1
|
Yang Y, He MZ, Li T, Yang X. MRI combined with PET-CT of different tracers to improve the accuracy of glioma diagnosis: a systematic review and meta-analysis. Neurosurg Rev 2019; 42:185-195. [PMID: 28918564 PMCID: PMC6503074 DOI: 10.1007/s10143-017-0906-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 12/18/2022]
Abstract
Based on studies focusing on positron emission tomography (PET)-computed tomography (CT) combined with magnetic resonance imaging (MRI) in the diagnosis of glioma, we conducted a systematic review and meta-analysis evaluating the pros and cons and the accuracy of different examinations. PubMed and Cochrane Library were searched. The search was conducted until April 2017. Two reviewers independently conducted the literature search according to the criteria set initially. Based on the exclusion criteria, 15 articles are included in this study. Of all studies that used MRI examination, there are five involving 18F-fluorodeoxyglucose-PET, five involving 11C-methionine-PET, five involving 18F-fluoro-ethyl-tyrosine-PET, and three involving 18F-fluorothymidine-PET. Due to the limitations such as lack of data, small sample size, and unrepresentative studies, we use a non-quantitative methodology. MRI examination can provide the anatomy information of glioma more clearly. PET-CT examinations based on tumor metabolism using different tracers have more advantages in determining the degree of glioma malignancy and boundaries. However, information provided by PET-CT of different tracers is not the same. With respect to the novel hybrid MRI/PET examination equipment proposed in recent years, the combination of MRI and PET-CT can definitively improve the diagnostic accuracy of glioma.
Collapse
Affiliation(s)
- Yihan Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Mike Z He
- Columbia University Mailman School of Public Health, New York, NY, USA
| | - Tao Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Xuejun Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
2
|
Law I, Albert NL, Arbizu J, Boellaard R, Drzezga A, Galldiks N, la Fougère C, Langen KJ, Lopci E, Lowe V, McConathy J, Quick HH, Sattler B, Schuster DM, Tonn JC, Weller M. Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [ 18F]FDG: version 1.0. Eur J Nucl Med Mol Imaging 2018; 46:540-557. [PMID: 30519867 PMCID: PMC6351513 DOI: 10.1007/s00259-018-4207-9] [Citation(s) in RCA: 325] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 10/29/2018] [Indexed: 01/12/2023]
Abstract
These joint practice guidelines, or procedure standards, were developed collaboratively by the European Association of Nuclear Medicine (EANM), the Society of Nuclear Medicine and Molecular Imaging (SNMMI), the European Association of Neurooncology (EANO), and the working group for Response Assessment in Neurooncology with PET (PET-RANO). Brain PET imaging is being increasingly used to supplement MRI in the clinical management of glioma. The aim of these standards/guidelines is to assist nuclear medicine practitioners in recommending, performing, interpreting and reporting the results of brain PET imaging in patients with glioma to achieve a high-quality imaging standard for PET using FDG and the radiolabelled amino acids MET, FET and FDOPA. This will help promote the appropriate use of PET imaging and contribute to evidence-based medicine that may improve the diagnostic impact of this technique in neurooncological practice. The present document replaces a former version of the guidelines published in 2006 (Vander Borght et al. Eur J Nucl Med Mol Imaging. 33:1374–80, 2006), and supplements a recent evidence-based recommendation by the PET-RANO working group and EANO on the clinical use of PET imaging in patients with glioma (Albert et al. Neuro Oncol. 18:1199–208, 2016). The information provided should be taken in the context of local conditions and regulations.
Collapse
Affiliation(s)
- Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, 9, Blegdamsvej, 2100-DK, Copenhagen Ø, Denmark.
| | - Nathalie L Albert
- Department of Nuclear Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Javier Arbizu
- Department of Nuclear Medicine, Clínica Universidad de Navarra, University of Navarre, Pamplona, Spain
| | - Ronald Boellaard
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands.,Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Alexander Drzezga
- Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany
| | - Norbert Galldiks
- Department of Neurology, University Hospital Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-3, -4), Forschungszentrum Julich, Julich, Germany
| | - Christian la Fougère
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, University of Tübingen, Tübingen, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, -4), Forschungszentrum Julich, Julich, Germany.,Department of Nuclear Medicine, RWTH University Aachen, Aachen, Germany
| | - Egesta Lopci
- Department of Nuclear Medicine, Humanitas Clinical and Research Hospital, Rozzano, Italy
| | - Val Lowe
- Department of Radiology, Nuclear Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jonathan McConathy
- Division of Molecular Imaging and Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Harald H Quick
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Bernhard Sattler
- Department for Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - David M Schuster
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Jörg-Christian Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Michael Weller
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Heckmann JG, Niedermeier W, Büchner M, Scher B. Distinctive FDG-PET/CT Findings in Acute Neurological Hospital Care. Neurohospitalist 2018; 9:93-99. [PMID: 30915187 DOI: 10.1177/1941874418805339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A compilation of 6 distinctive 18F-fluorodeoxyglucose positron emission tomography (PET) combined with computed tomography (CT) findings in the acute setting of neurohospital care is presented. In case 1, PET/CT allowed the final diagnosis of circumscribed ischemic infarction by demonstrating a clear pattern of luxury perfusion. In case 2, diagnosis of thalamic abscess was made, whereby PET/CT demonstrated an empty zone. Hypermetabolic enlarged hilar lymph nodes and hypermetabolic spinal lumbar roots in PET/CT led to the diagnosis of neurosarcoidosis in case 3. In case 4, a hypermetabolic brain focus in PET/CT identified the seizure focus in epilepsia partialis continua. A cerebral hemispheric hypometabolism in PET/CT in case 5 supported the diagnosis of Creutzfeldt-Jakob disease, which initially mimicked acute stroke. In case 6, PET/CT detected infective endocarditis as a source of multiple cerebral ischemic lesions. In conclusion, PET/CT can contribute importantly to find the correct diagnosis in acute neurohospital patients.
Collapse
Affiliation(s)
| | - Wolfgang Niedermeier
- Department of Radiology and Nuclear Medicine, Municipal Hospital Waid, Zurich, Switzerland
| | - Markus Büchner
- Department of Nuclear Medicine, Municipal Hospital Landshut, Germany
| | - Bernhard Scher
- Department of Nuclear Medicine, Municipal Hospital Landshut, Germany
| |
Collapse
|
4
|
Trikalinos NA, Nihashi T, Evangelou E, Terasawa T. Positron emission tomography (PET) for prediction of glioma histology: protocol for an individual-level data meta-analysis of test performance. BMJ Open 2018; 8:e020187. [PMID: 29455169 PMCID: PMC5855451 DOI: 10.1136/bmjopen-2017-020187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/27/2017] [Accepted: 01/18/2018] [Indexed: 01/23/2023] Open
Abstract
INTRODUCTION Gliomas, the most commonly diagnosed primary brain tumours, are associated with varied survivals based, in part, on their histological subtype. Therefore, accurate pretreatment tumour grading is essential for patient care and clinical trial design. METHODS AND ANALYSIS We will perform an individual-level data meta-analysis of published studies to evaluate the ability of different types of positron emission tomography (PET) to differentiate high from low-grade gliomas. We will search PubMed and Scopus from inception through 30 July 2017 with no language restriction and full-text evaluation of potentially relevant articles. We will choose studies that assess PET using 18-Fludeoxyglucose (18F-FDG), l-[Methyl-()11C]Methionine (11C-MET), 18F-Fluoro-Ethyl-Tyrosine (18F-FET) or (18)F-Fluorothymidine (18F-FLT)for grading, verified with histological confirmation. We will include both prospective and retrospective studies. Bias will be assessed by two reviewers with the Quality Assessment of Diagnostic Accuracy Studies-2 tool and as per method described by Deeks et al. ETHICS AND DISSEMINATION Ethics approval was not applicable, as this is a meta-analytic study. Results of the analysis will be submitted for publication in a peer-reviewed journal. PROSPERO REGISTRATION NUMBER CRD42017078649.
Collapse
Affiliation(s)
- Nikolaos A Trikalinos
- Department of Oncology, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
| | - Takashi Nihashi
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of radiology, Komaki City Hospital, Jobushi, Japan
| | - Evangelos Evangelou
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Teruhiko Terasawa
- Section of General Internal Medicine, Department of Emergency and General Internal Medicine, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
5
|
Lopci E, Riva M, Olivari L, Raneri F, Soffietti R, Piccardo A, Bizzi A, Navarria P, Ascolese AM, Rudà R, Fernandes B, Pessina F, Grimaldi M, Simonelli M, Rossi M, Alfieri T, Zucali PA, Scorsetti M, Bello L, Chiti A. Prognostic value of molecular and imaging biomarkers in patients with supratentorial glioma. Eur J Nucl Med Mol Imaging 2017; 44:1155-1164. [PMID: 28110346 DOI: 10.1007/s00259-017-3618-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/03/2017] [Indexed: 11/26/2022]
Abstract
PURPOSE We evaluated the relationship between 11C-methionine PET (11C-METH PET) findings and molecular biomarkers in patients with supratentorial glioma who underwent surgery. METHODS A consecutive series of 109 patients with pathologically proven glioma (64 men, 45 women; median age 43 years) referred to our Institution from March 2012 to January 2015 for tumour resection and who underwent preoperative 11C-METH PET were analysed. Semiquantitative evaluation of the 11C-METH PET images included SUVmax, region of interest-to-normal brain SUV ratio (SUVratio) and metabolic tumour volume (MTV). Imaging findings were correlated with disease outcome in terms of progression-free survival (PFS), and compared with other clinical biological data, including IDH1 mutation status, 1p/19q codeletion and MGMT promoter methylation. The patients were monitored for a mean period of 16.7 months (median 13 months). RESULTS In all patients, the tumour was identified on 11C-METH PET. Significant differences in SUVmax, SUVratio and MTV were observed in relation to tumour grade (p < 0.001). IDH1 mutation was found in 49 patients, 1p/19q codeletion in 58 patients and MGMT promoter methylation in 74 patients. SUVmax and SUVratio were significantly inversely correlated with the presence of IDH1 mutation (p < 0.001). Using the 2016 WHO classification, SUVmax and SUVratio were significantly higher in patients with primary glioblastoma (IDH1-negative) than in those with other diffuse gliomas (p < 0.001). Relapse or progression was documented in 48 patients (median PFS 8.7 months). Cox regression analysis showed that SUVmax and SUVratio, tumour grade, tumour type on 2016 WHO classification, IDH1 mutation status, 1p/19q codeletion and MGMT promoter methylation were significantly associated with PFS. None of these factors was found to be an independent prognostic factor in multivariate analysis. CONCLUSION 11C-METH PET parameters are significantly correlated with histological grade and IDH1 mutation status in patients with glioma. Grade, pathological classification, molecular biomarkers, SUVmax and SUVratio were prognostic factors for PFS in this cohort of patients. The trial was registered with ClinicalTrials.gov (registration: NCT02518061).
Collapse
Affiliation(s)
- Egesta Lopci
- Nuclear Medicine, Humanitas Cancer Center, Humanitas Clinical and Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy.
| | - Marco Riva
- Neurosurgery, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy
| | | | - Fabio Raneri
- Neurosurgery, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy
| | - Riccardo Soffietti
- Neuro-Oncology, University & City of Health and Science Hospital, Turin, Italy
| | | | - Alberto Bizzi
- Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Pierina Navarria
- Radiosurgery and Radiotherapy, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy
| | - Anna Maria Ascolese
- Radiosurgery and Radiotherapy, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy
| | - Roberta Rudà
- Neuro-Oncology, University & City of Health and Science Hospital, Turin, Italy
| | - Bethania Fernandes
- Pathology, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy
| | - Federico Pessina
- Neurosurgery, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy
| | - Marco Grimaldi
- Medical Oncology, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy
| | - Matteo Simonelli
- Radiology Department, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy
| | - Marco Rossi
- Università degli Studi di Milano, Milan, Italy
| | | | - Paolo Andrea Zucali
- Radiology Department, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy
| | - Marta Scorsetti
- Pathology, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy
- Humanitas University, Rozzano, Milan, Italy
| | - Lorenzo Bello
- Neurosurgery, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy
- Università degli Studi di Milano, Milan, Italy
| | - Arturo Chiti
- Nuclear Medicine, Humanitas Cancer Center, Humanitas Clinical and Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy
- Humanitas University, Rozzano, Milan, Italy
| |
Collapse
|
6
|
Yamamoto J, Kakeda S, Yoneda T, Ogura SI, Shimajiri S, Tanaka T, Korogi Y, Nishizawa S. Improving contrast enhancement in magnetic resonance imaging using 5-aminolevulinic acid-induced protoporphyrin IX for high-grade gliomas. Oncol Lett 2016; 13:1269-1275. [PMID: 28454245 DOI: 10.3892/ol.2016.5539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 10/28/2016] [Indexed: 12/13/2022] Open
Abstract
Magnetic resonance imaging (MRI) with a gadolinium-based contrast agent is the gold standard for high-grade gliomas (HGGs). The compound 5-aminolevulinic acid (5-ALA) undergoes a high rate of cellular uptake, particularly in cancer cells. In addition, fluorescence-guided resection with 5-ALA is widely used for imaging HGGs. 5-ALA is water soluble, while protoporphyrin IX (PpIX) is water insoluble. It was speculated whether converting from 5-ALA to PpIX may relatively increase intracellular water content, and consequently, might enhance the T2 signal intensity in HGG. The aim of the present study was to assess whether 5-ALA-induced PpIX enhances the T2 signal intensity in patients with HGGs. A total of 4 patients who were candidates for HGG surgical treatment were prospectively analyzed with preoperative MRI. Patients received oral doses of 5-ALA (20 mg/kg) 3 h prior to anesthesia. At 2.5 h post-5-ALA administration, T2-weighted images (T2WIs) were obtained from all patients. Subsequently, tumors were evaluated via fluorescence using a modified operating microscope. Fluorescent tumor tissues were obtained to analyze the accumulation of 5-ALA-induced PpIX within the tumors, which was confirmed quantitatively by high-performance liquid chromatography (HPLC) analysis. The MRI T2 signal intensity within the tumors was evaluated prior to and following 5-ALA administration. Three glioblastoma multiformes (GBMs) and 1 anaplastic oligodendroglioma (AO) were included in the analysis. Intraoperatively, all GBMs exhibited strong fluorescence of 5-ALA-induced PpIX, whilst no fluorescence was observed in the AO sample. HPLC analysis indicated a higher accumulation of 5-ALA-induced PpIX in the GBM samples compared with the AO sample. In total, 48 regions of interest were identified within the tumors from T2-WIs. In the GBM group, the relative T2 signal intensity value within the tumors following 5-ALA administration was significantly increased compared with the T2 signal intensity value prior to 5-ALA administration (1.537±0.021 and 1.577±0.023, respectively; P=0.0055). No significant differences were observed in the AO group. These results suggest that the 5-ALA-induced PpIX enhanced the T2 signal intensity in HGG. Therefore, 5-ALA may be a potentially useful MRI contrast reagent for HGG.
Collapse
Affiliation(s)
- Junkoh Yamamoto
- Department of Neurosurgery, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Shingo Kakeda
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Tetsuya Yoneda
- Department of Medical Physics in Advanced Biomedical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0976, Japan
| | - Shun-Ichiro Ogura
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Shohei Shimajiri
- Department of Surgical Pathology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | | | - Yukunori Korogi
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Shigeru Nishizawa
- Department of Neurosurgery, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| |
Collapse
|
7
|
Miake-Lye IM, Hempel S, Shanman R, Shekelle PG. What is an evidence map? A systematic review of published evidence maps and their definitions, methods, and products. Syst Rev 2016; 5:28. [PMID: 26864942 PMCID: PMC4750281 DOI: 10.1186/s13643-016-0204-x] [Citation(s) in RCA: 329] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 02/02/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The need for systematic methods for reviewing evidence is continuously increasing. Evidence mapping is one emerging method. There are no authoritative recommendations for what constitutes an evidence map or what methods should be used, and anecdotal evidence suggests heterogeneity in both. Our objectives are to identify published evidence maps and to compare and contrast the presented definitions of evidence mapping, the domains used to classify data in evidence maps, and the form the evidence map takes. METHODS We conducted a systematic review of publications that presented results with a process termed "evidence mapping" or included a figure called an "evidence map." We identified publications from searches of ten databases through 8/21/2015, reference mining, and consulting topic experts. We abstracted the research question, the unit of analysis, the search methods and search period covered, and the country of origin. Data were narratively synthesized. RESULTS Thirty-nine publications met inclusion criteria. Published evidence maps varied in their definition and the form of the evidence map. Of the 31 definitions provided, 67 % described the purpose as identification of gaps and 58 % referenced a stakeholder engagement process or user-friendly product. All evidence maps explicitly used a systematic approach to evidence synthesis. Twenty-six publications referred to a figure or table explicitly called an "evidence map," eight referred to an online database as the evidence map, and five stated they used a mapping methodology but did not present a visual depiction of the evidence. CONCLUSIONS The principal conclusion of our evaluation of studies that call themselves "evidence maps" is that the implied definition of what constitutes an evidence map is a systematic search of a broad field to identify gaps in knowledge and/or future research needs that presents results in a user-friendly format, often a visual figure or graph, or a searchable database. Foundational work is needed to better standardize the methods and products of an evidence map so that researchers and policymakers will know what to expect of this new type of evidence review. SYSTEMATIC REVIEW REGISTRATION Although an a priori protocol was developed, no registration was completed; this review did not fit the PROSPERO format.
Collapse
Affiliation(s)
- Isomi M. Miake-Lye
- />Evidence-based Synthesis Program (ESP) Center, Veterans Affairs Greater Los Angeles Healthcare System, 11301 Wilshire Blvd, Los Angeles, CA 90073 USA
- />Department of Health Policy and Management, Fielding School of Public Health, University of California, Los Angeles, 640 Charles E Young Dr S, Los Angeles, CA USA
| | - Susanne Hempel
- />Southern California Evidence-based Practice Center, RAND Corporation, 1776 Main St, Santa Monica, CA 90401 USA
| | - Roberta Shanman
- />Southern California Evidence-based Practice Center, RAND Corporation, 1776 Main St, Santa Monica, CA 90401 USA
| | - Paul G. Shekelle
- />Evidence-based Synthesis Program (ESP) Center, Veterans Affairs Greater Los Angeles Healthcare System, 11301 Wilshire Blvd, Los Angeles, CA 90073 USA
- />Southern California Evidence-based Practice Center, RAND Corporation, 1776 Main St, Santa Monica, CA 90401 USA
- />Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095 USA
| |
Collapse
|
8
|
Partial volume correction and image segmentation for accurate measurement of standardized uptake value of grey matter in the brain. Nucl Med Commun 2015; 36:1249-52. [DOI: 10.1097/mnm.0000000000000394] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Buck JR, McKinley ET, Fu A, Abel TW, Thompson RC, Chambless L, Watchmaker JM, Harty JP, Cooper MK, Manning HC. Preclinical TSPO Ligand PET to Visualize Human Glioma Xenotransplants: A Preliminary Study. PLoS One 2015; 10:e0141659. [PMID: 26517124 PMCID: PMC4627825 DOI: 10.1371/journal.pone.0141659] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 10/12/2015] [Indexed: 11/18/2022] Open
Abstract
Current positron emission tomography (PET) imaging biomarkers for detection of infiltrating gliomas are limited. Translocator protein (TSPO) is a novel and promising biomarker for glioma PET imaging. To validate TSPO as a potential target for molecular imaging of glioma, TSPO expression was assayed in a tumor microarray containing 37 high-grade (III, IV) gliomas. TSPO staining was detected in all tumor specimens. Subsequently, PET imaging was performed with an aryloxyanilide-based TSPO ligand, [18F]PBR06, in primary orthotopic xenograft models of WHO grade III and IV gliomas. Selective uptake of [18F]PBR06 in engrafted tumor was measured. Furthermore, PET imaging with [18F]PBR06 demonstrated infiltrative glioma growth that was undetectable by traditional magnetic resonance imaging (MRI). Preliminary PET with [18F]PBR06 demonstrated a preferential tumor-to-normal background ratio in comparison to 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG). These results suggest that TSPO PET imaging with such high-affinity radiotracers may represent a novel strategy to characterize distinct molecular features of glioma growth, as well as better define the extent of glioma infiltration for therapeutic purposes.
Collapse
Affiliation(s)
- Jason R. Buck
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Eliot T. McKinley
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Allie Fu
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Ty W. Abel
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Reid C. Thompson
- Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Lola Chambless
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Jennifer M. Watchmaker
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, United States of America
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - James P. Harty
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Michael K. Cooper
- Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Medical Center, Nashville, TN, United States of America
- Neurology Service, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, United States of America
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - H. Charles Manning
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States of America
- * E-mail:
| |
Collapse
|
10
|
Tryptophan PET predicts spatial and temporal patterns of post-treatment glioblastoma progression detected by contrast-enhanced MRI. J Neurooncol 2015; 126:317-25. [PMID: 26514361 DOI: 10.1007/s11060-015-1970-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 10/25/2015] [Indexed: 10/22/2022]
Abstract
Amino acid PET is increasingly utilized for the detection of recurrent gliomas. Increased amino acid uptake is often observed outside the contrast-enhancing brain tumor mass. In this study, we evaluated if non-enhancing PET+ regions could predict spatial and temporal patterns of subsequent MRI progression in previously treated glioblastomas. Twelve patients with a contrast-enhancing area suspicious for glioblastoma recurrence on MRI underwent PET scanning with the amino acid radiotracer alpha-[(11)C]-methyl-L-tryptophan (AMT). Brain regions showing increased AMT uptake in and outside the contrast-enhancing volume were objectively delineated to include high uptake consistent with glioma (as defined by previous studies). Volume and tracer uptake of such non-enhancing PET+ regions were compared to spatial patterns and timing of subsequent progression of the contrast-enhancing lesion, as defined by serial surveillance MRI. Non-enhancing PET+ volumes varied widely across patients and extended up to 24 mm from the edge of MRI contrast enhancement. In ten patients with clear progression of the contrast-enhancing lesion, the non-enhancing PET+ volumes predicted the location of new enhancement, which extended beyond the PET+ brain tissue in six. In two patients, with no PET+ area beyond the initial contrast enhancement, MRI remained stable. There was a negative correlation between AMT uptake in non-enhancing brain and time to subsequent progression (r = -0.77, p = 0.003). Amino acid PET imaging could complement MRI not only for detecting glioma recurrence but also predicting the location and timing of subsequent tumor progression. This could support decisions for surgical intervention or other targeted therapies for recurrent gliomas.
Collapse
|
11
|
Wu HB, Wang Z, Wang QS, Han YJ, Wang M, Zhou WL, Li HS. Use of Labelled tLyP-1 as a Novel Ligand Targeting the NRP Receptor to Image Glioma. PLoS One 2015; 10:e0137676. [PMID: 26398657 PMCID: PMC4580457 DOI: 10.1371/journal.pone.0137676] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/19/2015] [Indexed: 12/17/2022] Open
Abstract
Background Neuropilin (NRP) receptors are overexpressed in glioma tumor tissue, and therefore may be a potential target for imaging markers. We investigated whether labelled tLyP-1, an NRP targeting peptide, could be used as the targeting ligand for developing reagents for imaging glioma tumors. Methods The tLyP-1 peptide (CGNKRTR) was labeled with 5-carboxyfluorescein (FAM) or 18F-fluoride. A control peptide (MAQKTSH) was also labeled with FAM. The in vitro binding between FAM-tLyP-1 and U87MG cells and in vivo biodistribution of FAM-tLyP-1 in a U87MG glioblastoma xenograft model (nude mouse) were determined. The in vivo biodistribution of 18F-tLyP-1 was also determined by microPET/CT. Results In vitro, FAM-tLyP-1 was strongly taken up by U87MG cells at very low concentrations (1μM). In vivo, FAM-tLyP-1 accumulated in glioma (U87MG) tumors, but uptake was minimal in the normal brain tissue 1 h after administration. The distribution of FAM-tLyP-1 in the tumor tissue was consistent with expression of NRP1. The tumor/brain fluorescence intensity ratio in mice treated with FAM-tLyP-1 was significantly higher than the control FAM-labeled peptide 1 h after administration (3.44 ± 0.83 vs. 1.32 ± 0.15; t = 5.547, P = 0.001). Uptake of FAM-tLyP-1 in glioma tumors could be blocked by administering an excess of non-conjugated tLyP-1 peptide. [Lys4] tLyP-1 was labeled with 18F to synthesis a PET (18F-tLyP-1). MicroPET/CT imaging showed the tumor was visualized clearly with a high tumor/brain radiolabel ratio at 60 min (2.69 ± 0.52) and 120 min (3.11±0.25). Conclusion Taken together, our results suggest that tLyP-1 could be developed as a novel fluorescent or radio labelled tracer for imaging glioma.
Collapse
Affiliation(s)
- Hu-bing Wu
- NanFang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- * E-mail:
| | - Zhen Wang
- NanFang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Quan-shi Wang
- NanFang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan-jian Han
- NanFang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meng Wang
- NanFang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wen-lan Zhou
- NanFang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hong-sheng Li
- NanFang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Ambady P, Bettegowda C, Holdhoff M. Emerging methods for disease monitoring in malignant gliomas. CNS Oncol 2015; 2:511-22. [PMID: 25054821 DOI: 10.2217/cns.13.44] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
MRI remains the backbone of measuring disease burden and treatment response in individuals with malignant gliomas. Traditional radiographic approaches, however, are largely limited to depicting anatomic changes and are not a direct measure of disease burden. For example, contrast enhancement is related to blood-brain barrier integrity rather than actual tumor size. Without accurate measures of disease, common clinical dilemmas include 'pseudo-progression' (e.g., after chemoradiation) or 'pseudo-response' (e.g., with steroid treatment and antiangiogenic agents), which can lead to delays in therapy, premature discontinuation of successful treatments and to unnecessary surgical procedures. This overview focuses on novel, minimally invasive approaches in the area of imaging and blood-based biomarkers that aim to more accurately determine disease status and response to treatment in malignant brain tumors.
Collapse
Affiliation(s)
- Prakash Ambady
- Brain Cancer Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 1550 Orleans Street, 1M16, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
13
|
Juhász C, Dwivedi S, Kamson DO, Michelhaugh SK, Mittal S. Comparison of amino acid positron emission tomographic radiotracers for molecular imaging of primary and metastatic brain tumors. Mol Imaging 2015; 13. [PMID: 24825818 DOI: 10.2310/7290.2014.00015] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Positron emission tomography (PET) is an imaging technology that can detect and characterize tumors based on their molecular and biochemical properties, such as altered glucose, nucleoside, or amino acid metabolism. PET plays a significant role in the diagnosis, prognostication, and treatment of various cancers, including brain tumors. In this article, we compare uptake mechanisms and the clinical performance of the amino acid PET radiotracers (l-[methyl-11C]methionine [MET], 18F-fluoroethyl-tyrosine [FET], 18F-fluoro-l-dihydroxy-phenylalanine [FDOPA], and 11C-alpha-methyl-l-tryptophan [AMT]) most commonly used for brain tumor imaging. First, we discuss and compare the mechanisms of tumoral transport and accumulation, the basis of differential performance of these radioligands in clinical studies. Then we summarize studies that provided direct comparisons among these amino acid tracers and to clinically used 2-deoxy-2[18F]fluoro-d-glucose [FDG] PET imaging. We also discuss how tracer kinetic analysis can enhance the clinical information obtained from amino acid PET images. We discuss both similarities and differences in potential clinical value for each radioligand. This comparative review can guide which radiotracer to favor in future clinical trials aimed at defining the role of these molecular imaging modalities in the clinical management of brain tumor patients.
Collapse
|
14
|
Hutterer M, Hattingen E, Palm C, Proescholdt MA, Hau P. Current standards and new concepts in MRI and PET response assessment of antiangiogenic therapies in high-grade glioma patients. Neuro Oncol 2014; 17:784-800. [PMID: 25543124 DOI: 10.1093/neuonc/nou322] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/30/2014] [Indexed: 12/20/2022] Open
Abstract
Despite multimodal treatment, the prognosis of high-grade gliomas is grim. As tumor growth is critically dependent on new blood vessel formation, antiangiogenic treatment approaches offer an innovative treatment strategy. Bevacizumab, a humanized monoclonal antibody, has been in the spotlight of antiangiogenic approaches for several years. Currently, MRI including contrast-enhanced T1-weighted and T2/fluid-attenuated inversion recovery (FLAIR) images is routinely used to evaluate antiangiogenic treatment response (Response Assessment in Neuro-Oncology criteria). However, by restoring the blood-brain barrier, bevacizumab may reduce T1 contrast enhancement and T2/FLAIR hyperintensity, thereby obscuring the imaging-based detection of progression. The aim of this review is to highlight the recent role of imaging biomarkers from MR and PET imaging on measurement of disease progression and treatment effectiveness in antiangiogenic therapies. Based on the reviewed studies, multimodal imaging combining standard MRI with new physiological MRI techniques and metabolic PET imaging, in particular amino acid tracers, may have the ability to detect antiangiogenic drug susceptibility or resistance prior to morphological changes. As advances occur in the development of therapies that target specific biochemical or molecular pathways and alter tumor physiology in potentially predictable ways, the validation of physiological and metabolic imaging biomarkers will become increasingly important in the near future.
Collapse
Affiliation(s)
- Markus Hutterer
- Department of Neurology and Wilhelm-Sander Neuro-Oncology Unit, University Hospital and Medical School, Regensburg, Germany (M.H., P.H.); Neuroradiology, Department of Radiology, University Hospital Bonn, Bonn, Germany (E.H.); Regensburg Medical Image Computing, Ostbayerische Technische Hochschule Regensburg, Regensburg, Germany (C.P.); Department of Neurosurgery, University Hospital and Medical School, Regensburg, Germany (M.P.)
| | - Elke Hattingen
- Department of Neurology and Wilhelm-Sander Neuro-Oncology Unit, University Hospital and Medical School, Regensburg, Germany (M.H., P.H.); Neuroradiology, Department of Radiology, University Hospital Bonn, Bonn, Germany (E.H.); Regensburg Medical Image Computing, Ostbayerische Technische Hochschule Regensburg, Regensburg, Germany (C.P.); Department of Neurosurgery, University Hospital and Medical School, Regensburg, Germany (M.P.)
| | - Christoph Palm
- Department of Neurology and Wilhelm-Sander Neuro-Oncology Unit, University Hospital and Medical School, Regensburg, Germany (M.H., P.H.); Neuroradiology, Department of Radiology, University Hospital Bonn, Bonn, Germany (E.H.); Regensburg Medical Image Computing, Ostbayerische Technische Hochschule Regensburg, Regensburg, Germany (C.P.); Department of Neurosurgery, University Hospital and Medical School, Regensburg, Germany (M.P.)
| | - Martin Andreas Proescholdt
- Department of Neurology and Wilhelm-Sander Neuro-Oncology Unit, University Hospital and Medical School, Regensburg, Germany (M.H., P.H.); Neuroradiology, Department of Radiology, University Hospital Bonn, Bonn, Germany (E.H.); Regensburg Medical Image Computing, Ostbayerische Technische Hochschule Regensburg, Regensburg, Germany (C.P.); Department of Neurosurgery, University Hospital and Medical School, Regensburg, Germany (M.P.)
| | - Peter Hau
- Department of Neurology and Wilhelm-Sander Neuro-Oncology Unit, University Hospital and Medical School, Regensburg, Germany (M.H., P.H.); Neuroradiology, Department of Radiology, University Hospital Bonn, Bonn, Germany (E.H.); Regensburg Medical Image Computing, Ostbayerische Technische Hochschule Regensburg, Regensburg, Germany (C.P.); Department of Neurosurgery, University Hospital and Medical School, Regensburg, Germany (M.P.)
| |
Collapse
|
15
|
Keunen O, Taxt T, Grüner R, Lund-Johansen M, Tonn JC, Pavlin T, Bjerkvig R, Niclou SP, Thorsen F. Multimodal imaging of gliomas in the context of evolving cellular and molecular therapies. Adv Drug Deliv Rev 2014; 76:98-115. [PMID: 25078721 DOI: 10.1016/j.addr.2014.07.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/14/2014] [Accepted: 07/22/2014] [Indexed: 01/18/2023]
Abstract
The vast majority of malignant gliomas relapse after surgery and standard radio-chemotherapy. Novel molecular and cellular therapies are thus being developed, targeting specific aspects of tumor growth. While histopathology remains the gold standard for tumor classification, neuroimaging has over the years taken a central role in the diagnosis and treatment follow up of brain tumors. It is used to detect and localize lesions, define the target area for biopsies, plan surgical and radiation interventions and assess tumor progression and treatment outcome. In recent years the application of novel drugs including anti-angiogenic agents that affect the tumor vasculature, has drastically modulated the outcome of brain tumor imaging. To properly evaluate the effects of emerging experimental therapies and successfully support treatment decisions, neuroimaging will have to evolve. Multi-modal imaging systems with existing and new contrast agents, molecular tracers, technological advances and advanced data analysis can all contribute to the establishment of disease relevant biomarkers that will improve disease management and patient care. In this review, we address the challenges of glioma imaging in the context of novel molecular and cellular therapies, and take a prospective look at emerging experimental and pre-clinical imaging techniques that bear the promise of meeting these challenges.
Collapse
|
16
|
|
17
|
Nedergaard MK, Kristoffersen K, Michaelsen SR, Madsen J, Poulsen HS, Stockhausen MT, Lassen U, Kjaer A. The use of longitudinal 18F-FET MicroPET imaging to evaluate response to irinotecan in orthotopic human glioblastoma multiforme xenografts. PLoS One 2014; 9:e100009. [PMID: 24918622 PMCID: PMC4053391 DOI: 10.1371/journal.pone.0100009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/21/2014] [Indexed: 11/26/2022] Open
Abstract
Objectives Brain tumor imaging is challenging. Although 18F-FET PET is widely used in the clinic, the value of 18F-FET MicroPET to evaluate brain tumors in xenograft has not been assessed to date. The aim of this study therefore was to evaluate the performance of in vivo18F-FET MicroPET in detecting a treatment response in xenografts. In addition, the correlations between the 18F-FET tumor accumulation and the gene expression of Ki67 and the amino acid transporters LAT1 and LAT2 were investigated. Furthermore, Ki67, LAT1 and LAT2 gene expression in xenograft and archival patient tumors was compared. Methods Human GBM cells were injected orthotopically in nude mice and 18F-FET uptake was followed by weekly MicroPET/CT. When tumor take was observed, mice were treated with CPT-11 or saline weekly. After two weeks of treatment the brain tumors were isolated and quantitative polymerase chain reaction were performed on the xenograft tumors and in parallel on archival patient tumor specimens. Results The relative tumor-to-brain (T/B) ratio of SUVmax was significantly lower after one week (123±6%, n = 7 vs. 147±6%, n = 7; p = 0.018) and after two weeks (142±8%, n = 5 vs. 204±27%, n = 4; p = 0.047) in the CPT-11 group compared with the control group. Strong negative correlations between SUVmax T/B ratio and LAT1 (r = −0.62, p = 0.04) and LAT2 (r = −0.67, p = 0.02) were observed. In addition, a strong positive correlation between LAT1 and Ki67 was detected in xenografts. Furthermore, a 1.6 fold higher expression of LAT1 and a 23 fold higher expression of LAT2 were observed in patient specimens compared to xenografts. Conclusions 18F-FET MicroPET can be used to detect a treatment response to CPT-11 in GBM xenografts. The strong negative correlation between SUVmax T/B ratio and LAT1/LAT2 indicates an export transport function. We suggest that 18F-FET PET may be used for detection of early treatment response in patients.
Collapse
Affiliation(s)
- Mette K. Nedergaard
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| | - Karina Kristoffersen
- Department of Radiation Biology, The Finsen Center, Rigshospitalet, Copenhagen, Denmark
| | - Signe R. Michaelsen
- Department of Radiation Biology, The Finsen Center, Rigshospitalet, Copenhagen, Denmark
| | - Jacob Madsen
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Hans S. Poulsen
- Department of Radiation Biology, The Finsen Center, Rigshospitalet, Copenhagen, Denmark
| | | | - Ulrik Lassen
- Phase 1 Unit, Department of Oncology, The Finsen Center, Rigshospitalet, Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|