technology, Faculty of Science and Engineering, Åbo Akademi Unversity, Henrikinkatu 2, Turku FI-20500, Finland
| | - Emil Rosqvist
- Laboratory
of Molecular Science and Engineering, Faculty of Science and Engineering, Åbo Akademi University, Henrikinkatu 2, Turku FI-20500, Finland
| | - Luyao Wang
- Laboratory
of Natural Materials Technology, Faculty of Science and Engineering, Åbo Akademi Unversity, Henrikinkatu 2, Turku FI-20500, Finland
| | - Jouko Peltonen
- Laboratory
of Molecular Science and Engineering, Faculty of Science and Engineering, Åbo Akademi University, Henrikinkatu 2, Turku FI-20500, Finland
| | - Jessica M. Rosenholm
- Pharmaceutical
Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, Turku FI-20520, Finland
| | - Chunlin Xu
- Laboratory
of Natural Materials Technology, Faculty of Science and Engineering, Åbo Akademi Unversity, Henrikinkatu 2, Turku FI-20500, Finland
| | - Rose-Marie Latonen
- Laboratory
of Molecular Science and Engineering, Faculty of Science and Engineering, Åbo Akademi University, Henrikinkatu 2, Turku FI-20500, Finland
| | - Xiaoju Wang
- Laboratory
of Natural Materials Technology, Faculty of Science and Engineering, Åbo Akademi Unversity, Henrikinkatu 2, Turku FI-20500, Finland
- Pharmaceutical
Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, Turku FI-20520, Finland
| |
Collapse
|
4
|
Wang M, Zhan Y, Zhao J, Li Z. Pretreatment of moso bamboo with p-toluenesulfonic acid for the recovery and depolymerization of hemicellulose. BIORESOURCE TECHNOLOGY 2023; 378:129006. [PMID: 37011848 DOI: 10.1016/j.biortech.2023.129006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Bamboo and its mechanical processing residues have broad prospects for high value-added utilization. In this research, p-toluenesulfonic acid was used for the pretreatment of bamboo to investigate the effects of extraction and depolymerization of hemicellulose. The response and behavior of changes of cell-wall chemical components were investigated after different solvent concentration, time, and temperature pretreatment. Results indicated that the maximum extraction yield of hemicellulose was 95.16 % with 5 % p-toluenesulfonic acid at 140 °C for 30 min. The depolymerized components of hemicellulose in the filtrate were mainly xylose and xylooligosaccharide, with xylobiose accounting for 30.77 %. The extraction of xylose from the filtrate reached a maximum of 90.16 % with 5 % p-toluenesulfonic acid at 150 °C for 30 min pretreatment. This research provided a potential strategy for the industrial production of xylose and xylooligosaccharide from bamboo and for the future conversion and utilization.
Collapse
Affiliation(s)
- Meixin Wang
- International Centre for Bamboo and Rattan, Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Yawei Zhan
- International Centre for Bamboo and Rattan, Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Jiayue Zhao
- International Centre for Bamboo and Rattan, Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Zhiqiang Li
- International Centre for Bamboo and Rattan, Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China.
| |
Collapse
|
5
|
El-Ganainy SM, Mosa MA, Ismail AM, Khalil AE. Lignin-Loaded Carbon Nanoparticles as a Promising Control Agent against Fusarium verticillioides in Maize: Physiological and Biochemical Analyses. Polymers (Basel) 2023; 15:polym15051193. [PMID: 36904433 PMCID: PMC10007435 DOI: 10.3390/polym15051193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Lignin, a naturally occurring biopolymer, is produced primarily as a waste product by the pulp and paper industries and burned to produce electricity. Lignin-based nano- and microcarriers found in plants are promising biodegradable drug delivery platforms. Here, we highlight a few characteristics of a potential antifungal nanocomposite consisting of carbon nanoparticles (C-NPs) with a defined size and shape containing lignin nanoparticles (L-NPs). Spectroscopic and microscopic studies verified that the lignin-loaded carbon nanoparticles (L-CNPs) were successfully prepared. Under in vitro and in vivo conditions, the antifungal activity of L-CNPs at various doses was effectively tested against a wild strain of F. verticillioides that causes maize stalk rot disease. In comparison to the commercial fungicide, Ridomil Gold SL (2%), L-CNPs introduced beneficial effects in the earliest stages of maize development (seed germination and radicle length). Additionally, L-CNP treatments promoted positive effects on maize seedlings, with a significant increment in the level of carotenoid, anthocyanin, and chlorophyll pigments for particular treatments. Finally, the soluble protein content displayed a favorable trend in response to particular dosages. Most importantly, treatments with L-CNPs at 100 and 500 mg/L significantly reduced stalk rot disease by 86% and 81%, respectively, compared to treatments with the chemical fungicide, which reduced the disease by 79%. These consequences are substantial considering the essential cellular function carried out by these special natural-based compounds. Finally, the intravenous L-CNPs treatments in both male and female mice that affected the clinical applications and toxicological assessments are explained. The results of this study suggest that L-CNPs are of high interest as biodegradable delivery vehicles and can be used to stimulate favorable biological responses in maize when administered in the recommended dosages, contributing to the idea of agro-nanotechnology by demonstrating their unique qualities as a cost-effective alternative compared to conventional commercial fungicides and environmentally benign nanopesticides for long-term plant protection.
Collapse
Affiliation(s)
- Sherif Mohamed El-Ganainy
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Pests and Plant Diseases Unit, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Vegetable Diseases Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt
- Correspondence: (S.M.E.-G.); (M.A.M.)
| | - Mohamed A. Mosa
- Nanotechnology & Advanced Nano-Materials Laboratory (NANML), Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
- Correspondence: (S.M.E.-G.); (M.A.M.)
| | - Ahmed Mahmoud Ismail
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Pests and Plant Diseases Unit, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Vegetable Diseases Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt
| | - Ashraf E. Khalil
- Nematology Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| |
Collapse
|
6
|
Haque ME, Khan MW, Hasan MM, Chowdhury MNK. Synthesis, characterization and performance of nanocopper impregnated sawdust-reinforced nanocomposite. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04496-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Lu H, Zhang L, Yan M, Ye J, Wang K, Jiang J. Green production of lignocellulose nanofibrils by FeCl3-catalyzed ethanol treatment. Int J Biol Macromol 2022; 224:181-187. [DOI: 10.1016/j.ijbiomac.2022.10.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
|
8
|
Guo X, Xu B, Ma Z, Li Y, Li D. Performance Analysis Based on Sustainability Exergy Indicators of High-Temperature Proton Exchange Membrane Fuel Cell. Int J Mol Sci 2022; 23:ijms231710111. [PMID: 36077509 PMCID: PMC9456530 DOI: 10.3390/ijms231710111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022] Open
Abstract
Based on finite-time thermodynamics, an irreversible high-temperature proton exchange membrane fuel cell (HT-PEMFC) model is developed, and the mathematical expressions of exergy efficiency, exergy destruction index (EDI), and exergy sustainability indicators (ESI) of HT-PEMFC are derived. According to HT-PEMFC model, the influences of thermodynamic irreversibility on exergy sustainability of HT-PEMFC are researched under different operating parameters that include operating temperatures, inlet pressure, and current density. The results show that the higher operating temperature and inlet pressure of HT-PEMFCs is beneficial to performance improvement. In addition, the single cell performance gradually decreases with increasing current density due to the presence of the irreversibility of HT-PEMFC.
Collapse
Affiliation(s)
| | | | - Zheshu Ma
- Correspondence: ; Tel.: +86-137-7665-9269
| | | | | |
Collapse
|
9
|
Spagnuolo L, D'Orsi R, Operamolla A. Nanocellulose for Paper and Textile Coating: The Importance of Surface Chemistry. Chempluschem 2022; 87:e202200204. [PMID: 36000154 DOI: 10.1002/cplu.202200204] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/29/2022] [Indexed: 11/11/2022]
Abstract
Nanocellulose has received enormous scientific interest for its abundance, easy manufacturing, biodegradability, and low cost. Cellulose nanocrystals (CNCs) and cellulose nanofibers (CNFs) are ideal candidates to replace plastic coating in the textile and paper industry. Thanks to their capacity to form an interconnected network kept together by hydrogen bonds, nanocelluloses perform an unprecedented strengthening action towards cellulose- and other fiber-based materials. Furthermore, nanocellulose use implies greener application procedures, such as deposition from water. The surface chemistry of nanocellulose plays a pivotal role in influencing the performance of the coating: tailored surface functionalization can introduce several properties, such as gas or grease barrier, hydrophobicity, antibacterial and anti-UV behavior. This review summarizes recent achievements in the use of nanocellulose for paper and textile coating, evidencing critical aspects of coating performances related to deposition technique, nanocellulose morphology, and surface functionalization. Furthermore, beyond focusing on the aspects strictly related to large-scale coating applications for paper and textile industries, this review includes recent achievements in the use of nanocellulose coating for the safeguarding of Cultural Heritage, an extremely noble and interesting emerging application of nanocellulose, focusing on consolidation of historical paper and archaeological textile. Finally, nanocellulose use in electronic devices as an electrode modifier is highlighted.
Collapse
Affiliation(s)
- Laura Spagnuolo
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Giuseppe Moruzzi, 13, 56124, Pisa, Italy.,Interuniversity Consortium of Chemical Reactivity and Catalysis (CIRCC), Via Celso Ulpiani 27, Bari, 70126, Italy
| | - Rosarita D'Orsi
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Giuseppe Moruzzi, 13, 56124, Pisa, Italy.,Interuniversity Consortium of Chemical Reactivity and Catalysis (CIRCC), Via Celso Ulpiani 27, Bari, 70126, Italy
| | - Alessandra Operamolla
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Giuseppe Moruzzi, 13, 56124, Pisa, Italy.,Interuniversity Consortium of Chemical Reactivity and Catalysis (CIRCC), Via Celso Ulpiani 27, Bari, 70126, Italy
| |
Collapse
|
10
|
A degradable membrane based on lignin-containing cellulose for high-energy lithium-ion batteries. Int J Biol Macromol 2022; 213:690-698. [DOI: 10.1016/j.ijbiomac.2022.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 11/18/2022]
|
11
|
Lignocellulose Extraction from Sisal Fiber and Its Use in Green Emulsions: A Novel Method. Polymers (Basel) 2022; 14:polym14112299. [PMID: 35683971 PMCID: PMC9183001 DOI: 10.3390/polym14112299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 01/04/2023] Open
Abstract
Regenerated lignocellulose nanofibrils (RLCNFs) have recently piqued the interest of researchers due to their widespread availability and ease of extraction. After dewaxing, we treated sisal fiber with alkali, followed by heating and agitation, to obtain RLCNFs, which were then vacuum oven-dried. We used a variety of characterization techniques, including XRD, SEM, and FT-IR, to assess the effects of the alkali treatment on the sisal fiber. Various characterizations demonstrate that lignocellulose fibrils have been successfully regenerated and contaminants have been removed. In addition, employing the RLCNFs as a stabilizer, stable Pickering emulsions were created. The effects of RLCNF concentration in the aqueous phase and water-to-oil volume ratio on stability were studied. The RLCNFs that have been produced show promise as a stabilizer in Pickering emulsions.
Collapse
|
12
|
Saud A, Saleem H, Zaidi SJ. Progress and Prospects of Nanocellulose-Based Membranes for Desalination and Water Treatment. MEMBRANES 2022; 12:membranes12050462. [PMID: 35629789 PMCID: PMC9147932 DOI: 10.3390/membranes12050462] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/10/2022]
Abstract
Membrane-based desalination has proved to be the best solution for solving the water shortage issues globally. Membranes are extremely beneficial in the effective recovery of clean water from contaminated water sources, however, the durability as well as the separation efficiency of the membranes are restricted by the type of membrane materials/additives used in the preparation processes. Nanocellulose is one of the most promising green materials for nanocomposite preparation due to its biodegradability, renewability, abundance, easy modification, and exceptional mechanical properties. This nanocellulose has been used in membrane development for desalination application in the recent past. The study discusses the application of membranes based on different nanocellulose forms such as cellulose nanocrystals, cellulose nanofibrils, and bacterial nanocellulose for water desalination applications such as nanofiltration, reverse osmosis, pervaporation, forward osmosis, and membrane distillation. From the analysis of studies, it was confirmed that the nanocellulose-based membranes are effective in the desalination application. The chemical modification of nanocellulose can definitely improve the surface affinity as well as the reactivity of membranes for the efficient separation of specific contaminants/ions.
Collapse
Affiliation(s)
- Asif Saud
- Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar; (A.S.); (H.S.)
- Industrial Chemistry, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Haleema Saleem
- Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar; (A.S.); (H.S.)
| | - Syed Javaid Zaidi
- Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar; (A.S.); (H.S.)
- Correspondence: ; Tel.: +974-44037723
| |
Collapse
|
13
|
|
14
|
Bian H, Duan S, Wu J, Fu Y, Yang W, Yao S, Zhang Z, Xiao H, Dai H, Hu C. Lignocellulosic nanofibril aerogel via gas phase coagulation and diisocyanate modification for solvent absorption. Carbohydr Polym 2022; 278:119011. [PMID: 34973804 DOI: 10.1016/j.carbpol.2021.119011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/18/2022]
Abstract
Cellulose-based aerogels are considered to be carriers that can absorb oils and organic solvents owing to the merits of low density and high surface area. However, the natural hydrophility and poor mechanical strength often obstruct their widespread applications. In this work, Miscanthus-based dual cross-linked lignocellulosic nanofibril (LCNF) aerogels were prepared by gas phase coagulation and methylene diphenyl dissocyanate (MDI) modification. Due to physical and chemical cross-linking strategies, the optimally 4 M-LCNF aerogels had high surface area of 157.9 m2/g, water contact angle of 138.1°, and enhanced compression properties. Moreover, the modified aerogels exhibited absorption performance for various organic solvents, and the maximal absorption capacity of chloroform was 42 g/g aerogel. Because LCNF was directly produced from Miscanthus without using bleaching reagents, this research provided a more sustainable methodology to utilize lignocelluloses to design robust aerogels to deal with the leakage of oil and organic solvents in industrial applications.
Collapse
Affiliation(s)
- Huiyang Bian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Sheng Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Jin Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yanqiao Fu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Weisheng Yang
- Nanjing IPE Institute of Green Manufacturing Industry, Nanjing 211135, China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Zhen Zhang
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Hongqi Dai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Chaoquan Hu
- Nanjing IPE Institute of Green Manufacturing Industry, Nanjing 211135, China; State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
15
|
Chen J, Wang D, Lu X, Guo H, Xiu P, Qin Y, Xu C, Gu X. Effect of Cobalt(II) on Acid-Modified Attapulgite-Supported Catalysts on the Depolymerization of Alkali Lignin. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jiajia Chen
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, P. R. China
| | - Dandan Wang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, P. R. China
| | - Xinyu Lu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, P. R. China
| | - Haoquan Guo
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, P. R. China
| | - Pengcheng Xiu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, P. R. China
| | - Yu Qin
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, P. R. China
| | - Chaozhong Xu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, P. R. China
| | - Xiaoli Gu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, P. R. China
| |
Collapse
|
16
|
Wu Y, Liang Y, Mei C, Cai L, Nadda A, Le QV, Peng Y, Lam SS, Sonne C, Xia C. Advanced nanocellulose-based gas barrier materials: Present status and prospects. CHEMOSPHERE 2022; 286:131891. [PMID: 34416587 DOI: 10.1016/j.chemosphere.2021.131891] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/21/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Nanocellulose based gas barrier materials have become an increasingly important subject, since it is a widespread environmentally friendly natural polymer. Previous studies have shown that super-high gas barrier can be achieved with pure and hierarchical nanocellulose films fabricated through simple suspension or layer-by-layer technique either by itself or incorporating with other polymers or nanoparticles. Improved gas barrier properties were observed for nanocellulose-reinforced composites, where nanocellulose partially impermeable nanoparticles decreased gas permeability effectively. However, for nanocellulose-based materials, the higher gas barrier performance is jeopardized by water absorption and shape deformation under high humidity conditions which is a challenge for maintaining properties in material applications. Thus, numerous investigations have been done to solve the problem of water absorption in nanocellulose-based materials. In this literature review, gas barrier properties of pure, layer-by-layer and composite nanocellulose films are investigated. The possible theoretical gas barrier mechanisms are described, and the prospects for nanocellulose-based materials are discussed.
Collapse
Affiliation(s)
- Yingji Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, 100102, China
| | - Yunyi Liang
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, 100102, China
| | - Changtong Mei
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Liping Cai
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Ashok Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, India
| | - Quyet Van Le
- Department of Materials Science and Engineering, Institute of Green Manufacturing Technology, Korea University, 145, Anam-ro Seongbuk-gu, Seoul, 02841, South Korea
| | - Yucheng Peng
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Su Shiung Lam
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Christian Sonne
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark.
| | - Changlei Xia
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, 100102, China.
| |
Collapse
|
17
|
Khan AU, Nazir S, El-Keblway A, Tahir K, Abdel-Hafez SH, Al-Abdulkarim HA, Jevtovic V, Ibrahim MM, Al-Shehri HS, Hegab KH. Uncaria rhynchophylla mediated Ag/NiO nanocomposites: A new insight for the evaluation of cytotoxicity, antibacterial and photocatalytic applications. Photodiagnosis Photodyn Ther 2021; 37:102681. [PMID: 34915183 DOI: 10.1016/j.pdpdt.2021.102681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022]
Abstract
The increase of microbial resistance poses threat to the human health. Therefore, the efficient treatment of the microbial resistance is a global challenge and highly desired to explore it. During this study, the Ag/NiO nanocomposite was fabricated via simple and ecofriendly method, using Uncaria rhynchophylla extract as a reducing and capping agent to avoid the aggregation of as synthesized nanomaterials. Here, a range of characterization techniques were employed to characterize the sample which includes UV-vis spectroscopy, X-ray diffraction, FTIR spectroscopy, electron diffraction spectroscopy (EDX), scanning electron microscopy (SEM). Furthermore, the resultant nanocomposite demonstrated an efficient ability for the inhibition of both gram-positive and gram negative pathogenic multidrug resistant bacteria. Additionally, the Ag/NiO nanocomposite showed a durable antioxidant effect against DPPH that could still reach 63% at very low concentration, i.e. 0.5 mg/mL. Interestingly, the synthesized nanocomposite is efficient for the production of reactive oxygen species (ROS) and shows no hemolytic activity. Likewise, the Ag/NiO nanocomposite displayed excellent photocatalytic activity to degrade 85% methylene blue (MB) by 4 mg/25 mL and could be used for waste water treatment. It is believed that synthesized nanostructure with desirable morphology and preparation simplicity can be promising material for the antimicrobial, antioxidant and catalytic applications.
Collapse
Affiliation(s)
- Afaq Ullah Khan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R China
| | - Sadia Nazir
- Institute of Chemical Sciences, Gomal University, D.I. Khan, KP, Pakistan
| | - Ali El-Keblway
- Department of Applied Biology, Collage of Science, University of Sharjah, Sharjah P. O. Box 27272, Sharjah, United Arab Emirates
| | - Kamran Tahir
- Institute of Chemical Sciences, Gomal University, D.I. Khan, KP, Pakistan
| | - Shams H Abdel-Hafez
- Department of Chemistry, College of Science, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
| | - Hessah A Al-Abdulkarim
- Chemistry department, College of Science, King Saud University, P. O. Box 2455, Riyadh-11451
| | - Violeta Jevtovic
- Department of Chemistry, College of Science, University of Hail, Kingdom of Saudi Arabia
| | - Mohamed M Ibrahim
- Department of Chemistry, College of Science, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
| | - Hamza S Al-Shehri
- Chemistry Division, King Khalid Military Academy, SANG, 1149, Riyadh, Saudi Arabia
| | - Khaled H Hegab
- Chemistry department, faculty of science, Gazan University, Gizan, KSA
| |
Collapse
|
18
|
Xiong Chang X, Mujawar Mubarak N, Ali Mazari S, Sattar Jatoi A, Ahmad A, Khalid M, Walvekar R, Abdullah E, Karri RR, Siddiqui M, Nizamuddin S. A review on the properties and applications of chitosan, cellulose and deep eutectic solvent in green chemistry. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.08.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Cindradewi AW, Bandi R, Park CW, Park JS, Lee EA, Kim JK, Kwon GJ, Han SY, Lee SH. Preparation and Characterization of Polybutylene Succinate Reinforced with Pure Cellulose Nanofibril and Lignocellulose Nanofibril Using Two-Step Process. Polymers (Basel) 2021; 13:polym13223945. [PMID: 34833243 PMCID: PMC8623250 DOI: 10.3390/polym13223945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/07/2021] [Accepted: 11/11/2021] [Indexed: 11/28/2022] Open
Abstract
This study reports the preparation of a polybutylene succinate (PBS) film reinforced with pure cellulose nanofibril (PCNF) and lignocellulose nanofibril (LCNF) by a two-step process that consists of solvent dispersion and twin-screw extrusion. Compared to the conventional one-step process, this method offered improved mechanical properties. The addition of 5% CNF increased the tensile properties up to 18.8%. Further, the effect of the lignin content was also studied by using LCNF as a reinforcement. The LCNF was prepared with and without a deep eutectic solvent (DES) pretreatment to gain LCNF with a lignin content that varied between 5, 19, and 30%. The mechanical properties results show that a 5% addition of LCNF to the PBS matrix increased its tensile strength and elastic modulus. Further, the morphological and thermal properties of the composites were also studied in detail.
Collapse
Affiliation(s)
- Azelia Wulan Cindradewi
- Department of Forest Biomaterials Engineering, Kangwon National University, Chuncheon 24341, Korea; (A.W.C.); (J.-S.P.); (E.-A.L.); (J.-K.K.)
| | - Rajkumar Bandi
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (R.B.); (C.-W.P.); (G.-J.K.); (S.-Y.H.)
| | - Chan-Woo Park
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (R.B.); (C.-W.P.); (G.-J.K.); (S.-Y.H.)
| | - Ji-Soo Park
- Department of Forest Biomaterials Engineering, Kangwon National University, Chuncheon 24341, Korea; (A.W.C.); (J.-S.P.); (E.-A.L.); (J.-K.K.)
- National Institute of Forest Science, Seoul 02455, Korea
| | - Eun-Ah Lee
- Department of Forest Biomaterials Engineering, Kangwon National University, Chuncheon 24341, Korea; (A.W.C.); (J.-S.P.); (E.-A.L.); (J.-K.K.)
| | - Jeong-Ki Kim
- Department of Forest Biomaterials Engineering, Kangwon National University, Chuncheon 24341, Korea; (A.W.C.); (J.-S.P.); (E.-A.L.); (J.-K.K.)
| | - Gu-Joong Kwon
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (R.B.); (C.-W.P.); (G.-J.K.); (S.-Y.H.)
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Korea
| | - Song-Yi Han
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (R.B.); (C.-W.P.); (G.-J.K.); (S.-Y.H.)
| | - Seung-Hwan Lee
- Department of Forest Biomaterials Engineering, Kangwon National University, Chuncheon 24341, Korea; (A.W.C.); (J.-S.P.); (E.-A.L.); (J.-K.K.)
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (R.B.); (C.-W.P.); (G.-J.K.); (S.-Y.H.)
- Correspondence: ; Tel.: +82-33-250-8323
| |
Collapse
|
20
|
Kaur P, Sharma N, Munagala M, Rajkhowa R, Aallardyce B, Shastri Y, Agrawal R. Nanocellulose: Resources, Physio-Chemical Properties, Current Uses and Future Applications. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.747329] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The growing environmental concerns due to the excessive use of non-renewable petroleum based products have raised interest for the sustainable synthesis of bio-based value added products and chemicals. Recently, nanocellulose has attracted wide attention because of its unique properties such as high surface area, tunable surface chemistry, excellent mechanical strength, biodegradability and renewable nature. It serves wide range of applications in paper making, biosensor, hydrogel and aerogel synthesis, water purification, biomedical industry and food industry. Variations in selection of source, processing technique and subsequent chemical modifications influence the size, morphology, and other characteristics of nanocellulose and ultimately their area of application. The current review is focused on extraction/synthesis of nanocellulose from different sources such as bacteria and lignocellulosic biomass, by using various production techniques ranging from traditional harsh chemicals to green methods. Further, the challenges in nanocellulose production, physio-chemical properties and applications are discussed with future opportunities. Finally, the sustainability of nanocellulose product as well as processes is reviewed by taking a systems view. The impact of chemicals, energy use, and waste generated can often negate the benefit of a bio-based product. These issues are evaluated and future research needs are identified.
Collapse
|
21
|
Huang B, Huang Y, Han H, Ge Q, Yang D, Hu Y, Ding M, Su Y, He Y, Shao J, Chu J. An NIR-II Responsive Nanoplatform for Cancer Photothermal and Oxidative Stress Therapy. Front Bioeng Biotechnol 2021; 9:751757. [PMID: 34722478 PMCID: PMC8553991 DOI: 10.3389/fbioe.2021.751757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/13/2021] [Indexed: 12/02/2022] Open
Abstract
Chemodynamic therapy as an emerging therapeutic strategy has been implemented for oncotherapy. However, the reactive oxygen species can be counteracted by the exorbitant glutathione (GSH) produced by the tumor cells before exerting the antitumor effect. Herein, borneol (NB) serving as a monoterpenoid sensitizer, and copper sulfide (CuS NPs) as an NIR-II photothermal agent were loaded in a thermo-responsive vehicle (NB/CuS@PCM NPs). Under 1,060-nm laser irradiation, the hyperthermia produced by CuS NPs can be used for photothermal therapy and melt the phase change material for drug delivery. In the acidity microenvironment, the CuS NPs released from NB/CuS@PCM NPs could degrade to Cu2+, then Cu2+ was reduced to Cu+ during the depletion of GSH. As Fenton-like catalyst, the copper ion could convert hydrogen peroxide into hydroxyl radicals for chemodynamic therapy. Moreover, the NB originated from NB/CuS@PCM NPs could increase the intracellular ROS content to improve the treatment outcome of chemodynamic therapy. The animal experimental results indicated that the NB/CuS@PCM NPs could accumulate at the tumor site and exhibit an excellent antitumor effect. This work confirmed that the combination of oxidative stress-induced damage and photothermal therapy is a potential therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Bin Huang
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yuanpeng Huang
- Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China
| | - Han Han
- School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, China
| | - Qiuyue Ge
- School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, China
| | - Dongliang Yang
- School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, China
| | - Yanling Hu
- School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, China
| | - Meng Ding
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yanqing Su
- Department of Pharmacy, Xiamen Children’s Hospital, Xiamen, China
| | - Yanbin He
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jinjun Shao
- Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China
| | - Jianfeng Chu
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
22
|
Tang Y, Jean M, Pourebrahimi S, Rodrigue D, Ye Z. Influence of lignin structure change during extrusion on properties and recycling of lignin‐polyethylene thermoplastic composites. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.23960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yong Tang
- Department of Chemical and Materials Engineering Concordia University Montreal Québec Canada
| | - Michel Jean
- Department of Advanced Fibers Domtar Corporation Espanola Ontario Canada
| | - Sina Pourebrahimi
- Department of Chemical and Materials Engineering Concordia University Montreal Québec Canada
| | - Denis Rodrigue
- Department of Chemical Engineering Laval University Laval Québec Canada
| | - Zhibin Ye
- Department of Chemical and Materials Engineering Concordia University Montreal Québec Canada
| |
Collapse
|
23
|
Abstract
Abstract
Recently, bicomponent fibers have been attracting much attention due to their unique structural characteristics and properties. A common concern was how to characterize a bicomponent fiber. In this review, we generally summarized the classification, structural characteristics, preparation methods of the bicomponent fibers, and focused on the experimental evidence for the identification of bicomponent fibers. Finally, the main challenges and future perspectives of bicomponent fibers and their characterization are provided. We hope that this review will provide readers with a comprehensive understanding of the design and characterization of bicomponent fibers.
Collapse
Affiliation(s)
- Shufang Zhu
- Industrial Research Institute of Nonwovens and Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles and Clothing, Qingdao University , Qingdao 266071 , China
| | - Xin Meng
- Industrial Research Institute of Nonwovens and Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles and Clothing, Qingdao University , Qingdao 266071 , China
| | - Xu Yan
- Industrial Research Institute of Nonwovens and Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles and Clothing, Qingdao University , Qingdao 266071 , China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University , Qingdao 266071 , China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University , Qingdao 266071 , China
| | - Shaojuan Chen
- Industrial Research Institute of Nonwovens and Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles and Clothing, Qingdao University , Qingdao 266071 , China
| |
Collapse
|
24
|
Preparation and Properties of Wood Plastic Composites with Desirable Features Using Poplar and Five Recyclable Plastic Wastes. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11156838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This study evaluated the mechanical and hydrophobic properties of wood plastic composites (WPC) prepared by the hot molding approach incorporating five different recycled plastics and poplar flour. The WPC showed excellent tensile strength (36.9 MPa) and flexural strength (44.7 MPa) associated with good hydrophobicity, and the excellent properties of WPC could be due to the application of hot pressing which improved the amount of hydroxyl groups and reduced the crystallinity of WPC. The WPC also revealed a strong and hydrostable structure and negligible emission of formaldehyde during the preparation process. Overall, the WPC could be used to substitute traditional wood-based panels as potential furniture material, hence achieving sustainable utilization of plastic wastes.
Collapse
|
25
|
Wang J, Guo M, Luo Y, Shao D, Ge S, Cai L, Xia C, Lam SS. Production of magnetic sodium alginate polyelectrolyte nanospheres for lead ions removal from wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 289:112506. [PMID: 33831760 DOI: 10.1016/j.jenvman.2021.112506] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Polyelectrolyte composite nanospheres are relatively new adsorbents which have attracted much attention for their efficient pollutant removal and reuse performance. A novel polyelectrolyte nanosphere with magnetic function (SA@AM) was synthesized via the electrostatic reaction between the polyanionic sodium alginate (SA) and the surface of a prepared terminal amino-based magnetic nanoparticles (AMs). SA@AM showed a size of 15-22 nm with 6.85 emu·g-1 of magnetization value, exhibiting a high adsorption capacity on Pb(II) ions representing a common heavy metal pollutant, with a maximum adsorption capacity of 105.8 mg g-1. The Langmuir isotherm adsorption fits the adsorption curve, indicating uniform adsorption of Pb(II) on the SA@AM surfaces. Repeated adsorption desorption experiments showed that the removal ratio of Pb(II) by SA@AM was more than 76%, illustrating improved regeneration performance. These results provide useful information for the production of bio-based green magnetic nano scale adsorption materials for environmental remediation applications.
Collapse
Affiliation(s)
- Jue Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China; College of Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Ming Guo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China; College of Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| | - Yonghong Luo
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Dongwei Shao
- College of Mechanical Engineering, Jiamusi University, Jiamusi, Heilongjiang, 154007, China
| | - Shengbo Ge
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Liping Cai
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Changlei Xia
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Su Shiung Lam
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
26
|
Yang X, Biswas SK, Han J, Tanpichai S, Li M, Chen C, Zhu S, Das AK, Yano H. Surface and Interface Engineering for Nanocellulosic Advanced Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2002264. [PMID: 32902018 PMCID: PMC11468146 DOI: 10.1002/adma.202002264] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/21/2020] [Indexed: 06/11/2023]
Abstract
How do trees support their upright massive bodies? The support comes from the incredibly strong and stiff, and highly crystalline nanoscale fibrils of extended cellulose chains, called cellulose nanofibers. Cellulose nanofibers and their crystalline parts-cellulose nanocrystals, collectively nanocelluloses, are therefore the recent hot materials to incorporate in man-made sustainable, environmentally sound, and mechanically strong materials. Nanocelluloses are generally obtained through a top-down process, during or after which the original surface chemistry and interface interactions can be dramatically changed. Therefore, surface and interface engineering are extremely important when nanocellulosic materials with a bottom-up process are fabricated. Herein, the main focus is on promising chemical modification and nonmodification approaches, aiming to prospect this hot topic from novel aspects, including nanocellulose-, chemistry-, and process-oriented surface and interface engineering for advanced nanocellulosic materials. The reinforcement of nanocelluloses in some functional materials, such as structural materials, films, filaments, aerogels, and foams, is discussed, relating to tailored surface and/or interface engineering. Although some of the nanocellulosic products have already reached the industrial arena, it is hoped that more and more nanocellulose-based products will become available in everyday life in the next few years.
Collapse
Affiliation(s)
- Xianpeng Yang
- Laboratory of Active Bio‐Based MaterialsResearch Institute for Sustainable Humanosphere (RISH)Kyoto UniversityUjiKyoto611‐0011Japan
| | - Subir Kumar Biswas
- Laboratory of Active Bio‐Based MaterialsResearch Institute for Sustainable Humanosphere (RISH)Kyoto UniversityUjiKyoto611‐0011Japan
| | - Jingquan Han
- College of Materials science and EngineeringNanjing Forestry UniversityNanjing210037P. R. China
| | - Supachok Tanpichai
- Learning InstituteKing Mongkut's University of Technology ThonburiBangkok10140Thailand
| | - Mei‐Chun Li
- College of Materials science and EngineeringNanjing Forestry UniversityNanjing210037P. R. China
| | - Chuchu Chen
- College of Materials science and EngineeringNanjing Forestry UniversityNanjing210037P. R. China
| | - Sailing Zhu
- College of Materials science and EngineeringNanjing Forestry UniversityNanjing210037P. R. China
| | - Atanu Kumar Das
- Department of Forest Biomaterials and TechnologySwedish University of Agricultural SciencesUmeåSE‐90183Sweden
| | - Hiroyuki Yano
- Laboratory of Active Bio‐Based MaterialsResearch Institute for Sustainable Humanosphere (RISH)Kyoto UniversityUjiKyoto611‐0011Japan
| |
Collapse
|
27
|
Yu Q, Huang X, Zhang T, Wang W, Yang D, Shao J, Dong X. Near-infrared Aza-BODIPY Dyes Through Molecular Surgery for Enhanced Photothermal and Photodynamic Antibacterial Therapy. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1190-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Mukarram M, Khan MMA, Corpas FJ. Silicon nanoparticles elicit an increase in lemongrass (Cymbopogon flexuosus (Steud.) Wats) agronomic parameters with a higher essential oil yield. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125254. [PMID: 33550131 DOI: 10.1016/j.jhazmat.2021.125254] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/26/2020] [Accepted: 01/26/2021] [Indexed: 05/22/2023]
Abstract
Lemongrass (Cymbopogon flexuosus (Steud.) Wats) is an aromatic grass with great industrial potential. It is cultivated for its essential oil (EO) which has great economical value due to its numerous medicinal, cosmetic and culinary applications. The present study was conducted on silicon nanoparticles (SiNPs) application to lemongrass with the objective of overall agronomic enhancements. Graded concentrations (50-200 mg L-1) of SiNPs were exogenously applied to lemongrass leaves. The physiological and biochemical analyses revealed that 150 mg L-1 SiNPs is the optimum concentration for lemongrass plants. This concentration triggered photosynthetic variables, gas exchange modules and activities of enzymes involved in EO (geraniol dehydrogenase) and nitrogen (nitrate reductase) metabolism as well as in the antioxidant system (catalase, peroxidase and superoxide dismutase). These SiNPs-induced metabolic changes altogether significantly (p ≤ 0.05) enhanced overall plant growth and yield. Moreover, SiNPs treatments assisted in palliating lipid peroxidation and H2O2 content in lemongrass leaves which added further advantage to plant metabolism. Overall, data indicates SiNPs elicit beneficial effects on lemongrass growth and yield through inducing various physiological and biochemical responses. This renders high possibility that similar objectives could be achieved with SiNPs biotechnological application on further related agronomic crops as well as in diverse industries.
Collapse
Affiliation(s)
| | | | - Francisco J Corpas
- Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| |
Collapse
|
29
|
Wu F, Misra M, Mohanty AK. Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101395] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Haniffa MACM, Munawar K, Chee CY, Pramanik S, Halilu A, Illias HA, Rizwan M, Senthilnithy R, Mahanama KRR, Tripathy A, Azman MF. Cellulose supported magnetic nanohybrids: Synthesis, physicomagnetic properties and biomedical applications-A review. Carbohydr Polym 2021; 267:118136. [PMID: 34119125 DOI: 10.1016/j.carbpol.2021.118136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 12/27/2022]
Abstract
Cellulose and its forms are widely used in biomedical applications due to their biocompatibility, biodegradability and lack of cytotoxicity. It provides ample opportunities for the functionalization of supported magnetic nanohybrids (CSMNs). Because of the abundance of surface hydroxyl groups, they are surface tunable in either homogeneous or heterogeneous solvents and thus act as a substrate or template for the CSMNs' development. The present review emphasizes on the synthesis of various CSMNs, their physicomagnetic properties, and potential applications such as stimuli-responsive drug delivery systems, MRI, enzyme encapsulation, nucleic acid extraction, wound healing and tissue engineering. The impact of CSMNs on cytotoxicity, magnetic hyperthermia, and folate-conjugates is highlighted in particular, based on their structures, cell viability, and stability. Finally, the review also discussed the challenges and prospects of CSMNs' development. This review is expected to provide CSMNs' development roadmap in the context of 21st-century demands for biomedical therapeutics.
Collapse
Affiliation(s)
| | - Khadija Munawar
- Centre of Advanced Manufacturing and Material Processing, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Ching Yern Chee
- Centre of Advanced Manufacturing and Material Processing, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Sumit Pramanik
- Functional and Biomaterials Engineering Lab, Department of Mechanical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram, 603203, Chennai, Tamil Nadu, India.
| | - Ahmed Halilu
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hazlee Azil Illias
- Centre of Advanced Manufacturing and Material Processing, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Muhammad Rizwan
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Rajendram Senthilnithy
- Department of Chemistry, Faculty of Natural Sciences, The Open University of Sri Lanka, 10250 Nawala, Nugegoda, Sri Lanka
| | | | - Ashis Tripathy
- Center for MicroElectroMechanics Systems (CMEMS), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Mohd Fahmi Azman
- Physics Division, Centre for foundation studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
31
|
Okamoto I, Miyaji H, Miyata S, Shitomi K, Sugaya T, Ushijima N, Akasaka T, Enya S, Saita S, Kawasaki H. Antibacterial and Antibiofilm Photodynamic Activities of Lysozyme-Au Nanoclusters/Rose Bengal Conjugates. ACS OMEGA 2021; 6:9279-9290. [PMID: 33842797 PMCID: PMC8028138 DOI: 10.1021/acsomega.1c00838] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/16/2021] [Indexed: 05/04/2023]
Abstract
Antibacterial photodynamic therapy (aPDT) utilizes reactive oxygen species such as singlet oxygen (1O2) and free radicals via photosensitizers, which are light and light-sensitive agents, to reduce bacterial infections. It has been utilized as a treatment for dental diseases in place of antibiotic therapies. However, aPDT does not always cause the desired therapeutic effect due to the instability of organic photosensitizers and the formation of bacterial biofilms. To promote the antibacterial and antibiofilm effects of aPDT, we have proposed a lysozyme (Lys)-gold nanoclusters (Au NCs)/rose bengal (Lys-Au NCs/RB) conjugate as a novel photosensitizer. This conjugate was found to effectively impede the growth of both gram-positive and gram-negative bacteria when exposed to white light-emitting diode (LED) irradiation. The photoexcited Lys-Au NCs/RB showed significantly higher antibacterial activity than photoexcited Lys-Au NCs or RB alone. The synergistic effect is a result of the combination of Lys (an antibacterial protein) and enhanced 1O2 generation related to resonance energy transfer (RET) in the Au NCs/RB conjugate. Photoexcited Lys-Au NCs/RB increased the effects of aPDT in a dose- and time-dependent manner. Furthermore, the photoexcited Lys-Au NCs/RB successfully decreased Streptococcus mutans biofilm formation. However, in contrast, it did not have a negative effect on the proliferation, adhesion, or spread of mammalian cells, indicating low cytotoxicity. Lys-Au NCs/RB is a novel photosensitizer with low cytotoxicity that is capable of bacterial inactivation and the suppression of biofilm formation, and could help to improve dental treatments in the future.
Collapse
Affiliation(s)
- Ichie Okamoto
- Department
of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, N13 W7, Kita-ku, Sapporo, Hokkaido 060-8586, Japan
| | - Hirofumi Miyaji
- Department
of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, N13 W7, Kita-ku, Sapporo, Hokkaido 060-8586, Japan
| | - Saori Miyata
- Department
of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, N13 W7, Kita-ku, Sapporo, Hokkaido 060-8586, Japan
| | - Kanako Shitomi
- Division
of Periodontology and Endodontology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu-cho, Ishikari-gun, Hokkaido 061-0293, Japan
| | - Tsutomu Sugaya
- Department
of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, N13 W7, Kita-ku, Sapporo, Hokkaido 060-8586, Japan
| | - Natsumi Ushijima
- Support
Section for Education and Research, Faculty of Dental Medicine, Hokkaido University,
N13 W7, Kita-ku, Sapporo, Hokkaido 060-8586, Japan
| | - Tsukasa Akasaka
- Department
of Biomedical Materials and Engineering, Faculty of Dental Medicine, Hokkaido University, N13 W7, Kita-ku, Sapporo, Hokkaido 060-8586, Japan
| | - Satoshi Enya
- Department
of Chemistry and Materials Engineering, Faculty of Chemistry, Materials
and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-8689, Japan
| | - Satoshi Saita
- Department
of Chemistry and Materials Engineering, Faculty of Chemistry, Materials
and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-8689, Japan
| | - Hideya Kawasaki
- Department
of Chemistry and Materials Engineering, Faculty of Chemistry, Materials
and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-8689, Japan
| |
Collapse
|
32
|
Felgueiras C, Azoia NG, Gonçalves C, Gama M, Dourado F. Trends on the Cellulose-Based Textiles: Raw Materials and Technologies. Front Bioeng Biotechnol 2021; 9:608826. [PMID: 33869148 PMCID: PMC8044815 DOI: 10.3389/fbioe.2021.608826] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/25/2021] [Indexed: 01/10/2023] Open
Abstract
There is an emerging environmental awareness and social concern regarding the environmental impact of the textile industry, highlighting the growing need for developing green and sustainable approaches throughout this industry's supply chain. Upstream, due to population growth and the rise in consumption of textile fibers, new sustainable raw materials and processes must be found. Cellulose presents unique structural features, being the most important and available renewable resource for textiles. The physical and chemical modification reactions yielding fibers are of high commercial importance today. Recently developed technologies allow the production of filaments with the strongest tensile performance without dissolution or any other harmful and complex chemical processes. Fibers without solvents are thus on the verge of commercialization. In this review, the technologies for the production of cellulose-based textiles, their surface modification and the recent trends on sustainable cellulose sources, such as bacterial nanocellulose, are discussed. The life cycle assessment of several cellulose fiber production methods is also discussed.
Collapse
Affiliation(s)
| | - Nuno G Azoia
- CeNTI-Centre for Nanotechnology and Smart Materials, Vila Nova de Famalicão, Portugal
| | - Cidália Gonçalves
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Miguel Gama
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Fernando Dourado
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
33
|
Shi YF, Jiang YP, Sun PP, Wang K, Zhang ZQ, Zhu NJ, Guo R, Zhang YY, Wang XZ, Liu YY, Huo JZ, Wang XR, Ding B. Solvothermal preparation of luminescent zinc(II) and cadmium(II) coordination complexes based on the new bi-functional building block and photo-luminescent sensing for Cu 2+, Al 3+ and L-lysine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119214. [PMID: 33257240 DOI: 10.1016/j.saa.2020.119214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 06/12/2023]
Abstract
In industry, over usage of Cu2+ and Al3+ will lead to toxic wastewater, which further to give serious pollution for the environment. On the other hand, L-lysine can enhance serotonin release in the amygdala, with subsequent changes in psychobehavioral responses to stress. Therefore it is the urgent problem to design a method for detecting the amount of Cu2+, Al3+, and L-lysine. In this work, through the solvothermal synthesis method, two new coordination complexes based on the new bifunctional building block 4'-(1H-1,2,4-triazole-1-yl)- [1,1'-biphenyl]-4-carboxylic acid (HL) have been synthesized, namely, [Zn(L)2·4H2O] (complex 1) and [Cd(L)2·4H2O] (complex 2). X-ray single-crystal diffractometer was used to analyze its structure, powder X-ray diffraction (PXRD) patterns confirmed that 1 and 2 powder's purity and 1 can keep stable during the detection process of Cu2+, Al3+, and L-lysine, respectively. Elemental analysis, thermogravimetric analysis, infrared analysis, ultraviolet analysis and fluorescent spectrum have been used to characterize these complexes. The photo-luminescent test showed that 1 can accurately recognize Al3+ and Cu2+ among various cations. On the other hand, 1 can distinguish L-lysine among amino acid molecules. Therefore, 1 can be utilized as a multifunctional fluorescent probe for Al3+(Ksv = 1.5570 × 104 [M]-1), Cu2+(Ksv = 1.4948 × 104 [M]-1) and L-lysine (Ksv = 4.9118 × 104 [M]-1) with low detection limits (17.5 μM, 18.2 μM, 5.6 μM) respectively.
Collapse
Affiliation(s)
- Yang Fan Shi
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Yu Peng Jiang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Ping Ping Sun
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Kuo Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Zi Qing Zhang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Na Jia Zhu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Rui Guo
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Yi Yun Zhang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Xing Ze Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Yuan Yuan Liu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Jian Zhong Huo
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Xin Rui Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.
| | - Bin Ding
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
34
|
Zhong Y, Seidi F, Li C, Wan Z, Jin Y, Song J, Xiao H. Antimicrobial/Biocompatible Hydrogels Dual-Reinforced by Cellulose as Ultrastretchable and Rapid Self-Healing Wound Dressing. Biomacromolecules 2021; 22:1654-1663. [PMID: 33655745 DOI: 10.1021/acs.biomac.1c00086] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hydrogels as a wound dressing, integrated with ultrastretchability, rapid self-healing, and excellent antimicrobial activity, are in high demand, particularly for joint skin wound healing. Herein, a multifunctional and ductile composite hydrogel was developed using poly(vinyl alcohol) (PVA)-borax gel as a matrix that was synergized or dual-reinforced with dopamine-grafted oxidized carboxymethyl cellulose (OCMC-DA) and cellulose nanofibers (CNF). Moreover, neomycin (NEO), an aminoglycoside antibiotic with multifunctional groups, was incorporated into the hydrogel network as both an antibacterial agent and a cross-linker. The dynamic reversible borate ester linkages and hydrogen bonds between OCMC-DA, PVA, and CNF, along with dynamic cross-linking imine linkages between NEO and OCMC-DA, endowed the hydrogel with excellent self-healing ability and stretchability (3300%). The as-reinforced networks enhanced the mechanical properties of hydrogels significantly. More remarkably, the composite hydrogel with improved biodegradability and biocompatibility is pH-responsive and effective against a broad spectrum of bacteria, which is attributed to the controllable release of NEO for steady availability of the antibiotic on the wound location. Overall, the antimicrobial hydrogel with rapid self-healing and reliable mechanical properties holds significant promise as dressing material for wound healing.
Collapse
Affiliation(s)
- Yajie Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Chengcheng Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Zhangmin Wan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Junlong Song
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| |
Collapse
|
35
|
Teh KC, Foo ML, Ooi CW, Leng Chew IM. Sustainable and cost-effective approach for the synthesis of lignin-containing cellulose nanocrystals from oil palm empty fruit bunch. CHEMOSPHERE 2021; 267:129277. [PMID: 33385850 DOI: 10.1016/j.chemosphere.2020.129277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/15/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Cellulose nanocrystals (CNC) have received great research attention since the last few decades due to their extraordinary properties and wide range of applications. In this study, a sustainable and cost-effective method for the synthesis of lignin-containing cellulose nanocrystals (LCNC) from oil palm empty fruit bunch (EFB) is presented. This method is able to retain the lignin in EFB and manifest the properties of lignin. The proposed synthesis process is simpler than the conventional method of producing lignin-coated CNC by first removing the lignin to synthesize CNC followed by the re-coating of lignin on the structure. The samples of LCNC were characterized by transmission electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy and water contact angle analysis. In addition, by altering the acid concentration during acid hydrolysis process (53% - 60% H2SO4), both surface hydrophobicity (66.0° - 75.1°) and length of LCNC (467 nm-177 nm) can be altered wherein a higher concentration of acid resulted in a greater contact angle and a shorter length of LCNC. Cost and energy analysis deduced that the proposed synthesis method saved about 62% of the total material cost and 80% less energy as compared to the synthesis of lignin-coated CNC.
Collapse
Affiliation(s)
- Khai Chyi Teh
- School of Engineering, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Mei Ling Foo
- School of Engineering, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Chien Wei Ooi
- School of Engineering, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia; Monash-Industry Palm Oil Education and Research Platform (MIPO), Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Irene Mei Leng Chew
- School of Engineering, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia; Monash-Industry Palm Oil Education and Research Platform (MIPO), Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
36
|
Wang W, Gu F, Deng Z, Zhu Y, Zhu J, Guo T, Song J, Xiao H. Multilayer surface construction for enhancing barrier properties of cellulose-based packaging. Carbohydr Polym 2021; 255:117431. [DOI: 10.1016/j.carbpol.2020.117431] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/27/2022]
|
37
|
Saito Y, Iwamoto S, Tanaka Y, Hontama N, Endo T. Suppressing aggregation of quinacridone pigment and improving its color strength by using chitosan nanofibers. Carbohydr Polym 2021; 255:117365. [PMID: 33436198 DOI: 10.1016/j.carbpol.2020.117365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/24/2020] [Accepted: 11/01/2020] [Indexed: 11/24/2022]
Abstract
Quinacridone, a red pigment, is prone to aggregation, which results in undesirable color changes. Cellulose nanofibers (NFs) have been reported to adsorb quinacridone and suppress its aggregation. In this study, we investigated the potential of chitin and chitosan NFs which possess acetoamide and amino groups, as a quinacridone dispersant. Chitosan NFs, obtained by fibrillation using high-pressure homogenizer, adsorbed more quinacridone than cellulose NFs. SEM observations showed that chitosan NFs inhibited the aggregation of quinacridone, but chitin NFs did not. NMR analysis suggested the hydrogen bonding between chitosan NFs and quinacridone induced by the amino groups. The results indicated that the amino groups more facilitated the intermolecular interactions between NFs and quinacridone than the hydroxyl groups whereas the acetamide groups hindered them. Color measurements showed that the redness of quinacridone improved when cellulose or chitosan NFs were added. Chitosan NFs were found to be a novel candidate for quinacridone dispersants.
Collapse
Affiliation(s)
- Yasuko Saito
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Hiroshima, 739-0046, Japan.
| | - Shinichiro Iwamoto
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Hiroshima, 739-0046, Japan.
| | - Yuki Tanaka
- Sanyo Color Works, Ltd., Hyogo, 670-0966, Japan.
| | | | - Takashi Endo
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Hiroshima, 739-0046, Japan.
| |
Collapse
|
38
|
Heng Y, Xie T, Wang X, Chen D, Wen J, Chen X, Hu D, Wang N, Wu YA. Raw cellulose/polyvinyl alcohol blending separators prepared by phase inversion for high-performance supercapacitors. NANOTECHNOLOGY 2021; 32:095403. [PMID: 33203815 DOI: 10.1088/1361-6528/abcb62] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of a biodegradable cellulose-based separator with excellent performance has been of great research significance and application potential for the green development of supercapacitors. Herein, the regenerated porous cellulose/Polyvinyl alcohol films (CP-10, CP-15, CP-20, CP-25) with different mass ratio were successfully fabricated by a simple blending and phase inversion process. Their electrochemical properties as separators in assembled supercapacitor were evaluated. Fourier transform infrared spectroscopy and x-ray diffraction analysis indicate that intermolecular and intramolecular hydrogen bonding existed between cellulose and polyvinyl alcohol of the CP films. Compared with other CP films, the CP-20 film shows higher mechanical strength (28.02 MPa), better wettability (79.06°), higher porosity (59.69%) and electrolyte uptake (281.26 wt%). These properties of CP-20 are expected to show better electrochemical performance as separator. Indeed, the electrochemical tests, including electrochemical impedance spectroscopy, cyclic voltammetry, galvanostatic charge discharge, demonstrate that the SC-20 capacitor (with CP-20 as separator) shows the lowest equivalent series resistance of 0.57 Ω, the highest areal capacitance of 1.98 F cm-2 at 10 mV s-1, specific capacitance of 134.41 F g-1 and charge-discharge efficiency of 98.62% at 1 A g-1 among the four capacitors with CP films as separators. Comparing the assembled SC-40 and SC-30 with two commercial separators (TF4040 and MPF30AC) and SC-PVA with Polyvinyl alcohol (PVA) separator, the CV and GCD curves of SC-20 maintain the quasi rectangular and symmetrical triangular profiles respectively at different scan rates in potential window of 0-1 V. SC-20 exhibits the highest value of 28.24 Wh kg-1 at 0.5 A g-1 with a power density of 0.26 kW kg-1, and 13.41 Wh kg-1 at 10 A g-1 with a power density of 6.04 kW kg-1. SC-20 also shows the lowest voltage drop and the highest areal and specific capacitance. Moreover, SC-20 maintains the highest value of 86.81% after 4000 cycles compared to 21.18% of SC-40, 75.07% of SC-30, and 6.66% of SC-PVA, showing a superior rate capability of a supercapacitor. These results indicate that CP films can be served as promising separators for supercapacitors.
Collapse
Affiliation(s)
- Yingqi Heng
- Wood Industry Research Institute, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, People's Republic of China
| | - Tianqi Xie
- Wood Industry Research Institute, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, People's Republic of China
| | - Xiyang Wang
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Ding Chen
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, People's Republic of China
| | - Jiahao Wen
- Guangxi Institute Fullerene Technology (GIFT), Key Laboratory of New Processing Technology for Nonferrous Metals and Materials-Ministry of Education, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, People's Republic of China
| | - Xiyong Chen
- Guangxi Institute Fullerene Technology (GIFT), Key Laboratory of New Processing Technology for Nonferrous Metals and Materials-Ministry of Education, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, People's Republic of China
| | - Dongying Hu
- Wood Industry Research Institute, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, People's Republic of China
| | - Nannan Wang
- Guangxi Institute Fullerene Technology (GIFT), Key Laboratory of New Processing Technology for Nonferrous Metals and Materials-Ministry of Education, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, People's Republic of China
| | - Yimin A Wu
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
39
|
Teng W, Yang Z, Wang S, Xiong D, Chen Y, Wu Z. Toxicity evaluation of mesoporous silica particles Santa Barbara No. 15 amorphous in human umbilical vein endothelial cells: influence of particle morphology. J Appl Toxicol 2021; 41:1467-1478. [DOI: 10.1002/jat.4137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/12/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022]
|
40
|
Zhang X, Li Z, Yang P, Duan G, Liu X, Gu Z, Li Y. Polyphenol scaffolds in tissue engineering. MATERIALS HORIZONS 2021; 8:145-167. [PMID: 34821294 DOI: 10.1039/d0mh01317j] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polyphenols are a class of ubiquitous compounds distributed in nature, with fascinating inherent biocompatible, bioadhesive, antioxidant, and antibacterial properties. The unique polyphenolic structures based on catechol or pyrogallol moieties allow for strong non-covalent interactions (e.g., multiple hydrogen bonding, electrostatic, and cation-π interactions) as well as covalent interactions (e.g., Michael addition/Schiff-base reaction, radical coupling reaction, and dynamic coordination interactions with boronate or metal ions). This review article provides an overview of the polyphenol-based scaffolds including the hydrogels, films, and nanofibers that have emerged from chemical and functional signatures during the past years. A full description of the structure-function relationships in terms of their utilization in wound healing, bone regeneration, and electroactive tissue engineering is also carefully discussed, which may pave the path towards the rational design and facile preparation of next-generation polyphenol scaffolds for tissue engineering applications.
Collapse
Affiliation(s)
- Xueqian Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | | | | | | | | | | | | |
Collapse
|
41
|
Zou Y, Wu X, Li H, Yang L, Zhang C, Wu H, Li Y, Xiao L. Metal-phenolic network coated cellulose foams for solar-driven clean water production. Carbohydr Polym 2020; 254:117404. [PMID: 33357892 DOI: 10.1016/j.carbpol.2020.117404] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/20/2020] [Accepted: 10/31/2020] [Indexed: 02/08/2023]
Abstract
Solar-driven water steam generation is a promising strategy for seawater desalination and wastewater purification. However, oil contaminants commonly exist in real water resources, which drives us to design and fabricate photothermal materials with high efficient water steam generation and outstanding anti-oil-fouling ability. Herein, we developed a metal-phenolic network-coated cellulose foam (Fe3+/TA@CF), which exhibits not only superb hydrophilicity and underwater lipophobicity, but also achieves high water evaporation rate of ∼1.3 kg m-2 h-1 even in oil-polluted seawater under one sun illumination. In addition, Fe3+/TA@CF is demonstrated to be both anti-oil-fouling and anti-salt-fouling, which benefits to long-term evaporation in practical utilizations. Metal ions and oil contaminants in the condensed water vapor are almost eliminated after purification. We believe that this low-cost, biodegradable Fe3+/TA@CF paves a way for rationally designing and fabricating high-performance evaporator for oil contaminated water purification.
Collapse
Affiliation(s)
- Yuan Zou
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610041, China
| | - Xiaoai Wu
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610041, China
| | - Haotian Li
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610041, China
| | - Lu Yang
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610041, China
| | - Chaoqun Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, 483 Wushan Road, Guangzhou, 510642, China
| | - Haoxing Wu
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610041, China.
| | - Yiwen Li
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610041, China.
| | - Li Xiao
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
42
|
Natural lignocellulosic nanofibril film with excellent ultraviolet blocking performance and robust environment resistance. Int J Biol Macromol 2020; 166:1578-1585. [PMID: 33181218 DOI: 10.1016/j.ijbiomac.2020.11.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/01/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022]
Abstract
Due to the current state of ozone layer depletion and potential risk of skin cancer, researches on sustainable cellulose-based films with ultraviolet (UV) blocking capabilities has attracted widespread attention. However, pure cellulose-based film required UV absorbent to be incorporated because of its poor UV blocking ability. In this work, natural lignocellulosic nanofibril (LCNF) film was fabricated by vacuum filtration and pressing process without any complex chemical modification or adding UV absorbers. The residual lignin retained in LCNF was found to act as natural macro-molecular UV absorber. LCNF film with lignin content of 4.89-15.68% exhibited excellent thermal stability, and their UVA and UVB blocking were in the range of 81.4-99.5% and 96.7-100%, respectively. Moreover, LCNF film exhibited stable UV shielding performance under high temperature, UV irradiation, acidic or alkaline conditions, providing LCNF film with a long-term use capacity. Overall, LCNF film is more environmentally friendly and harmless, which shows high potentials in anti-counterfeiting materials, UV protection, and windshields for vehicles.
Collapse
|
43
|
Li S, Wang D, Xiao H, Zhang H, Cao S, Chen L, Ni Y, Huang L. Ultra-low pressure cellulose-based nanofiltration membrane fabricated on layer-by-layer assembly for efficient sodium chloride removal. Carbohydr Polym 2020; 255:117352. [PMID: 33436192 DOI: 10.1016/j.carbpol.2020.117352] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/21/2020] [Accepted: 10/29/2020] [Indexed: 10/23/2022]
Abstract
Cellulose is a renewable, biodegradable, biocompatible, and sustainable material. A bamboo cellulose-based nanofiltration membrane (LBL-NF-CS/BCM) was prepared with a combination of layer-by-layer assembly and spraying methods. The chemical structure, morphology, and surface charge of the resultant LBL-NF-CS/BCM composite membranes were characterized based on Thermo Gravimetric Analysis (TGA), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), and X-ray Photoelectron Spectroscopy Scanning (XPS). The nanofiltration performance of the LBL-NF-CS/BCM composite membranes was evaluated using 500 ppm NaCl solutions under 0.3 MPa pressure. It was found that the LBL-NF-CS/BCM composite membranes had a rejection rate of about 36.11 % against a 500 ppm NaCl solution under the conditions tested, and membrane flux of about 12.08 L/(m2 h) was reached. The combined layer-by-layer assembly and spraying provides a scalable and convenient process concept for nanofiltration membrane fabrication.
Collapse
Affiliation(s)
- Shi Li
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong Wang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - He Xiao
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hui Zhang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shilin Cao
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lihui Chen
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yonghao Ni
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Department of Chemical Engineering and Limerick Pulp and Paper Centre, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada.
| | - Liulian Huang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
44
|
Acidic deep eutectic solvent assisted isolation of lignin containing nanocellulose from thermomechanical pulp. Carbohydr Polym 2020; 247:116727. [DOI: 10.1016/j.carbpol.2020.116727] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 11/22/2022]
|
45
|
Ahmadi SZ, Ghorbanpour M, Aghaee A, Hadian J. Deciphering morpho-physiological and phytochemical attributes of Tanacetum parthenium L. plants exposed to C60 fullerene and salicylic acid. CHEMOSPHERE 2020; 259:127406. [PMID: 32585459 DOI: 10.1016/j.chemosphere.2020.127406] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 05/25/2023]
Abstract
This study was aimed to evaluate the effects of C60 fullerene concentrations (0, 125, 250, 500 and 1000 mg/L) and salicylic acid (0 and 0.2 mM) on growth and phytochemical accumulation of two feverfew genotypes (Pharmasaat and Jelitto) in a factorial experiment based on completely randomized design with three replications. According to the ANOVA, triple interaction of treatments were significant on morphological and phytochmical traits, however, the main effect of treatments only affected physiological attributes. Application of salicylic acid differentially influenced the effects of various concentrations of C60 fullerene on growth traits of both genotypes. In Pharmasaat, foliar application of salicylic acid increased growth traits of plants exposed to C60 fullerene at all concentrations, however, it improved the growth of Jelitto at higher levels of fullerene. The maximum increase of flower + leaf dry weight was recorded at 1000 mg/L C60 fullerene in combination with salicylic acid compared to control for Jelitto. In Pharmasaat, the parthenolide content significantly increased following increase of C60 fullerene up to 250 mg/L with salicylic acid, but a rapid decrease followed at 500-1000 mg/L. SEM images showed a wider deposition (many spheres with different sizes) of C60 fullerene on leaf tissue of Pharmasaat exposed to high concentration, involving changes in trichome density and tissue rupture. The essential oil content was not significantly increased upon experimental treatments compared to control. Based on hierarchical cluster analysis, C60 fullerene and salicylic acid treatments caused to a co-induction of ion leakage, chlorophyll a, essential oil and parthenoloide in Pharmasaat.
Collapse
Affiliation(s)
- Seyede Zahra Ahmadi
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran.
| | - Ahmad Aghaee
- Department of Biology, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Javad Hadian
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
46
|
Wu Y, Ge S, Xia C, Cai L, Mei C, Sonne C, Park YK, Kim YM, Chen WH, Chang JS, Lam SS. Using low carbon footprint high-pressure carbon dioxide in bioconversion of aspen branch waste for sustainable bioethanol production. BIORESOURCE TECHNOLOGY 2020; 313:123675. [PMID: 32563796 DOI: 10.1016/j.biortech.2020.123675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
An innovative approach was developed by incorporating high-pressure CO2 into the separate hydrolysis-fermentation of aspen leftover branches, aiming to enhance the bioethanol production efficiency. The high-pressure CO2 significantly increased the 72-h enzymatic hydrolysis yield of converting aspen into glucose from 53.8% to 82.9%. The hydrolysis process was performed with low enzyme loading (10 FPU g-1 glucan) with the aim of reducing the cost of fuel bioethanol production. The ethanol yield from fermentation of the hydrolyzed glucose using yeast (Saccharomyces cerevisiae) was 8.7 g L-1, showing increment of 10% compared with the glucose control. Techno-economic analysis indicated that the energy consumption of fuel bioethanol production from aspen branch chips was reduced by 35% and the production cost was cut 44% to 0.615 USD L-1, when 68 atm CO2 was introduced into the process. These results furtherly emphasized the low carbon footprint of this sustainable energy production approach.
Collapse
Affiliation(s)
- Yingji Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shengbo Ge
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Changlei Xia
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Anhui Juke Graphene Technology Co., Ltd., Bozhou, Anhui 233600, China
| | - Liping Cai
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Changtong Mei
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Young-Min Kim
- Department of Environmental Engineering, Daegu University, Gyeongsan 38453, Republic of Korea
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Henan Province Engineering Research Center for Biomass Value-Added Products, Henan Agricultural University, Zhengzhou, Henan 450002, China; Anhui Juke Graphene Technology Co., Ltd., Bozhou, Anhui 233600, China.
| |
Collapse
|
47
|
Liu H, Liu K, Han X, Xie H, Si C, Liu W, Bae Y. Cellulose Nanofibrils-based Hydrogels for Biomedical Applications: Progresses and Challenges. Curr Med Chem 2020; 27:4622-4646. [DOI: 10.2174/0929867327666200303102859] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 12/15/2019] [Accepted: 12/25/2019] [Indexed: 02/06/2023]
Abstract
Background:
Cellulose Nanofibrils (CNFs) are natural nanomaterials with nanometer
dimensions. Compared with ordinary cellulose, CNFs own good mechanical properties, large specific
surface areas, high Young's modulus, strong hydrophilicity and other distinguishing characteristics,
which make them widely used in many fields. This review aims to introduce the preparation
of CNFs-based hydrogels and their recent biomedical application advances.
Methods:
By searching the recent literatures, we have summarized the preparation methods of
CNFs, including mechanical methods and chemical mechanical methods, and also introduced the
fabrication methods of CNFs-based hydrogels, including CNFs cross-linked with metal ion and
with polymers. In addition, we have summarized the biomedical applications of CNFs-based hydrogels,
including scaffold materials and wound dressings.
Results:
CNFs-based hydrogels are new types of materials that are non-toxic and display a certain
mechanical strength. In the tissue scaffold application, they can provide a micro-environment for
the damaged tissue to repair and regenerate it. In wound dressing applications, it can fit the wound
surface and protect the wound from the external environment, thereby effectively promoting the
healing of skin tissue.
Conclusion:
By summarizing the preparation and application of CNFs-based hydrogels, we have
analyzed and forecasted their development trends. At present, the research of CNFs-based hydrogels
is still in the laboratory stage. It needs further exploration to be applied in practice. The development
of medical hydrogels with high mechanical properties and biocompatibility still poses significant
challenges.
Collapse
Affiliation(s)
- Huayu Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kun Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiao Han
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hongxiang Xie
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wei Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Youngsoo Bae
- Jiangxi Academy of Forestry, Nanchang 33032, China
| |
Collapse
|
48
|
Abstract
This study details the design and characterization of a new, biodegradable, and renewable whey/cellulose-based hydrogel (i.e., agricultural hydrogel). This was formulated from cellulose derivatives (carboxymethylcellulose (CMC) and hydroxyethylcellulose (HEC)) and acid whey cross-linked with citric acid, with the aim to obtain an agricultural product with a high swelling capacity to uphold the quality of soil and conserve water resources. With regard to the swelling behaviour of the prepared hydrogels, the authors initially assessed the swelling ratio and capacity for water uptake. Evaluating the chemical structure of the hydrogel and its thermal and viscoelastic properties involved performing Fourier transform infrared spectroscopy, differential scanning colorimetry, thermal gravimetric analysis, and rheological measurement of the hydrogel films. According to preliminary results, sufficient swelling capacity and stiffness were observed in a hydrogel prepared with 3% CMC and HEC, cross-linked with 5% citric acid. Moreover, the kinetics of water uptake revealed a promising capacity that was sustainable after 5 drying and swelling cycles. The results confirmed that the stability of the hydrogel was enhanced by the presence of the citric acid. As a consequence, it is necessary to utilize an appropriate cross-linking concentration and abide by certain conditions to ensure the swelling properties of the prepared hydrogel are sufficient. Further investigation of the topic, especially in relation to applications in soil, could confirm if the whey-cellulose-based hydrogel is actually suitable for agricultural use, thereby contributing to the advancement of sustainable arable farming.
Collapse
|
49
|
Lin W, Xing S, Jin Y, Lu X, Huang C, Yong Q. Insight into understanding the performance of deep eutectic solvent pretreatment on improving enzymatic digestibility of bamboo residues. BIORESOURCE TECHNOLOGY 2020; 306:123163. [PMID: 32182471 DOI: 10.1016/j.biortech.2020.123163] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 05/12/2023]
Abstract
Deep eutectic solvent (DES) is a promising pretreatment for improving enzymatic digestibility of lignocellulosic material by altering the physicochemical properties. However, few work has been done to quantitatively analysis the physicochemical properties changes of lignocellulosic material with enzymatic digestibility. In this work, DES pretreatment with different molar ratios of choline chloride/lactic acid was carried out on bamboo residues and respective enzymatic digestibility was investigated and linearly fitted with corresponding physicochemical features changes of the pretreated bamboo residues. Results showed that enzymatic digestibility of DES-pretreated bamboo residues was enhanced with the increasing molar ratio of choline chloride/lactic acid, which was due to DES pretreatment's ability to remove lignin and xylan, reduce the degree of polymerization of cellulose, enhance the crystallite size of cellulose, and improve cellulose accessibility. Several compelling linear correlations (R2 = 0.6-0.9) were observable between enzymatic digestibility and these changes of physicochemical properties, demonstrating how DES pretreatment improve the enzymatic digestibility.
Collapse
Affiliation(s)
- Wenqian Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Sheng Xing
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yongcan Jin
- Department of Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaomin Lu
- Department of Forest Biomaterials, North Carolina State University, Campus Box 8005, Raleigh, NC 27695-8005, USA
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
50
|
Processing and valorization of cellulose, lignin and lignocellulose using ionic liquids. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2020. [DOI: 10.1016/j.jobab.2020.04.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|