1
|
Nanni V, Di Marco G, Sacchetti G, Canini A, Gismondi A. Oregano Phytocomplex Induces Programmed Cell Death in Melanoma Lines via Mitochondria and DNA Damage. Foods 2020; 9:E1486. [PMID: 33080917 PMCID: PMC7603152 DOI: 10.3390/foods9101486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
Plant secondary metabolites possess chemopreventive and antineoplastic properties, but the lack of information about their exact mechanism of action in mammalian cells hinders the translation of these compounds in suitable therapies. In light of this, firstly, Origanum vulgare L. hydroalcoholic extract was chemically characterized by spectrophotometric and chromatographic analyses; then, the molecular bases underlying its antitumor activity on B16-F10 and A375 melanoma cells were investigated. Oregano extract induced oxidative stress and inhibited melanogenesis and tumor cell proliferation, triggering programmed cell death pathways (both apoptosis and necroptosis) through mitochondria and DNA damage. By contrast, oregano extract was safe on healthy tissues, revealing no cytotoxicity and mutagenicity on C2C12 myoblasts, considered as non-tumor proliferating cell model system, and on Salmonella strains, by the Ames test. All these data provide scientific evidence about the potential application of this food plant as an anticancer agent in in vivo studies and clinical trials.
Collapse
Affiliation(s)
- Valentina Nanni
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (V.N.); (G.D.M.); (A.C.)
| | - Gabriele Di Marco
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (V.N.); (G.D.M.); (A.C.)
| | - Gianni Sacchetti
- Terra&Acqua Tech-Research Unit 7, Pharmaceutical Biology Lab, Department of Life Sciences and Biotechnology, University of Ferrara, Piazzale Luciano Chiappini 3, 44123 Ferrara, Italy;
| | - Antonella Canini
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (V.N.); (G.D.M.); (A.C.)
| | - Angelo Gismondi
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (V.N.); (G.D.M.); (A.C.)
| |
Collapse
|
2
|
Molinaro C, Martoriati A, Pelinski L, Cailliau K. Copper Complexes as Anticancer Agents Targeting Topoisomerases I and II. Cancers (Basel) 2020; 12:E2863. [PMID: 33027952 PMCID: PMC7601307 DOI: 10.3390/cancers12102863] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Organometallics, such as copper compounds, are cancer chemotherapeutics used alone or in combination with other drugs. One small group of copper complexes exerts an effective inhibitory action on topoisomerases, which participate in the regulation of DNA topology. Copper complexes inhibitors of topoisomerases 1 and 2 work by different molecular mechanisms, analyzed herein. They allow genesis of DNA breaks after the formation of a ternary complex, or act in a catalytic mode, often display DNA intercalative properties and ROS production, and sometimes display dual effects. These amplified actions have repercussions on the cell cycle checkpoints and death effectors. Copper complexes of topoisomerase inhibitors are analyzed in a broader synthetic view and in the context of cancer cell mutations. Finally, new emerging treatment aspects are depicted to encourage the expansion of this family of highly active anticancer drugs and to expend their use in clinical trials and future cancer therapy.
Collapse
Affiliation(s)
- Caroline Molinaro
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (C.M.); (A.M.)
| | - Alain Martoriati
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (C.M.); (A.M.)
| | - Lydie Pelinski
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France;
| | - Katia Cailliau
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (C.M.); (A.M.)
| |
Collapse
|
3
|
Khan S, Malla AM, Zafar A, Naseem I. Synthesis of novel coumarin nucleus-based DPA drug-like molecular entity: In vitro DNA/Cu(II) binding, DNA cleavage and pro-oxidant mechanism for anticancer action. PLoS One 2017; 12:e0181783. [PMID: 28763458 PMCID: PMC5538679 DOI: 10.1371/journal.pone.0181783] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/06/2017] [Indexed: 01/05/2023] Open
Abstract
Despite substantial research on cancer therapeutics, systemic toxicity and drug-resistance limits the clinical application of many drugs like cisplatin. Therefore, new chemotherapeutic strategies against different malignancies are needed. Targeted cancer therapy is a new paradigm for cancer therapeutics which targets pathways or chemical entities specific to cancer cells than normal ones. Unlike normal cells, cancer cells contain elevated copper which plays an integral role in angiogenesis. Copper is an important metal ion associated with chromatin DNA, particularly with guanine. Thus, targeting copper via copper-specific chelators in cancer cells can serve as an effective anticancer strategy. New pharmacophore di(2-picolyl)amine (DPA)-3(bromoacetyl) coumarin (ligand-L) was synthesized and characterized by IR, ESI-MS, 1H- and 13C-NMR. Binding ability of ligand-L to DNA/Cu(II) was evaluated using a plethora of biophysical techniques which revealed ligand-L-DNA and ligand-L-Cu(II) interaction. Competitive displacement assay and docking confirmed non-intercalative binding mode of ligand-L with ctDNA. Cyclic voltammetry confirmed ligand-L causes quasi reversible Cu(II)/Cu(I) conversion. Further, acute toxicity studies revealed no toxic effects of ligand-L on mice. To evaluate the chemotherapeutic potential and anticancer mechanism of ligand-L, DNA damage via pBR322 cleavage assay and reactive oxygen species (ROS) generation were studied. Results demonstrate that ligand-L causes DNA cleavage involving ROS generation in the presence of Cu(II). In conclusion, ligand-L causes redox cycling of Cu(II) to generate ROS which leads to oxidative DNA damage and pro-oxidant cancer cell death. These findings will establish ligand-L as a lead molecule to synthesize new molecules with better copper chelating and pro-oxidant properties against different malignancies.
Collapse
Affiliation(s)
- Saman Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Ali Mohammed Malla
- Department of Chemistry, Government Degree College, Sopore, Kashmir, India
| | - Atif Zafar
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Imrana Naseem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
- * E-mail:
| |
Collapse
|
4
|
Leonarski F, D'Ascenzo L, Auffinger P. Mg2+ ions: do they bind to nucleobase nitrogens? Nucleic Acids Res 2017; 45:987-1004. [PMID: 27923930 PMCID: PMC5314772 DOI: 10.1093/nar/gkw1175] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 01/28/2023] Open
Abstract
Given the many roles proposed for Mg2+ in nucleic acids, it is essential to accurately determine their binding modes. Here, we surveyed the PDB to classify Mg2+ inner-sphere binding patterns to nucleobase imine N1/N3/N7 atoms. Among those, purine N7 atoms are considered to be the best nucleobase binding sites for divalent metals. Further, Mg2+ coordination to N7 has been implied in several ribozyme catalytic mechanisms. We report that Mg2+ assigned near imine nitrogens derive mostly from poor interpretations of electron density patterns and are most often misidentified Na+, K+, NH4+ ions, water molecules or spurious density peaks. Consequently, apart from few documented exceptions, Mg2+ ions do not bind to N7 atoms. Without much of a surprise, Mn2+, Zn2+ and Cd2+, which have a higher affinity for nitrogens, may contact N7 atoms when present in crystallization buffers. In this respect, we describe for the first time a potential Zn2+ ribosomal binding site involving two purine N7 atoms. Further, we provide a set of guidelines to help in the assignment of Mg2+ in crystallographic, cryo-EM, NMR and model building practices and discuss implications of our findings related to ion substitution experiments.
Collapse
Affiliation(s)
- Filip Leonarski
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, F-67000 Strasbourg, France
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Luigi D'Ascenzo
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, F-67000 Strasbourg, France
| | - Pascal Auffinger
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, F-67000 Strasbourg, France
| |
Collapse
|
5
|
Farhan M, Oves M, Chibber S, Hadi SM, Ahmad A. Mobilization of Nuclear Copper by Green Tea Polyphenol Epicatechin-3-Gallate and Subsequent Prooxidant Breakage of Cellular DNA: Implications for Cancer Chemotherapy. Int J Mol Sci 2016; 18:ijms18010034. [PMID: 28035959 PMCID: PMC5297669 DOI: 10.3390/ijms18010034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 11/21/2022] Open
Abstract
Epidemiological as well as experimental evidence exists in support of chemopreventive and anticancer properties of green tea and its constituents. The gallocatechin, epicatechin-3-gallate is a major polyphenol present in green tea, shown responsible for these effects. Plant-derived polyphenolic compounds are established natural antioxidants which are capable of catalyzing oxidative DNA degradation of cellular DNA, alone as well as in the presence of transition metal ions, such as copper. Here we present evidence to support that, similar to various other polyphenoic compounds, epicatechin-3-gallate also causes oxidative degradation of cellular DNA. Single cell alkaline gel electrophoresis (Comet assay) was used to assess DNA breakage in lymphocytes that were exposed to various concentrations of epicatechin-3-gallate. Inhibition of DNA breakage in the presence of scavengers of reactive oxygen species (ROS) suggested involvement of ROS generation. Addition of neocuproine (a cell membrane permeable Cu(I) chelator) inhibited DNA degradation, dose-dependently, in intact lymphocytes. In contrast, bathocuproine, which does not permeate cell membrane, was observed to be ineffective. We further show that epicatechin-3-gallate degrades DNA in cell nuclei, which can also be inhibited by neocuproine, suggesting mobilization of nuclear copper in this reaction as well. Our results are indicative of ROS generation, possibly through mobilization of endogenous copper ions, and support our long-standing hypothesis of a prooxidant activity of plant-derived polyphenols as a mechanism for their documented anticancer properties.
Collapse
Affiliation(s)
- Mohd Farhan
- Department of Biochemistry, Faculty of Life Sciences, AMU, Aligarh 202001, India.
| | - Mohammad Oves
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Sandesh Chibber
- Department of Biochemistry, Faculty of Life Sciences, AMU, Aligarh 202001, India.
| | - Sheikh Mumtaz Hadi
- Department of Biochemistry, Faculty of Life Sciences, AMU, Aligarh 202001, India.
| | - Aamir Ahmad
- Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604-1405, USA.
| |
Collapse
|
6
|
Fujii N, Yano S, Takeshita K. Selective enhancing effect of metal ions on mutagenicity. Genes Environ 2016; 38:21. [PMID: 27822322 PMCID: PMC5088689 DOI: 10.1186/s41021-016-0049-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/02/2016] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND We investigated the enhancing effect of metal ions on several mutagens and examined their mechanism of action. We performed the Ames tests on six mutagens, i.e., 2-(2-furyl)-3-(5-nitro-2-furyl)acrylamide, 4-nitroquinoline 1-oxide (4NQO), quercetin, 2-aminoanthracene (2-AA), benzo[a]pyrene, and 3-amino-1,4-dimethyl-5H-pyrido-[4,3-b]indole, in the presence of five metal ions: Ca(II), Mg(II), Mn(II), Cu(II), and Zn(II). RESULTS Cu(II) enhanced the mutagenicity of only 4NQO and reduced the mutagenicity of the other mutagens. Zn (II) enhanced the mutagenicity of only 2-AA. To clarify the mechanism underlying the enhancing effects of Cu(II), we examined the production of reactive oxygen species (ROS) and 8-oxoguanine (8-oxoG), a DNA damage marker, in human lung carcinoma A549 cells. Cu(II) induced a remarkable increase in intracellular ROS and 8-oxoG production in the presence of 4NQO. CONCLUSIONS Our results suggest that the enhancing effect of Cu(II) and Zn(II) on the mutagenicity of specific mutagens is caused by an increase in ROS.
Collapse
Affiliation(s)
- Nobuyoshi Fujii
- Safety Evaluation Laboratory, UBE Scientific Analysis Laboratory, Inc., 1978-6, Aza-okinoyama Oaza-kogushi, Ube-shi, Yamaguchi-pref. Japan
| | - Shigemitsu Yano
- Safety Evaluation Laboratory, UBE Scientific Analysis Laboratory, Inc., 1978-6, Aza-okinoyama Oaza-kogushi, Ube-shi, Yamaguchi-pref. Japan
| | - Kenji Takeshita
- Safety Evaluation Laboratory, UBE Scientific Analysis Laboratory, Inc., 1978-6, Aza-okinoyama Oaza-kogushi, Ube-shi, Yamaguchi-pref. Japan
| |
Collapse
|
7
|
Zubair H, Azim S, Khan HY, Ullah MF, Wu D, Singh AP, Hadi SM, Ahmad A. Mobilization of Intracellular Copper by Gossypol and Apogossypolone Leads to Reactive Oxygen Species-Mediated Cell Death: Putative Anticancer Mechanism. Int J Mol Sci 2016; 17:ijms17060973. [PMID: 27331811 PMCID: PMC4926505 DOI: 10.3390/ijms17060973] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/07/2016] [Accepted: 06/14/2016] [Indexed: 12/25/2022] Open
Abstract
There is compelling evidence that serum, tissue and intracellular levels of copper are elevated in all types of cancer. Copper has been suggested as an important co-factor for angiogenesis. It is also a major metal ion present inside the nucleus, bound to DNA bases, particularly guanine. We have earlier proposed that the interaction of phenolic-antioxidants with intracellular copper leads to the generation of reactive oxygen species (ROS) that ultimately serve as DNA cleaving agents. To further validate our hypothesis we show here that the antioxidant gossypol and its semi-synthetic derivative apogossypolone induce copper-mediated apoptosis in breast MDA-MB-231, prostate PC3 and pancreatic BxPC-3 cancer cells, through the generation of ROS. MCF10A breast epithelial cells refractory to the cytotoxic property of these compounds become sensitized to treatment against gossypol, as well as apogossypolone, when pre-incubated with copper. Our present results confirm our earlier findings and strengthen our hypothesis that plant-derived antioxidants mobilize intracellular copper instigating ROS-mediated cellular DNA breakage. As cancer cells exist under significant oxidative stress, this increase in ROS-stress to cytotoxic levels could be a successful anticancer approach.
Collapse
Affiliation(s)
- Haseeb Zubair
- Department of Biochemistry, Faculty of Life Sciences, AMU, Aligarh 202002, India.
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Shafquat Azim
- Department of Biochemistry, Faculty of Life Sciences, AMU, Aligarh 202002, India.
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Husain Yar Khan
- Department of Biochemistry, Faculty of Life Sciences, AMU, Aligarh 202002, India.
- UoN Chair of Oman's Medicinal Plants and Marine Natural Products, University of Nizwa, Birkat Al Mauz, PO Box 33, 616 Nizwa, Oman.
| | - Mohammad Fahad Ullah
- Department of Biochemistry, Faculty of Life Sciences, AMU, Aligarh 202002, India.
- Prince Fahad Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, P.O. Box 741, Tabuk-71491, Saudi Arabia.
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710048, China.
| | - Ajay Pratap Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Sheikh Mumtaz Hadi
- Department of Biochemistry, Faculty of Life Sciences, AMU, Aligarh 202002, India.
| | - Aamir Ahmad
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| |
Collapse
|
8
|
Cancer Therapy by Catechins Involves Redox Cycling of Copper Ions and Generation of Reactive Oxygen species. Toxins (Basel) 2016; 8:37. [PMID: 26861392 PMCID: PMC4773790 DOI: 10.3390/toxins8020037] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 01/23/2016] [Accepted: 01/26/2016] [Indexed: 12/12/2022] Open
Abstract
Catechins, the dietary phytochemicals present in green tea and other beverages, are considered to be potent inducers of apoptosis and cytotoxicity to cancer cells. While it is believed that the antioxidant properties of catechins and related dietary agents may contribute to lowering the risk of cancer induction by impeding oxidative injury to DNA, these properties cannot account for apoptosis induction and chemotherapeutic observations. Catechin (C), epicatechin (EC), epigallocatechin (EGC) and epigallocatechin-3-gallate (EGCG) are the four major constituents of green tea. In this article, using human peripheral lymphocytes and comet assay, we show that C, EC, EGC and EGCG cause cellular DNA breakage and can alternatively switch to a prooxidant action in the presence of transition metals such as copper. The cellular DNA breakage was found to be significantly enhanced in the presence of copper ions. Catechins were found to be effective in providing protection against oxidative stress induced by tertbutylhydroperoxide, as measured by oxidative DNA breakage in lymphocytes. The prooxidant action of catechins involved production of hydroxyl radicals through redox recycling of copper ions. We also determined that catechins, particularly EGCG, inhibit proliferation of breast cancer cell line MDA-MB-231 leading to a prooxidant cell death. Since it is well established that tissue, cellular and serum copper levels are considerably elevated in various malignancies, cancer cells would be more subject to redox cycling between copper ions and catechins to generate reactive oxygen species (ROS) responsible for DNA breakage. Such a copper dependent prooxidant cytotoxic mechanism better explains the anticancer activity and preferential cytotoxicity of dietary phytochemicals against cancer cells.
Collapse
|
9
|
Mobilization of Copper ions by Flavonoids in Human Peripheral Lymphocytes Leads to Oxidative DNA Breakage: A Structure Activity Study. Int J Mol Sci 2015; 16:26754-69. [PMID: 26569217 PMCID: PMC4661851 DOI: 10.3390/ijms161125992] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 11/16/2022] Open
Abstract
Epidemiological studies have linked dietary consumption of plant polyphenols with lower incidence of various cancers. In particular, flavonoids (present in onion, tomato and other plant sources) induce apoptosis and cytotoxicity in cancer cells. These can therefore be used as lead compounds for the synthesis of novel anticancer drugs with greater bioavailability. In the present study, we examined the chemical basis of cytotoxicity of flavonoids by studying the structure–activity relationship of myricetin (MN), fisetin (FN), quercetin (QN), kaempferol (KL) and galangin (GN). Using single cell alkaline gel electrophoresis (comet assay), we established the relative efficiency of cellular DNA breakage as MN > FN > QN > KL > GN. Also, we determined that the cellular DNA breakage was the result of mobilization of chromatin-bound copper ions and the generation of reactive oxygen species. The relative DNA binding affinity order was further confirmed using molecular docking and thermodynamic studies through the interaction of flavonoids with calf thymus DNA. Our results suggest that novel anti-cancer molecules should have ortho-dihydroxy groups in B-ring and hydroxyl groups at positions 3 and 5 in the A-ring system. Additional hydroxyl groups at other positions further enhance the cellular cytotoxicity of the flavonoids.
Collapse
|
10
|
Cu(II)-vitamin D interaction leads to free radical-mediated cellular DNA damage: a novel putative mechanism for its selective cytotoxic action against malignant cells. Tumour Biol 2014; 36:1695-700. [PMID: 25398691 DOI: 10.1007/s13277-014-2770-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 10/23/2014] [Indexed: 12/31/2022] Open
Abstract
Vitamin D (vit D) is a known anticancer molecule, and cancer cells are reported to have elevated levels of Cu(II) ions. In this study, we show that interaction of vit D and Cu(II) leads to the formation of hydroxyl free radicals, superoxide anion and hydrogen peroxide, which causes severe oxidative stress, selectively in malignant cells. We show that the production of these reactive oxygen species causes cellular DNA fragmentation which may cause cell death. A novel putative chemical mechanism explaining how vit D causes cell death by DNA damage, selectively in malignant cells, is proposed.
Collapse
|
11
|
Luo Z, Dauter M, Dauter Z. Phosphates in the Z-DNA dodecamer are flexible, but their P-SAD signal is sufficient for structure solution. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:1790-800. [PMID: 25004957 PMCID: PMC4089481 DOI: 10.1107/s1399004714004684] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 02/28/2014] [Indexed: 11/11/2022]
Abstract
A large number of Z-DNA hexamer duplex structures and a few oligomers of different lengths are available, but here the first crystal structure of the d(CGCGCGCGCGCG)2 dodecameric duplex is presented. Two synchrotron data sets were collected; one was used to solve the structure by the single-wavelength anomalous dispersion (SAD) approach based on the anomalous signal of P atoms, the other set, extending to an ultrahigh resolution of 0.75 Å, served to refine the atomic model to an R factor of 12.2% and an R(free) of 13.4%. The structure consists of parallel duplexes arranged into practically infinitely long helices packed in a hexagonal fashion, analogous to all other known structures of Z-DNA oligomers. However, the dodecamer molecule shows a high level of flexibility, especially of the backbone phosphate groups, with six out of 11 phosphates modeled in double orientations corresponding to the two previously observed Z-DNA conformations: Z(I), with the phosphate groups inclined towards the inside of the helix, and Z(II), with the phosphate groups rotated towards the outside of the helix.
Collapse
Affiliation(s)
- Zhipu Luo
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Miroslawa Dauter
- Leidos Biomedical Research Inc., Basic Research Program, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Zbigniew Dauter
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439, USA
| |
Collapse
|
12
|
Rizvi A, Hasan SS, Naseem I. Selective cytotoxic action and DNA damage by calcitriol-Cu(II) interaction: putative mechanism of cancer prevention. PLoS One 2013; 8:e76191. [PMID: 24086705 PMCID: PMC3785422 DOI: 10.1371/journal.pone.0076191] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 08/23/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Vitamin D is known to play an important role in cancer-prevention. One of the features associated with the onset of malignancy is the elevation of Cu (II) levels. The mode of cancer-prevention mediated by calcitriol, the biologically active form of vitamin D, remain largely unknown. METHODS Using exogenously added Cu (II) to stimulate a malignancy like condition in a novel cellular system of rabbit calcitriol overloaded lymphocytes, we assessed lipid peroxidation, protein carbonylation, DNA damage and consequent apoptosis. Free radical mediators were identified using free radical scavengers and the role of Cu (II) in the reaction was elucidated using chelators of redox active cellular metal ions. RESULTS Lipid peroxidation and protein carbonylation (markers of oxidative stress), consequent DNA fragmentation and apoptosis were observed due to calcitriol-Cu (II) interaction. Hydroxyl radicals, hydrogen peroxide and superoxide anions mediate oxidative stress produced during this interaction. Amongst cellular redox active metals, copper was found to be responsible for this reaction. CONCLUSION This is the first report implicating Cu (II) and calcitriol interaction as the cause of selective cytotoxic action of calcitriol against malignant cells. We show that this interaction leads to the production of oxidative stress due to free radical production and consequent DNA fragmentation, which leads to apoptosis. A putative mechanism is presented to explain this biological effect.
Collapse
Affiliation(s)
- Asim Rizvi
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - S. Saif Hasan
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, Purdue University, West Lafayette, Indiana, United States of America
| | - Imrana Naseem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
13
|
Summers FA, Mason RP, Ehrenshaft M. Development of immunoblotting techniques for DNA radical detection. Free Radic Biol Med 2013; 56:64-71. [PMID: 23142572 PMCID: PMC3577963 DOI: 10.1016/j.freeradbiomed.2012.10.550] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 10/16/2012] [Accepted: 10/17/2012] [Indexed: 12/23/2022]
Abstract
Radical damage to DNA has been implicated in cell death, cellular dysfunction, and cancer. A recently developed method for detecting DNA radicals uses the nitrone spin trap DMPO (5,5-dimethyl-1-pyrroline N-oxide) to trap radicals. The trapped radicals then decay into stable nitrone adducts detectable with anti-DMPO antibodies and quantifiable by ELISA or dot-blot assay. However, the sequences of DNA that are damaged are likely to be as important as the total level of damage. Therefore, we have developed immunoblotting methods for detection of DNA nitrone adducts on electrophoretically separated DNA, comparable to Western blotting for proteins. These new techniques not only allow the assessment of relative radical adduct levels, but can reveal specific DNA fragments, and ultimately nucleotides, as radical targets. Moreover, we have determined that denaturation of samples into single-stranded DNA enhances the detection of DNA-DMPO adducts in our new blotting methods and also in ELISA.
Collapse
Affiliation(s)
- Fiona A Summers
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | | | | |
Collapse
|
14
|
Boyer JZ, Jandova J, Janda J, Vleugels FR, Elliott DA, Sligh JE. Resveratrol-sensitized UVA induced apoptosis in human keratinocytes through mitochondrial oxidative stress and pore opening. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2012; 113:42-50. [PMID: 22673012 DOI: 10.1016/j.jphotobiol.2012.04.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 04/20/2012] [Accepted: 04/27/2012] [Indexed: 11/18/2022]
Abstract
Resveratrol (3,5,4'-trihydroxy-trans-stilbene), a polyphenol compound, is derived from natural products such as the skin of red grapes, blueberries and cranberries. Resveratrol not only exhibits antioxidant, cardioprotection, and anti-aging properties, but can also inhibit cancer cell growth and induce apoptosis. It has been shown that resveratrol inhibits the activation of Nf-κB and subsequently down regulates the expression of Nf-κB regulated genes such as interleukin-2 and Bcl-2, leading to cell cycle arrest and increased apoptosis in multiple myeloma cells. In the skin, resveratrol has been reported to sensitize keratinocytes to UVA induced apoptosis. However, the effect of resveratrol on opening of the mitochondrial permeability transition pore has not been previously examined. Our data show that UVA (14 J/cm(2)) along with resveratrol causes massive oxidative stress in mitochondria. As a consequence of oxidative stress, the mitochondrial membrane potential decreases which results in opening of the mitochondrial pores ultimately leading to apoptosis in human keratinocytes. These results may have clinical implications for development of future chemotherapeutic treatment for tumors of the skin.
Collapse
Affiliation(s)
- Jean Z Boyer
- Southern Arizona VA Health Care System, Tucson, AZ 85724, USA
| | | | | | | | | | | |
Collapse
|
15
|
Shamim U, Hanif S, Albanyan A, Beck FWJ, Bao B, Wang Z, Banerjee S, Sarkar FH, Mohammad RM, Hadi SM, Azmi AS. Resveratrol-induced apoptosis is enhanced in low pH environments associated with cancer. J Cell Physiol 2012; 227:1493-500. [PMID: 21678400 DOI: 10.1002/jcp.22865] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Many critical factors such as hypoxia, nutrient deficiency, activation of glycolytic pathway/Warburg effect contribute to the observed low pH in tumors compared to normal tissue. Studies suggest that such tumor specific acidic environment can be exploited for the development of therapeutic strategies against cancer. Independent observations show reduction in pH of mammalian cells undergoing internucleosomal DNA fragmentation and apoptosis. As such, our group has extensively demonstrated that anticancer mechanisms of different plant polyphenols involve mobilization of endogenous copper and consequent internucleosomal DNA breakage. Copper is redox active metal, an essential component of chromatin and is sensitive to subtle pH changes in its microenvironment. Here we explored whether, acidic pH promotes growth inhibition, apoptosis, and DNA damaging capacity of chemopreventive agent resveratrol. Our results reveal that growth inhibition and internucleosomal DNA fragmentation induced apoptosis in Capan-2 and Panc-28 pancreatic cancer cell lines (and not in normal HPDE cells) by resveratrol is enhanced at lower pH. Using comet assay, we further demonstrate that DNA breakage by resveratrol is enhanced with acidification. Membrane permeable copper specific chelator neocuproine (and not iron chelator orthophenanthroline) abrogated growth inhibition and apoptosis by resveratrol. Western blot results show enhanced activation of DNA laddering marker H2.aX by resveratrol at acidic pH that was reversed by neocuproine and not by orthophenanthroline. Our findings provide irrevocable proof that low pH environment can be turned into tumor weakness and assist in eradication of cancer cells by resveratrol.
Collapse
Affiliation(s)
- Uzma Shamim
- Department of Biochemistry, Faculty of Life Sciences, AMU, Aligarh, UP, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Rawle RJ, Johal MS, Selassie CRD. A real-time QCM-D approach to monitoring mammalian DNA damage using DNA adsorbed to a polyelectrolyte surface. Biomacromolecules 2007; 9:9-12. [PMID: 18076139 DOI: 10.1021/bm701062f] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have successfully demonstrated that the quartz crystal microbalance with dissipation monitoring (QCM-D) can be used to monitor real-time damage to genomic mammalian DNA adsorbed to a polyelectrolyte surface. To reveal the capabilities of this technique, we exposed DNA surfaces to quercetin, an agent that has been implicated in causing DNA strand breaks in a Cu(II)-dependent fashion in vitro. We show that the QCM-D frequency and dissipation patterns that result from exposure of the DNA surfaces to quercetin-Cu(II) are consistent with the induction of DNA strand scission. We use QCM-D to furthermore demonstrate that this process is dependent on Cu(II) and that the DNA damage induced by quercetin can still be detected if Cu(II) is in situ with the DNA surface and not in solution phase.
Collapse
Affiliation(s)
- Robert J Rawle
- Department of Chemistry, Pomona College, 645 North College Avenue, Claremont, California 91711-6338, USA
| | | | | |
Collapse
|
17
|
Abstract
Gamma irradiation of DNA solutions containing copper causes changes in DNA conformation in oligonucleotides and in natural and synthetic DNAs. Diagnostic for these conformational changes is a ubiquitous 187-nm peak in the circular dichroism (CD) difference spectrum that has been predicted for a transformation from a right-handed to a left-handed helical DNA conformation. Changes in CD are correlated with changes in the UV spectrum. Reduction of DNA-bound Cu(II) to Cu(I) with ascorbic acid produces similar changes in CD spectra. These changes can be produced by the peroxy radical anion (O2*-) and the OH radical in the presence of copper. O2*- is approximately twice as efficient as *OH in initiating these changes in natural DNA. The changes in DNA conformation induced by ionizing radiation are remarkable in that they are dependent on the copper-ion concentration in a highly nonlinear manner at low copper concentrations and are not observed in the absence of copper ions. Possible implications of our results for radiobiological and oxidative damage in the cell nucleus are discussed.
Collapse
Affiliation(s)
- C N Trumbore
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | | | | |
Collapse
|
18
|
Abstract
Water distributions around phosphate groups in 59 B-, A-, and Z-DNA crystal structures were analyzed. It is shown that the waters are concentrated in six hydration sites per phosphate and that the positions and occupancies of these sites are dependent on the conformation and type of nucleotide. The patterns of hydration that are characteristic of the backbone of the three DNA helical types can be attributed in part to the interactions of these hydration sites.
Collapse
Affiliation(s)
- B Schneider
- J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, CZ-18223 Prague, Czech Republic
| | | | | |
Collapse
|
19
|
Karahalil B, Girard PM, Boiteux S, Dizdaroglu M. Substrate specificity of the Ogg1 protein of Saccharomyces cerevisiae: excision of guanine lesions produced in DNA by ionizing radiation- or hydrogen peroxide/metal ion-generated free radicals. Nucleic Acids Res 1998; 26:1228-33. [PMID: 9469830 PMCID: PMC147376 DOI: 10.1093/nar/26.5.1228] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We have investigated the substrate specificity of the Ogg1 protein of Saccharomyces cerevisiae (yOgg1 protein) for excision of modified DNA bases from oxidatively damaged DNA substrates using gas chromatography/isotope dilution mass spectrometry. Four DNA substrates prepared by treatment with H2O2/Fe(III)-EDTA/ascorbic acid, H2O2/Cu(II) and gamma-irradiation under N2O or air were used. The results showed that 8-hydroxyguanine (8-OH-Gua) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua) were efficiently excised from DNA exposed to ionizing radiation in the presence of N2O or air. On the other hand, 8-OH-Gua and FapyGua were not excised from H2O2/Fe(III)-EDTA/ascorbic acid-treated and H2O2/Cu(II)-treated DNA respectively. Fourteen other lesions, including the adenine lesions 8-hydroxyadenine and 4,6-diamino-5-formamidopyrimidine, were not excised from any of the DNA substrates. Kinetics of excision significantly depended on the nature of the damaged DNA substrates. The findings suggest that, in addition to 8-OH-Gua, FapyGua may also be a primary substrate of yOgg1 in cells. The results also show significant differences between the substrate specificities of yOgg1 protein and its functional analog Fpg protein in Escherichia coli.
Collapse
Affiliation(s)
- B Karahalil
- Chemical Science and Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | | | | | | |
Collapse
|
20
|
Schneider B, Cohen DM, Schleifer L, Srinivasan AR, Olson WK, Berman HM. A systematic method for studying the spatial distribution of water molecules around nucleic acid bases. Biophys J 1993; 65:2291-303. [PMID: 8312469 PMCID: PMC1225971 DOI: 10.1016/s0006-3495(93)81306-7] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A new method to analyze the distribution of water molecules around the bases in DNA is presented. This method relies on the notion of a "hydrated building block," which represents the joint observed hydration around all bases of a particular type, in structures of a particular conformation type. The hydrated building blocks were constructed using atomic coordinates from 40 structures contained in the Nucleic Acid Database. Pseudoelectron densities were calculated for water molecules in each hydrated building block using standard crystallographic procedures. The electron densities were fitted to obtain "average building blocks," which represent bases with waters only at average or probable positions. Both types of building blocks were used to construct models of hydrated DNA oligomers. The essential features of the solvent structure around d(CGCGAATTCGCG)2 in the B form and d(CGCGCG)2 in the Z form were reproduced.
Collapse
Affiliation(s)
- B Schneider
- Department of Chemistry, Rutgers University, New Brunswick, New Jersey 08903
| | | | | | | | | | | |
Collapse
|
21
|
Gao YG, Sriram M, Wang AH. Crystallographic studies of metal ion-DNA interactions: different binding modes of cobalt(II), copper(II) and barium(II) to N7 of guanines in Z-DNA and a drug-DNA complex. Nucleic Acids Res 1993; 21:4093-101. [PMID: 8371984 PMCID: PMC310011 DOI: 10.1093/nar/21.17.4093] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Metal ion coordination to nucleic acids is not only required for charge neutralization, it is also essential for the biological function of nucleic acids. The structural impact of different metal ion coordinations of DNA helices is an open question. We carried out X-ray diffraction analyses of the interactions of the two transition metal ions Co(II) and Cu(II) and an alkaline earth metal ion Ba(II), with DNA of different conformations. In crystals, Co(II) ion binds exclusively at the N7 position of guanine bases by direct coordination. The coordination geometry around Co(II) is octahedral, although some sites have an incomplete hydration shell. The averaged Co-N7 bond distance is 2.3 A. The averaged Co-N7-C8 angle is 121 degrees, significantly smaller than the value of 128 degrees if the Co-N7 vector were to bisect the C5-N7-C8 bond angle. Model building of Co(II) binding to guanine N7 in B-DNA indicates that the coordinated waters in the axial positions would have a van der Waals clash with the neighboring base on the 5' side. In contrast, the major groove of A-DNA does not have enough room to accommodate the entire hydration shell. This suggests that Co(II) binding to either B-DNA or A-DNA may induce significant conformational changes. The Z-DNA structure of Cu(II)-soaked CGCGTG crystal revealed that the Cu(II) ion is bis-coordinated to N7 position of G10 and #G12 (# denotes a symmetry-related position) bases with a trigonal bipyramid geometry, suggesting a possible N7-Cu-N7 crosslinking mechanism. A similar bis-coordination to two guanines has also been seen in the interaction of Cu(II) in m5CGUAm5CG Z-DNA crystal and of Ba(II) with two other Z-DNA crystals.
Collapse
Affiliation(s)
- Y G Gao
- Division of Biophysics, University of Illinois at Urbana-Champaign 61801
| | | | | |
Collapse
|