1
|
Giraudo C, Cavallin C, Pillon M, Carraro E, Fichera G, Cecchin D, Zucchetta P. Automatic assessment of body composition in children with lymphoma: results of a [ 18F]FDG-PET/MR study. Eur Radiol 2024:10.1007/s00330-024-10957-4. [PMID: 39012528 DOI: 10.1007/s00330-024-10957-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/28/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024]
Abstract
OBJECTIVES To use Dixon-MR images extracted from [18F]FDG-PET/MR scans to perform an automatic, volumetric segmentation and quantification of body composition in pediatric patients with lymphoma. MATERIALS AND METHODS Pediatric patients with lymphoma examined by [18F]FDG-PET/MR at diagnosis and restaging were included. At each time point, axial fat and water Dixon T1w images of the thighs were automatically segmented and muscle volume, subcutaneous, intramuscular, and intermuscular fat volume were quantified. The metabolic activity of the largest nodal lesion and of muscles and subcutaneous fat was recorded. The paired samples t-test and Spearman's correlation coefficient were applied to evaluate potential differences between the two time points and the relationship between metabolic and body composition metrics, respectively. By logistic regression analysis, the prognostic role of the investigated variables was assessed. The applied significance level was p < 0.05 for all analyses. RESULTS Thirty-seven patients (mean age ± SD 14 ± 3-years-old; 20 females) matched the inclusion criteria. After chemotherapy (interval between the two PET/MR scans, 56-80 days; median 65 days), muscle volume significantly decreased (629 ± 259 cm3 vs 567 ± 243 cm3, p < 0.001) while subcutaneous, intramuscular and intermuscular fat increased (476 ± 255 cm3 vs 607 ± 254 cm3, p < 0.001; 63 ± 20 cm3 vs 76 ± 26 cm3, p < 0.001; 58 ± 19 cm3 vs 71 ± 23 cm3, p < 0.001); the metabolic activity of the main nodal lesion, muscles, and subcutaneous fat significantly decreased (p < 0.05, each). None of the examined variables acted as predictors of the response to treatment (p = 0.283). A strong correlation between BMI and subcutaneous fat volume at diagnosis (r = 0.675, p < 0.001) and restaging (r = 0.600, p < 0.001) emerged. CONCLUSIONS The proposed method demonstrated that pediatric patients with lymphoma undergo muscle loss and an increase of subcutaneous fat during treatment. CLINICAL RELEVANCE STATEMENT The proposed automatic and volumetric MR-based assessment of body composition in children with lymphoma can be used to monitor the effect of chemotherapy and may guide tailored exercise programs during chemotherapy. KEY POINTS T1w Dixon images can be used for the automatic segmentation and quantification of body composition. Muscle and subcutaneous fat volume do not act as predictors of the response to treatment in children with lymphoma. Chemotherapy induces changes in body composition in children with lymphoma.
Collapse
Affiliation(s)
- Chiara Giraudo
- Unit of Advanced Clinical and Translational Imaging, Department of Cardiac, Thoracic, Vascular Sciences and Public Health-DCTV, University of Padova, Padova, Italy.
| | | | - Marta Pillon
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Department of Woman's and Child's Health, University of Padua, Padua, Italy
| | - Elisa Carraro
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Department of Woman's and Child's Health, University of Padua, Padua, Italy
| | - Giulia Fichera
- Pediatric Radiology Unit, Azienda Ospedale-Università Padova, Padova, Italy
| | - Diego Cecchin
- Nuclear Medicine Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Pietro Zucchetta
- Nuclear Medicine Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| |
Collapse
|
2
|
Einspieler H, Kluge K, Haberl D, Schatz K, Nics L, Schmitl S, Geist BK, Spielvogel CP, Grubmüller B, Baltzer PAT, Kramer G, Shariat SF, Hacker M, Rasul S. Assessment of PSMA Expression of Healthy Organs in Different Stages of Prostate Cancer Using [ 68Ga]Ga-PSMA-11-PET Examinations. Cancers (Basel) 2024; 16:1514. [PMID: 38672596 PMCID: PMC11049240 DOI: 10.3390/cancers16081514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
The efficacy of radioligand therapy (RLT) targeting prostate-specific membrane antigen (PSMA) is currently being investigated for its application in patients with early-stage prostate cancer (PCa). However, little is known about PSMA expression in healthy organs in this cohort. Collectively, 202 [68Ga]Ga-PSMA-11 positron emission tomography (PET) scans from 152 patients were studied. Of these, 102 PET scans were from patients with primary PCa and hormone-sensitive biochemically recurrent PCa and 50 PET scans were from patients with metastatic castration-resistant PCa (mCRPC) before and after three cycles of [177Lu]Lu-PSMA-RLT. PSMA-standardized uptake values (SUV) were measured in multiple organs and PSMA-total tumor volume (PSMA-TTV) was determined in all cohorts. The measured PET parameters of the different cohorts were normalized to the bloodpool and compared using t- or Mann-Whitney U tests. Patients with early-stage PCa had lower PSMA-TTVs (10.39 mL vs. 462.42 mL, p < 0.001) and showed different SUVs in the thyroid, submandibular glands, heart, liver, kidneys, intestine, testes and bone marrow compared to patients with advanced CRPC, with all tests showing p < 0.05. Despite the differences in the PSMA-TTV of patients with mCRPC before and after [177Lu]Lu-PSMA-RLT (462.42 mL vs. 276.29 mL, p = 0.023), no significant organ differences in PET parameters were detected. These suggest different degrees of PSMA-ligand binding among patients with different stages of PCa that could influence radiotoxicity during earlier stages of disease in different organs when PSMA-RLT is administered.
Collapse
Affiliation(s)
- Holger Einspieler
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria; (H.E.); (K.K.); (D.H.); (K.S.); (L.N.); (S.S.); (B.K.G.); (C.P.S.); (M.H.)
| | - Kilian Kluge
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria; (H.E.); (K.K.); (D.H.); (K.S.); (L.N.); (S.S.); (B.K.G.); (C.P.S.); (M.H.)
| | - David Haberl
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria; (H.E.); (K.K.); (D.H.); (K.S.); (L.N.); (S.S.); (B.K.G.); (C.P.S.); (M.H.)
| | - Katrin Schatz
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria; (H.E.); (K.K.); (D.H.); (K.S.); (L.N.); (S.S.); (B.K.G.); (C.P.S.); (M.H.)
| | - Lukas Nics
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria; (H.E.); (K.K.); (D.H.); (K.S.); (L.N.); (S.S.); (B.K.G.); (C.P.S.); (M.H.)
| | - Stefan Schmitl
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria; (H.E.); (K.K.); (D.H.); (K.S.); (L.N.); (S.S.); (B.K.G.); (C.P.S.); (M.H.)
| | - Barbara Katharina Geist
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria; (H.E.); (K.K.); (D.H.); (K.S.); (L.N.); (S.S.); (B.K.G.); (C.P.S.); (M.H.)
| | - Clemens P. Spielvogel
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria; (H.E.); (K.K.); (D.H.); (K.S.); (L.N.); (S.S.); (B.K.G.); (C.P.S.); (M.H.)
| | - Bernhard Grubmüller
- Department of Urology and Andrology, University Hospital Krems, Karl Landsteiner University of Health Sciences, 3500 Krems, Austria;
| | - Pascal A. T. Baltzer
- Department of Biomedical Imaging and Image-Guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Gero Kramer
- Department of Urology, Comprehensive Cancer Center, Vienna General Hospital, Medical University of Vienna, 1090 Vienna, Austria; (G.K.); (S.F.S.)
| | - Shahrokh F. Shariat
- Department of Urology, Comprehensive Cancer Center, Vienna General Hospital, Medical University of Vienna, 1090 Vienna, Austria; (G.K.); (S.F.S.)
- Department of Urology, Weill Cornell Medical College, New York, NY 10065, USA
- Department of Urology, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Division of Urology, Department of Special Surgery, Jordan University Hospital, The University of Jordan, Amman 11942, Jordan
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria; (H.E.); (K.K.); (D.H.); (K.S.); (L.N.); (S.S.); (B.K.G.); (C.P.S.); (M.H.)
| | - Sazan Rasul
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria; (H.E.); (K.K.); (D.H.); (K.S.); (L.N.); (S.S.); (B.K.G.); (C.P.S.); (M.H.)
| |
Collapse
|
3
|
Giraudo C, Carraro S, Zucchetta P, Cecchin D. Pediatric Imaging Using PET/MR Imaging. Magn Reson Imaging Clin N Am 2023; 31:625-636. [PMID: 37741646 DOI: 10.1016/j.mric.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
PET/MR imaging is a one-stop shop technique for pediatric diseases allowing not only an accurate clinical assessment of tumors at staging and restaging but also the diagnosis of neurologic, inflammatory, and infectious diseases in complex cases. Moreover, applying PET kinetic analyses and sequences such as diffusion-weighted imaging as well as quantitative analysis investigating the relationship between disease metabolic activity and cellularity can be applied. Complex radiomics analysis can also be performed.
Collapse
Affiliation(s)
- Chiara Giraudo
- Complex Unit of Nuclear Medicine, Department of Medicine (DIMED), University Hospital of Padova, Via Nicolo' Giustiniani 2, 35128, Padova, Italy
| | - Silvia Carraro
- Unit of Pediatric Allergy and Respiratory Medicine, Women's and Children's Health Department, University Hospital of Padova, Via Nicolo' Giustiniani 2, 35128, Padova, Italy
| | - Pietro Zucchetta
- Complex Unit of Nuclear Medicine, Department of Medicine (DIMED), University Hospital of Padova, Via Nicolo' Giustiniani 2, 35128, Padova, Italy
| | - Diego Cecchin
- Complex Unit of Nuclear Medicine, Department of Medicine (DIMED), University Hospital of Padova, Via Nicolo' Giustiniani 2, 35128, Padova, Italy.
| |
Collapse
|
4
|
Padwal J, Baratto L, Chakraborty A, Hawk K, Spunt S, Avedian R, Daldrup-Link HE. PET/MR of pediatric bone tumors: what the radiologist needs to know. Skeletal Radiol 2023; 52:315-328. [PMID: 35804163 PMCID: PMC9826799 DOI: 10.1007/s00256-022-04113-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/11/2022] [Accepted: 06/29/2022] [Indexed: 02/02/2023]
Abstract
Integrated 2-deoxy-2-[fluorine-18]fluoro-D-glucose (18F-FDG) positron emission tomography (PET)/magnetic resonance (MR) imaging can provide "one stop" local tumor and whole-body staging in one session, thereby streamlining imaging evaluations and avoiding duplicate anesthesia in young children. 18F-FDG PET/MR scans have the benefit of lower radiation, superior soft tissue contrast, and increased patient convenience compared to 18F-FDG PET/computerized tomography scans. This article reviews the 18F-FDG PET/MR imaging technique, reporting requirements, and imaging characteristics of the most common pediatric bone tumors, including osteosarcoma, Ewing sarcoma, primary bone lymphoma, bone and bone marrow metastases, and Langerhans cell histiocytosis.
Collapse
Affiliation(s)
- Jennifer Padwal
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Lucia Baratto
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Amit Chakraborty
- Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Kristina Hawk
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Sheri Spunt
- Department of Pediatrics, Stanford University, 725 Welch Rd., Rm. 1665, Stanford, CA, 94305-5614, USA
| | - Raffi Avedian
- Department of Surgery, Division of Pediatric Orthopedic Surgery, Lucile Packard Children's Hospital, Stanford University, Stanford, CA, 94305, USA
| | - Heike E Daldrup-Link
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA.
- Cancer Imaging Program, Stanford Cancer Institute, Stanford, USA.
- Department of Pediatrics, Stanford University, 725 Welch Rd., Rm. 1665, Stanford, CA, 94305-5614, USA.
| |
Collapse
|
5
|
Hulsen DJW, Mitea C, Arts JJ, Loeffen D, Geurts J. Diagnostic value of hybrid FDG-PET/MR imaging of chronic osteomyelitis. Eur J Hybrid Imaging 2022; 6:15. [PMID: 35909200 PMCID: PMC9339446 DOI: 10.1186/s41824-022-00125-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/10/2022] [Indexed: 11/22/2022] Open
Abstract
Background Magnetic resonance imaging (MRI) and 2-[18F]-fluoro-2-deoxy-d-glucose (18F-FDG) Positron Emission Tomography, paired with Computed Tomography (PET/CT) are commonly used modalities in the complicated diagnostic work-up of osteomyelitis. PET/MRI is a relatively novel hybrid modality with suggested applications in bone infection imaging, based on expert opinion and previous qualitative research. 18F-FDG PET/MRI has the advantages of reduced radiation dose, more soft tissue information, and is deemed more valuable for surgical planning compared to 18F-FDG PET/CT. The goal of this study is to quantitatively assess the diagnostic value of hybrid 18F-FDG PET/MRI for chronic osteomyelitis. Methods A retrospective analysis was performed by a nuclear medicine physician and radiologist on 36 patients with 18F-FDG PET/MRI scans for suspected osteomyelitis. Sensitivity, specificity, and accuracy were determined with the clinical assessment by the orthopaedic surgeon (based on subsequent intraoperative microbiology or long-term follow-up) as the ground truth. Standardized uptake values (SUV) were measured and analysed by means of receiver operating characteristics (ROC). Results This first study to quantitatively report the diagnostic value of 18F-FDG PET/MRI yielded a sensitivity, specificity, and accuracy of 78%, 100%, and 86% respectively. Area under the ROC curve was .736, .755, and .769 for the SUVmax, target to background ratio, and SUVmax_ratio respectively. These results are in the same range and not statistically different compared to diagnostic value for 18F-FDG PET/CT imaging of osteomyelitis in literature. Conclusions Based on the aforementioned advantages of 18F-FDG PET/MRI and the diagnostic value reported here, the authors propose 18F-FDG PET/MRI as an alternative to 18F-FDG PET/CT in osteomyelitis diagnosis, if available.
Collapse
|
6
|
Guja KE, Nadel H, Iagaru A. Overview and Recent Advances in 18F-FDG PET/CT for Evaluation of Pediatric Lymphoma. Semin Nucl Med 2022. [DOI: 10.1053/j.semnuclmed.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
April G, De Bruycker JJ, Decaluwe H, Haddad E, Lambert R, Turpin S. Evaluation of physiological Waldeyer's ring, mediastinal blood pool, thymic, bone marrow, splenic and hepatic activity with 18F-FDG PET/CT: exploration of normal range among pediatric patients. Ann Nucl Med 2022; 36:661-673. [PMID: 35643969 DOI: 10.1007/s12149-022-01748-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/27/2022] [Indexed: 11/27/2022]
Abstract
INTRODUCTION While 18F-FDG PET/CT pediatrics applications have increased in number and indications, few studies have addressed normal maximum standardized uptake values (SUVmax) of referral organs in children. The purpose of this study is to assess these in a cohort of pediatric patients. MATERIAL AND METHODS 285 18F-FDG PET/CT scans in 229 patients were reviewed. SUVmax were assessed for mediastinal blood pool (MBP), thymus (T), liver (L), spleen (S), bone marrow (BM) and Waldeyer's Ring (Wald). L/MBP and S/L ratios were calculated. Same day complete blood counts (CBC) were available for 132 studies and compared to BM and S. Means, standard deviations and correlation coefficients with age, weight and body surface area (BSA) were calculated. RESULTS Weak correlation with age, weight or BSA was found for Wald. Strong correlations with weight/BSA more than with age were demonstrated for MBP, L and BM and moderate for S and T. After initial decrease between age 0 and 2, thymic activity peaked at age 11 years then involuted. No correlation was found between CBC ad BM or S. In 28 studies, L was less or equal to MBP. In 74 S was superior to L. CONCLUSIONS Referral organs 18F-FDG uptake varies in children more in relation with weight and BSA than with age for key referral organs, such as L, S and MBP. In a significant number of studies, L activity may impede evaluation of treatment response in comparison with MBP or inflammation/infection evaluation in comparison with S.
Collapse
Affiliation(s)
- Geneviève April
- Medical Imaging Department-Division of Nuclear Medicine, Laval University, CHU de Québec, Hôtel-Dieu, 11 Côte du Palais, Québec, QC, G1R 2J6, Canada
| | - Jean Jacques De Bruycker
- Pediatrics Department Allergy, Immunology and Rheumatology Division, University of Montreal, CHU Ste-Justine, 3175 Chemin de la Côte-Sainte-Catherine Montreal, Montreal, QC, H3T 1C5, Canada
| | - Hélène Decaluwe
- Pediatrics Department Allergy, Immunology and Rheumatology Division, University of Montreal, CHU Ste-Justine, 3175 Chemin de la Côte-Sainte-Catherine Montreal, Montreal, QC, H3T 1C5, Canada
| | - Elie Haddad
- Pediatrics Department Allergy, Immunology and Rheumatology Division, University of Montreal, CHU Ste-Justine, 3175 Chemin de la Côte-Sainte-Catherine Montreal, Montreal, QC, H3T 1C5, Canada
| | - Raymond Lambert
- Medical Imaging Department-Division of Nuclear Medicine, University of Montreal, CHU Ste-Justine, 3175 Chemin de la Côte-Sainte-Catherine Montreal, Montreal, QC, H3T 1C5, Canada
| | - Sophie Turpin
- Medical Imaging Department-Division of Nuclear Medicine, University of Montreal, CHU Ste-Justine, 3175 Chemin de la Côte-Sainte-Catherine Montreal, Montreal, QC, H3T 1C5, Canada.
| |
Collapse
|
8
|
Pedersen C, Aboian M, McConathy JE, Daldrup-Link H, Franceschi AM. PET/MRI in Pediatric Neuroimaging: Primer for Clinical Practice. AJNR Am J Neuroradiol 2022; 43:938-943. [PMID: 35512826 DOI: 10.3174/ajnr.a7464] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/13/2021] [Indexed: 11/07/2022]
Abstract
Modern pediatric imaging seeks to provide not only exceptional anatomic detail but also physiologic and metabolic information of the pathology in question with as little radiation penalty as possible. Hybrid PET/MR imaging combines exquisite soft-tissue information obtained by MR imaging with functional information provided by PET, including metabolic markers, receptor binding, perfusion, and neurotransmitter release data. In pediatric neuro-oncology, PET/MR imaging is, in many ways, ideal for follow-up compared with PET/CT, given the superiority of MR imaging in neuroimaging compared with CT and the lower radiation dose, which is relevant in serial imaging and long-term follow-up of pediatric patients. In addition, although MR imaging is the main imaging technique for the evaluation of spinal pathology, PET/MR imaging may provide useful information in several clinical scenarios, including tumor staging and follow-up, treatment response assessment of spinal malignancies, and vertebral osteomyelitis. This review article covers neuropediatric applications of PET/MR imaging in addition to considerations regarding radiopharmaceuticals, imaging protocols, and current challenges to clinical implementation.
Collapse
Affiliation(s)
- C Pedersen
- From the Department of Radiology (C.P., M.A.), Yale School of Medicine, New Haven, Connecticut
| | - M Aboian
- From the Department of Radiology (C.P., M.A.), Yale School of Medicine, New Haven, Connecticut
| | - J E McConathy
- Division of Molecular Imaging and Therapeutics (J.E.M.), Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - H Daldrup-Link
- Department of Radiology and Pediatrics (H.D.-L.), Stanford University School of Medicine, Palo Alto, California
| | - A M Franceschi
- Neuroradiology Division (A.M.F.), Department of Radiology, Northwell Health/Donald and Barbara Zucker School of Medicine, Lenox Hill Hospital, New York, New York
| |
Collapse
|
9
|
Yeh R, Amer A, Johnson JM, Ginat DT. Pearls and Pitfalls of 18FDG-PET Head and Neck Imaging. Neuroimaging Clin N Am 2022; 32:287-298. [DOI: 10.1016/j.nic.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Daldrup-Link HE, Theruvath AJ, Baratto L, Hawk KE. One-stop local and whole-body staging of children with cancer. Pediatr Radiol 2022; 52:391-400. [PMID: 33929564 PMCID: PMC10874282 DOI: 10.1007/s00247-021-05076-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/04/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022]
Abstract
Accurate staging and re-staging of cancer in children is crucial for patient management. Currently, children with a newly diagnosed cancer must undergo a series of imaging tests, which are stressful, time-consuming, partially redundant, expensive, and can require repetitive anesthesia. New approaches for pediatric cancer staging can evaluate the primary tumor and metastases in a single session. However, traditional one-stop imaging tests, such as CT and positron emission tomography (PET)/CT, are associated with considerable radiation exposure. This is particularly concerning for children because they are more sensitive to ionizing radiation than adults and they live long enough to experience secondary cancers later in life. In this review article we discuss child-tailored imaging tests for tumor detection and therapy response assessment - tests that can be obtained with substantially reduced radiation exposure compared to traditional CT and PET/CT scans. This includes diffusion-weighted imaging (DWI)/MRI and integrated [F-18]2-fluoro-2-deoxyglucose (18F-FDG) PET/MRI scans. While several investigators have compared the value of DWI/MRI and 18F-FDG PET/MRI for staging pediatric cancer, the value of these novel imaging technologies for cancer therapy monitoring has received surprisingly little attention. In this article, we share our experiences and review existing literature on this subject.
Collapse
Affiliation(s)
- Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Lucile Packard Children's Hospital, Stanford University, 725 Welch Road, Room 1665, Stanford, CA, 94305-5614, USA.
- Department of Pediatrics, Stanford University, Stanford, CA, USA.
- Cancer Imaging and Early Detection Program, Stanford Cancer Institute, Stanford, CA, USA.
| | - Ashok J Theruvath
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Lucile Packard Children's Hospital, Stanford University, 725 Welch Road, Room 1665, Stanford, CA, 94305-5614, USA
- Cancer Imaging and Early Detection Program, Stanford Cancer Institute, Stanford, CA, USA
| | - Lucia Baratto
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Lucile Packard Children's Hospital, Stanford University, 725 Welch Road, Room 1665, Stanford, CA, 94305-5614, USA
- Cancer Imaging and Early Detection Program, Stanford Cancer Institute, Stanford, CA, USA
| | - Kristina Elizabeth Hawk
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Lucile Packard Children's Hospital, Stanford University, 725 Welch Road, Room 1665, Stanford, CA, 94305-5614, USA
- Cancer Imaging and Early Detection Program, Stanford Cancer Institute, Stanford, CA, USA
| |
Collapse
|
11
|
Liao CY, Jen JH, Chen YW, Li CY, Wang LW, Liu RS, Huang WS, Lu CF. Comparison of Conventional and Radiomic Features between 18F-FBPA PET/CT and PET/MR. Biomolecules 2021; 11:1659. [PMID: 34827657 PMCID: PMC8615400 DOI: 10.3390/biom11111659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Boron-10-containing positron emission tomography (PET) radio-tracer, 18F-FBPA, has been used to evaluate the feasibility and treatment outcomes of Boron neutron capture therapy (BNCT). The clinical use of PET/MR is increasing and reveals its benefit in certain applications. However, the PET/CT is still the most widely used modality for daily PET practice due to its high quantitative accuracy and relatively low cost. Considering the different attenuation correction maps between PET/CT and PET/MR, comparison of derived image features from these two modalities is critical to identify quantitative imaging biomarkers for diagnosis and prognosis. This study aimed to investigate the comparability of image features extracted from 18F-FBPA PET/CT and PET/MR. A total of 15 patients with malignant brain tumor who underwent 18F-FBPA examinations using both PET/CT and PET/MR on the same day were retrospectively analyzed. Overall, four conventional imaging characteristics and 449 radiomic features were calculated from PET/CT and PET/MR, respectively. A linear regression model and intraclass correlation coefficient (ICC) were estimated to evaluate the comparability of derived features between two modalities. Features were classified into strong, moderate, and weak comparability based on coefficient of determination (r2) and ICC. All of the conventional features, 81.2% of histogram, 37.5% of geometry, 51.5% of texture, and 25% of wavelet-based features, showed strong comparability between PET/CT and PET/MR. With regard to the wavelet filtering, radiomic features without filtering (61.2%) or with low-pass filtering (59.2%) along three axes produced strong comparability between the two modalities. However, only 8.2% of the features with high-pass filtering showed strong comparability. The linear regression models were provided for the features with strong and moderate consensus to interchange the quantitative features between the PET/CT and the PET/MR. All of the conventional and 71% of the radiomic (mostly histogram and texture) features were sufficiently stable and could be interchanged between 18F-FBPA PET with different hybrid modalities using the proposed equations. Our findings suggested that the image features high interchangeability may facilitate future studies in comparing PET/CT and PET/MR.
Collapse
Affiliation(s)
- Chien-Yi Liao
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (C.-Y.L.); (J.-H.J.)
| | - Jun-Hsuang Jen
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (C.-Y.L.); (J.-H.J.)
| | - Yi-Wei Chen
- Department of Radiation Oncology, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.-W.C.); (L.-W.W.)
| | - Chien-Ying Li
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Ling-Wei Wang
- Department of Radiation Oncology, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.-W.C.); (L.-W.W.)
| | - Ren-Shyan Liu
- Department of Nuclear Medicine, Cheng Hsin General Hospital, Taipei 11220, Taiwan;
| | - Wen-Sheng Huang
- Department of Nuclear Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Chia-Feng Lu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (C.-Y.L.); (J.-H.J.)
| |
Collapse
|
12
|
Baratto L, Hawk KE, States L, Qi J, Gatidis S, Kiru L, Daldrup-Link HE. PET/MRI Improves Management of Children with Cancer. J Nucl Med 2021; 62:1334-1340. [PMID: 34599010 PMCID: PMC8724894 DOI: 10.2967/jnumed.120.259747] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 05/21/2021] [Indexed: 01/11/2023] Open
Abstract
Integrated PET/MRI has shown significant clinical value for staging and restaging of children with cancer by providing functional and anatomic tumor evaluation with a 1-stop imaging test and with up to 80% reduced radiation exposure compared with 18F-FDG PET/CT. This article reviews clinical applications of 18F-FDG PET/MRI that are relevant for pediatric oncology, with particular attention to the value of PET/MRI for patient management. Early adopters from 4 different institutions share their insights about specific advantages of PET/MRI technology for the assessment of young children with cancer. We discuss how whole-body PET/MRI can be of value in the evaluation of certain anatomic regions, such as soft tissues and bone marrow, as well as specific PET/MRI interpretation hallmarks in pediatric patients. We highlight how whole-body PET/MRI can improve the clinical management of children with lymphoma, sarcoma, and neurofibromatosis, by reducing the number of radiologic examinations needed (and consequently the radiation exposure), without losing diagnostic accuracy. We examine how PET/MRI can help in differentiating malignant tumors versus infectious or inflammatory diseases. Future research directions toward the use of PET/MRI for treatment evaluation of patients undergoing immunotherapy and assessment of different theranostic agents are also briefly explored. Lessons learned from applications in children might also be extended to evaluations of adult patients.
Collapse
Affiliation(s)
- Lucia Baratto
- Department of Radiology, Stanford University, Stanford, California
| | - K Elizabeth Hawk
- Department of Radiology, Stanford University, Stanford, California
| | - Lisa States
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jing Qi
- Department of Radiology, Children's Wisconsin, Milwaukee, Wisconsin
| | - Sergios Gatidis
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany; and
| | - Louise Kiru
- Department of Radiology, Stanford University, Stanford, California
| | - Heike E Daldrup-Link
- Department of Radiology, Stanford University, Stanford, California;
- Department of Pediatrics, Stanford University, Stanford, California
| |
Collapse
|
13
|
Pediatric Molecular Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
14
|
Guo R, Xu P, Cheng S, Lin M, Zhong H, Li W, Huang H, Ouyang B, Yi H, Chen J, Lin X, Shi K, Zhao W, Li B. Comparison of Nasopharyngeal MR, 18 F-FDG PET/CT, and 18 F-FDG PET/MR for Local Detection of Natural Killer/T-Cell Lymphoma, Nasal Type. Front Oncol 2020; 10:576409. [PMID: 33178609 PMCID: PMC7591820 DOI: 10.3389/fonc.2020.576409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Objectives The present study aims to compare the diagnostic efficacy of MR, 18F-FDG PET/CT, and 18F-FDG PET/MR for the local detection of early-stage extranodal natural killer/T-cell lymphoma, nasal type (ENKTL). Patients and Methods Thirty-six patients with histologically proven early-stage ENKTL were enrolled from a phase 2 study (Cohort A). Eight nasopharyngeal anatomical regions from each patient were imaged using 18F-FDG PET/CT and MR. A further nine patients were prospectively enrolled from a multicenter, phase 3 study; these patients underwent 18F-FDG PET/CT and PET/MR after a single 18F-FDG injection (Cohort B). Region-based sensitivity and specificity were calculated. The standardized uptake values (SUV) obtained from PET/CT and PET/MR were compared, and the relationship between the SUV and apparent diffusion coefficients (ADC) of PET/MR were analyzed. Results In Cohort A, of the 288 anatomic regions, 86 demonstrated lymphoma involvement. All lesions were detected by 18F-FDG PET/CT, while only 70 were detected by MR. 18F-FDG PET/CT exhibited a higher sensitivity than MR (100% vs. 81.4%, χ2 = 17.641, P < 0.001) for local detection of malignancies. The specificity of 18F-FDG PET/CT and MR were 98.5 and 97.5%, respectively (χ2 = 0.510, P = 0.475). The accuracy of 18F-FDG PET/CT was 99.0% and the accuracy of MR was 92.7% (χ2 = 14.087, P < 0.001). In Cohort B, 72 anatomical regions were analyzed. PET/CT and PET/MR have a sensitivity of 100% and a specificity of 92.5%. The two methods were consistent (κ = 0.833, P < 0.001). There was a significant correlation between PET/MR SUVmax and PET/CT SUVmax (r = 0.711, P < 0.001), and SUVmean (r = 0.685, P < 0.001). No correlation was observed between the SUV and the ADC. Conclusion In early-stage ENKTL, nasopharyngeal MR showed a lower sensitivity and a similar specificity when compared with 18F-FDG PET/CT. PET/MR showed similar performance compared with PET/CT.
Collapse
Affiliation(s)
- Rui Guo
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Pengpeng Xu
- State Key Laboratory of Medical Genomics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shu Cheng
- State Key Laboratory of Medical Genomics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mu Lin
- Siemens Healthcare, Beijing, China
| | - Huijuan Zhong
- State Key Laboratory of Medical Genomics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weixia Li
- Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hengye Huang
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - Bingsheng Ouyang
- Department of Pathology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongmei Yi
- Department of Pathology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiayi Chen
- Department of Radiation, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaozhu Lin
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kuangyu Shi
- Department of Nuclear Medicine, University Hospital Bern, Bern, Switzerland.,Faculty of Informatics, Technical University of Munich, Munich, Germany
| | - Weili Zhao
- State Key Laboratory of Medical Genomics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
15
|
Kumbhar SS, Qi J. Normal FDG uptake in the adenoids and palatine tonsils in children on PET/MRI. Pediatr Radiol 2020; 50:958-965. [PMID: 32198664 DOI: 10.1007/s00247-020-04650-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/21/2020] [Accepted: 02/20/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Information about the normal [F-18]2-fluoro-2-deoxyglucose (FDG) uptake in the adenoids and palatine tonsils in children is not available. OBJECTIVE The purpose of this study was to report the range of standardized uptake values (SUVs) in the normal adenoids and palatine tonsils in children, assess for the degree of asymmetry between the right and left tonsils and evaluate for the correlation of SUVs between the adenoids and tonsils. MATERIALS AND METHODS Pediatric patients who had had an FDG positron emission tomography (PET)/magnetic resonance imaging (MRI) brain study in our institution from January 2018 to March 2019 were identified. Patients with a history of malignancy, adenoidectomy and/or tonsillectomy, incomplete imaging coverage of Waldeyer ring and the presence of artifact on PET/MRI were excluded. Two pediatric radiologists independently measured the mean and maximum SUVs of the right tonsil, left tonsil and the adenoids. Range, mean and standard deviation were calculated for all measurements. Ratios of SUV of the left to right tonsils and the adenoids to the tonsils were calculated. The paired t-test and Pearson's correlation test were used for statistical analysis with a P-value <0.05 considered to be significant. RESULTS Sixty-one PET/MRI brain scans were performed in our institution during the study period. After reviewing for exclusion criteria, 41 patients were included in the study (mean age: 10.1 years, range: 2-17 years; 19 boys and 22 girls). The mean SUV was 5.30±1.57 in the right tonsil, 5.25±1.53 in the left tonsil and 4.56±1.90 in the adenoids. The maximum SUV was 8.47±2.22 in the right tonsil, 8.45±2.18 in the left tonsil and 7.59±2.94 in the adenoids. The difference between the SUVs of the right and left tonsil was not statistically significant (P=0.69 for mean SUV and P=0.90 for maximum SUV). There was a statistically significant moderately positive correlation between the FDG uptake in the adenoids and the right and left tonsil for both mean and maximum SUV (r=0.36-0.41; P=0.008-0.022). CONCLUSION There is a wide variation of FDG uptake in the normal tonsils and adenoids in children. Uptake in the right and left tonsils is not significantly different. There is a moderately positive correlation between the FDG uptake in the adenoids and the tonsils.
Collapse
Affiliation(s)
- Sachin S Kumbhar
- Department of Radiology, Children's Wisconsin and Medical College of Wisconsin, 8915 W. Connell Ct., Milwaukee, WI, 53226, USA.
| | - Jing Qi
- Department of Radiology, Children's Wisconsin and Medical College of Wisconsin, 8915 W. Connell Ct., Milwaukee, WI, 53226, USA
| |
Collapse
|
16
|
Saade-Lemus S, Nevo E, Soliman I, Otero HJ, Magee RW, Drum ET, States LJ. Clinical pediatric positron emission tomography/magnetic resonance program: a guide to successful implementation. Pediatr Radiol 2020; 50:607-617. [PMID: 32076750 DOI: 10.1007/s00247-019-04578-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/16/2019] [Accepted: 11/13/2019] [Indexed: 11/29/2022]
Abstract
Children with malignancies undergo recurrent imaging as part of tumor diagnosis, staging and therapy response assessment. Simultaneous positron emission tomography (PET) and magnetic resonance (MR) allows for decreased radiation exposure and acts as a one-stop shop for disease in which MR imaging is required. Nevertheless, PET/MR is still less readily available than PET/CT across institutions. This article serves as a guide to successful implementation of a clinical pediatric PET/MR program based on our extensive clinical experience. Challenges include making scanners more affordable and increasing patient throughput by decreasing total scan time. With improvements in workflow and robust acquisition protocols, PET/MR imaging is expected to play an increasingly important role in pediatric oncology.
Collapse
Affiliation(s)
- Sandra Saade-Lemus
- Department of Radiology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Elad Nevo
- Department of Radiology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Iman Soliman
- Department of Radiology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Hansel J Otero
- Department of Radiology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Ralph W Magee
- Department of Radiology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Elizabeth T Drum
- Department of Radiology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Lisa J States
- Department of Radiology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA.
| |
Collapse
|
17
|
Sagan KP, Andrysiak-Mamos E, Sagan L, Nowacki P, Małkowski B, Syrenicz A. Cushing's Syndrome in a Patient With Rathke's Cleft Cyst and ACTH Cell Hyperplasia Detected by 11C-Methionine PET Imaging-A Case Presentation. Front Endocrinol (Lausanne) 2020; 11:460. [PMID: 32774326 PMCID: PMC7388627 DOI: 10.3389/fendo.2020.00460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/11/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Adrenocorticotropic Hormone (ACTH)-dependent Cushing's Syndrome (CS) is most often caused by a pituitary adenoma. Although rarely, it can also result from pituitary corticotroph cell hyperplasia (CH). Reports on concomitant pituitary lesions including ACTH-producing adenomas and Rathke's cleft cysts (RCCs) have been published. Positron emission tomography (PET), using 11C-labelled-methionine (MET) as a tracer and co-registered with magnetic resonance imaging (MRI) has been shown to be useful in the diagnosis of pituitary collision lesions, however, its role is still under investigation. In this work we present the case of a patient in whom CS was caused by non-adenomatous CH within the wall of an RCC. Case Summary: In 2015 a patient with signs and symptoms of CS was referred to our Department. Biochemical studies repeatedly showed elevated midnight serum cortisol and ACTH levels. Magnetic resonance imaging of the sellar region revealed an RCC and MET-PET/MR showed heterogeneous labelled-methionine metabolism in the vicinity of the cyst's wall. Transsphenoidal surgery resulted in rapid, complete and lasting relief of symptoms. Histopathological examination demonstrated an RCC and CH. Conclusions: Concomitance of pituitary focal lesions is a rare phenomenon. Methionine-labelled PET/MR may be useful in the diagnosis of collision sellar lesions, including CH. Corticotroph cell hyperplasia can present as mild and fluctuating hypercortisolaemia.
Collapse
Affiliation(s)
- Karol Piotr Sagan
- Department of Endocrinology, Metabolic and Internal Diseases, Pomeranian Medical University, Szczecin, Poland
- *Correspondence: Karol Piotr Sagan
| | - Elzbieta Andrysiak-Mamos
- Department of Endocrinology, Metabolic and Internal Diseases, Pomeranian Medical University, Szczecin, Poland
| | - Leszek Sagan
- Department of Neurosurgery, Pomeranian Medical University, Szczecin, Poland
| | - Przemysław Nowacki
- Department of Neurology, Pomeranian Medical University, Szczecin, Poland
| | - Bogdan Małkowski
- Department of Diagnostic Imagining, Collegium Medicum Nicolaus Copernicus University, Toruń, Poland
| | - Anhelli Syrenicz
- Department of Endocrinology, Metabolic and Internal Diseases, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
18
|
Comparison of FDG PET/MRI and FDG PET/CT in Pediatric Oncology in Terms of Anatomic Correlation of FDG-positive Lesions. J Pediatr Hematol Oncol 2019; 41:542-550. [PMID: 30933019 DOI: 10.1097/mph.0000000000001465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The aims of our study were to compare F-18 fluorodeoxyglucose (FDG) positron-emission tomography/magnetic resonance imaging (PET/MRI) and PET/computed tomography (CT) in pediatric oncology patients in terms of anatomic correlation of FDG-positive lesions, and also to compare diffusion-weighted imaging (DWI) with PET to assess the correlation between apparent diffusion coefficient (ADC) values and standardized uptake value (SUV). Sequential PET/CT and PET/MRI images and/or whole-body DWI and ADC mapping in 34 pediatric patients were retrospectively analyzed. FDG-positive lesions were visually scored for CT, T1-weighted, T2-weighted, and DWI images separately in terms of anatomic correlation of FDG-avid lesions. Correlation analysis was performed for SUV parameters and ADC values. Among 47 FDG-positive lesions identified concurrently on PET/CT and PET/MRI, 37 were positive on CT and 46 were positive on at least one MRI sequence (P=0.012). Among 32 FDG-positive lesions for which DWI were available, 31 could be clearly depicted on DWI, resulting in significant difference compared with CT alone in the detection of FDG-positive lesions. No correlation was found between ADC and SUV. FDG PET/MRI exhibits better performance than PET/CT in terms of anatomic correlation of FDG-avid lesions. Therefore, PET/MRI may be more advantageous than PET/CT, not only due to reduced ionizing radiation dose but also for a better depiction of FDG-avid lesions in pediatric PET imaging.
Collapse
|
19
|
Hulsen DJW, Geurts J, Arts JJ, Loeffen D, Mitea C, Vöö SA. Hybrid FDG-PET/MR imaging of chronic osteomyelitis: a prospective case series. Eur J Hybrid Imaging 2019; 3:7. [PMID: 34191175 PMCID: PMC8218079 DOI: 10.1186/s41824-019-0055-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/02/2019] [Indexed: 12/20/2022] Open
Abstract
Background Magnetic resonance imaging (MRI) and 2-[18F]-fluoro-2-deoxy-D-glucose (FDG) positron emission tomography paired with computed tomography (PET/CT) are two commonly used imaging modalities in the complicated diagnostic workup of osteomyelitis. Diagnosis using these modalities relies on, respectively, anatomical (MRI) and metabolic (PET) signs. With hybrid PET/MRI being recently available, our goal is to qualitatively compare hybrid FDG PET/MRI to FDG PET/CT in the diagnosis and operative planning of chronic osteomyelitis. Methods Five patients with suspected chronic osteomyelitis in an extremity underwent an 18F-FDG single-injection/dual-imaging protocol with hybrid PET/CT and hybrid PET/MR. Images and clinical features were evaluated using a standardized assessment method. Standardized uptake value (SUV) measurements were performed on all images. Concordant and discordant findings between PET/MRI and PET/CT were analysed. Results The consensus diagnoses based on PET/MRI and PET/CT images were identical for all five patients. One discrepancy between PET/MRI and PET/CT was found in the assessment of the features in one patient. PET signal intensities and target-to-background ratios were on average highest for PET/MRI. On PET/MRI, the location of infection based on FDG uptake could clearly be correlated with certain soft tissue structures (oedema, fluid collection, or muscle), which is paramount for surgical planning. Conclusions In the presented cases, FDG PET/MRI led to the same diagnosis and provided at least the same diagnostic information as PET/CT. PET/MRI was able to provide additional soft-tissue information for the physician planning treatment. Because of this, we suggest that PET/MRI could be used for osteomyelitis diagnosis and treatment planning.
Collapse
Affiliation(s)
- Dennis Jan Willem Hulsen
- Department of Orthopaedic Surgery, Research School CAPHRI, Maastricht University Medical Centre, Maastricht, The Netherlands. .,MICT Department, Jeroen Bosch Ziekenhuis, 's-Hertogenbosch, The Netherlands.
| | - Jan Geurts
- Department of Orthopaedic Surgery, Research School CAPHRI, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jacobus J Arts
- Department of Orthopaedic Surgery, Research School CAPHRI, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Daan Loeffen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Cristina Mitea
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Stefan Adrian Vöö
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands.,Institute of Nuclear Medicine, University College Hospital, London, UK
| |
Collapse
|
20
|
Integrated PET-MRI for Glioma Surveillance: Perfusion-Metabolism Discordance Rate and Association With Molecular Profiling. AJR Am J Roentgenol 2019; 212:883-891. [PMID: 30779663 DOI: 10.2214/ajr.18.20531] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Both 18F-FDG PET and perfusion MRI are commonly used techniques for posttreatment glioma surveillance. Using integrated PET-MRI, we assessed the rate of discordance between simultaneously acquired FDG PET images and dynamic contrast-enhanced (DCE) perfusion MR images and determined whether tumor genetics predicts discordance. MATERIALS AND METHODS Forty-one consecutive patients with high-grade gliomas (20 with grade IV gliomas and 21 with grade III gliomas) underwent a standardized tumor protocol performed using an integrated 3-T PET-MRI scanner. Quantitative measures of standardized uptake value, plasma volume, and permeability were obtained from segmented whole-tumor volumes of interest and targeted ROIs. ROC curve analysis and the Youden index were used to identify optimal cutoffs for FDG PET and DCE-MRI. Two-by-two contingency tables and percent agreement were used to assess accuracy and concordance. Twenty-six patients (63%) from the cohort underwent next-generation sequencing for tumor genetics. RESULTS The best-performing FDG PET and DCE-MRI cutoffs achieved sensitivities of 94% and 91%, respectively; specificities of 56% and 89%, respectively; and accuracies of 80% and 83%, respectively. FDG PET and DCE-MRI findings were discordant for 11 patients (27%), with DCE-MRI findings correct for six of these patients (55%). Tumor grade, tumor volume, bevacizumab exposure, and time since radiation predicted discordance between FDG PET and DCE-MRI findings, with an ROC AUC value of 0.78. Isocitrate dehydrogenase gene and receptor tyrosine kinase gene pathway mutations increased the ROC AUC value to 0.83. CONCLUSION FDG PET and DCE-MRI show comparable accuracy and sensitivity in identifying tumor progression. These modalities were shown to have discordant findings for more than a quarter of the patients assessed. Tumor genetics may contribute to perfusion-metabolism discordance, warranting further investigation.
Collapse
|
21
|
|
22
|
18F-Fluciclovine PET/MRI for preoperative lymph node staging in high-risk prostate cancer patients. Eur Radiol 2018; 28:3151-3159. [DOI: 10.1007/s00330-017-5213-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/17/2017] [Accepted: 11/24/2017] [Indexed: 01/18/2023]
|
23
|
Gauvain K, Ponisio MR, Barone A, Grimaldi M, Parent E, Leeds H, Goyal M, Rubin J, McConathy J. 18F-FDOPA PET/MRI for monitoring early response to bevacizumab in children with recurrent brain tumors. Neurooncol Pract 2017; 5:28-36. [PMID: 29692922 DOI: 10.1093/nop/npx008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background Noninvasively predicting early response to therapy in recurrent pediatric brain tumors provides a challenge. 3,4-dihydroxy-6-[18F]fluoro-L-phenylalanine (18F-FDOPA) PET/MRI has not been previously studied as a tool to evaluate early response to antiangiogenic therapy in children. The purpose of this study was to evaluate the safety and feasibility of using 18F-FDOPA PET/MRI to assess response to bevacizumab in children with relapsed brain tumors. Materials and Methods Six patients with recurrent gliomas (5 low-grade, 1 high-grade) planned to undergo treatment with bevacizumab were enrolled. 18F-FDOPA PET/MRI scans were obtained prior to and 4 weeks following the start of treatment, and these were compared with the clinical response determined at the 3-month MRI. The primary PET measure was metabolic tumor volume (MTV) at 10 to 15 min after 18F-FDOPA injection. For each tumor, the MTV was determined by manually defining initial tumor volumes of interest (VOI) and then applying a 1.5-fold threshold relative to the mean standardized uptake value (SUV) of a VOI in the frontal lobe contralateral to the tumor. Results 18F-FDOPA PET/MRI was well tolerated by all patients. All tumors were well visualized with 18F-FDOPA on the initial study, with peak tumor uptake occurring approximately 10 min after injection. Maximum and mean SUVs as well as tumor-to-brain ratios were not predictors of response at 3 months. Changes in MTVs after therapy ranged from 23% to 98% (n = 5). There is a trend towards the percent MTV change seen on the 4-week scan correlating with progression-free survival. Conclusion 18F-FDOPA PET/MRI was well tolerated in pediatric patients and merits further investigation as an early predictor of response to therapy.
Collapse
Affiliation(s)
- Karen Gauvain
- Washington University School of Medicine, Pediatric Hematology/Oncology, St. Louis, MO
| | - Maria Rosana Ponisio
- Washington University School of Medicine, Pediatric Hematology/Oncology, St. Louis, MO.,Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, MO
| | - Amy Barone
- Washington University School of Medicine, Pediatric Hematology/Oncology, St. Louis, MO
| | - Michael Grimaldi
- Washington University School of Medicine, Pediatric Hematology/Oncology, St. Louis, MO.,Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, MO
| | - Ephraim Parent
- Washington University School of Medicine, Pediatric Hematology/Oncology, St. Louis, MO.,Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, MO
| | - Hayden Leeds
- Washington University School of Medicine, Pediatric Hematology/Oncology, St. Louis, MO.,Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, MO
| | - Manu Goyal
- Washington University School of Medicine, Pediatric Hematology/Oncology, St. Louis, MO.,Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, MO
| | - Joshua Rubin
- Washington University School of Medicine, Pediatric Hematology/Oncology, St. Louis, MO
| | - Jonathan McConathy
- Washington University School of Medicine, Pediatric Hematology/Oncology, St. Louis, MO.,University of Alabama at Birmingham, Department of Radiology, Birmingham, AL
| |
Collapse
|
24
|
Lee YZ, Oldan JD, Fordham LA. Pediatric Applications of Hybrid PET/MR Imaging. Magn Reson Imaging Clin N Am 2017; 25:367-375. [DOI: 10.1016/j.mric.2016.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
25
|
Abstract
PURPOSE To review how PET/MR technology could add value for pediatric cancer patients. RECENT FINDINGS Since many primary tumors in children are evaluated with MRI and metastases are detected with PET/CT, integrated PET/MR can be a time-efficient and convenient solution for pediatric cancer staging. 18F-FDG PET/MR can assess primary tumors and the whole body in one imaging session, avoid repetitive anesthesia and reduce radiation exposure compared to 18F-FDG PET/CT. This article lists 10 action points, which might improve the clinical value of PET/MR for children with cancer. However, even if PET/MR proves valuable, it cannot enter mainstream applications if it is not accessible to the majority of pediatric cancer patients. Therefore, innovations are needed to make PET/MR scanners affordable and increase patient throughput. SUMMARY PET/MR offers opportunities for more efficient, accurate and safe diagnoses of pediatric cancer patients. The impact on patient management and outcomes has to be substantiated by large-scale prospective clinical trials.
Collapse
Affiliation(s)
- Heike Daldrup-Link
- Department of Radiology, Lucile Packard Children's Hospital, and Pediatric Molecular Imaging Program (@PedsMIPS) in the Molecular Imaging Program at Stanford (MIPS), Stanford University
- Department of Pediatrics, Stanford University
| |
Collapse
|
26
|
Joo I, Lee JM, Lee DH, Lee ES, Paeng JC, Lee SJ, Jang JY, Kim SW, Ryu JK, Lee KB. Preoperative Assessment of Pancreatic Cancer with FDG PET/MR Imaging versus FDG PET/CT Plus Contrast-enhanced Multidetector CT: A Prospective Preliminary Study. Radiology 2017; 282:149-159. [DOI: 10.1148/radiol.2016152798] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
27
|
Barajas RF, Krohn KA, Link JM, Hawkins RA, Clarke JL, Pampaloni MH, Cha S. Glioma FMISO PET/MR Imaging Concurrent with Antiangiogenic Therapy: Molecular Imaging as a Clinical Tool in the Burgeoning Era of Personalized Medicine. Biomedicines 2016; 4:biomedicines4040024. [PMID: 28536391 PMCID: PMC5344267 DOI: 10.3390/biomedicines4040024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/27/2016] [Accepted: 10/29/2016] [Indexed: 01/17/2023] Open
Abstract
The purpose of this article is to provide a focused overview of the current use of positron emission tomography (PET) molecular imaging in the burgeoning era of personalized medicine in the treatment of patients with glioma. Specifically, we demonstrate the utility of PET imaging as a tool for personalized diagnosis and therapy by highlighting a case series of four patients with recurrent high grade glioma who underwent 18F-fluoromisonidazole (FMISO) PET/MR (magnetic resonance) imaging through the course of antiangiogenic therapy. Three distinct features were observed from this small cohort of patients. First, the presence of pseudoprogression was retrospectively associated with the absence of hypoxia. Second, a subgroup of patients with recurrent high grade glioma undergoing bevacizumab therapy demonstrated disease progression characterized by an enlarging nonenhancing mass with newly developed reduced diffusion, lack of hypoxia, and preserved cerebral blood volume. Finally, a reduction in hypoxic volume was observed concurrent with therapy in all patients with recurrent tumor, and markedly so in two patients that developed a nonenhancing reduced diffusion mass. This case series demonstrates how medical imaging has the potential to influence personalized medicine in several key aspects, especially involving molecular PET imaging for personalized diagnosis, patient specific disease prognosis, and therapeutic monitoring.
Collapse
Affiliation(s)
- Ramon F Barajas
- Department of Radiology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.
- Advanced Imaging Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.
| | - Kenneth A Krohn
- Department of Radiology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.
- Radiochemistry Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.
| | - Jeanne M Link
- Department of Radiology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.
- Radiochemistry Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.
| | - Randall A Hawkins
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Avenue, M-391, San Francisco, CA 94143-0628, USA.
| | - Jennifer L Clarke
- Neurological Surgery, University of California, San Francisco, 505 Parnassus Ave., Room 779 M, San Francisco, CA 94143-0112, USA.
| | - Miguel H Pampaloni
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Avenue, M-391, San Francisco, CA 94143-0628, USA.
| | - Soonmee Cha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Avenue, M-391, San Francisco, CA 94143-0628, USA.
- Neurological Surgery, University of California, San Francisco, 505 Parnassus Ave., Room 779 M, San Francisco, CA 94143-0112, USA.
| |
Collapse
|
28
|
Ponisio MR, McConathy J, Laforest R, Khanna G. Evaluation of diagnostic performance of whole-body simultaneous PET/MRI in pediatric lymphoma. Pediatr Radiol 2016; 46:1258-68. [PMID: 27003132 PMCID: PMC5841580 DOI: 10.1007/s00247-016-3601-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/24/2016] [Accepted: 02/26/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Whole-body (18)F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) is the standard of care for lymphoma. Simultaneous PET/MRI (magnetic resonance imaging) is a promising new modality that combines the metabolic information of PET with superior soft-tissue resolution and functional imaging capabilities of MRI while decreasing radiation dose. There is limited information on the clinical performance of PET/MRI in the pediatric setting. OBJECTIVE This study evaluated the feasibility, dosimetry, and qualitative and quantitative diagnostic performance of simultaneous whole-body FDG-PET/MRI in children with lymphoma compared to PET/CT. MATERIALS AND METHODS Children with lymphoma undergoing standard of care FDG-PET/CT were prospectively recruited for PET/MRI performed immediately after the PET/CT. Images were evaluated for quality, lesion detection and anatomical localization of FDG uptake. Maximum and mean standardized uptake values (SUVmax/mean) of normal organs and SUVmax of the most FDG-avid lesions were measured for PET/MRI and PET/CT. Estimation of radiation exposure was calculated using specific age-related factors. RESULTS Nine PET/MRI scans were performed in eight patients (mean age: 15.3 years). The mean time interval between PET/CT and PET/MRI was 51 ± 10 min. Both the PET/CT and PET/MRI exams had good image quality and alignment with complete (9/9) concordance in response assessment. The SUVs from PET/MRI and PET/CT were highly correlated for normal organs (SUVmean r(2): 0.88, P<0.0001) and very highly for FDG-avid lesions (SUVmax r(2): 0.94, P=0.0002). PET/MRI demonstrated an average percent radiation exposure reduction of 39% ± 13% compared with PET/CT. CONCLUSION Simultaneous whole-body PET/MRI is clinically feasible in pediatric lymphoma. PET/MRI performance is comparable to PET/CT for lesion detection and SUV measurements. Replacement of PET/CT with PET/MRI can significantly decrease radiation dose from diagnostic imaging in children.
Collapse
Affiliation(s)
- Maria Rosana Ponisio
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd., St. Louis, MO, 63110, USA.
| | - Jonathan McConathy
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd., St. Louis, MO 63110, USA
| | - Richard Laforest
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd., St. Louis, MO 63110, USA
| | - Geetika Khanna
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd., St. Louis, MO 63110, USA
| |
Collapse
|
29
|
Atkinson W, Catana C, Abramson JS, Arabasz G, McDermott S, Catalano O, Muse V, Blake MA, Barnes J, Shelly M, Hochberg E, Rosen BR, Guimaraes AR. Hybrid FDG-PET/MR compared to FDG-PET/CT in adult lymphoma patients. Abdom Radiol (NY) 2016; 41:1338-48. [PMID: 27315095 DOI: 10.1007/s00261-016-0638-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE The goal of this study is to evaluate the diagnostic performance of simultaneous FDG-PET/MR including diffusion compared to FDG-PET/CT in patients with lymphoma. METHODS Eighteen patients with a confirmed diagnosis of non-Hodgkin's (NHL) or Hodgkin's lymphoma (HL) underwent an IRB-approved, single-injection/dual-imaging protocol consisting of a clinical FDG-PET/CT and subsequent FDG-PET/MR scan. PET images from both modalities were reconstructed iteratively. Attenuation correction was performed using low-dose CT data for PET/CT and Dixon-MR sequences for PET/MR. Diffusion-weighted imaging was performed. SUVmax was measured and compared between modalities and the apparent diffusion coefficient (ADC) using ROI analysis by an experienced radiologist using OsiriX. Strength of correlation between variables was measured using the Pearson correlation coefficient (r p). RESULTS Of the 18 patients included in this study, 5 had HL and 13 had NHL. The median age was 51 ± 14.8 years. Sixty-five FDG-avid lesions were identified. All FDG-avid lesions were visible with comparable contrast, and therefore initial and follow-up staging was identical between both examinations. SUVmax from FDG-PET/MR [(mean ± sem) (21.3 ± 2.07)] vs. FDG-PET/CT (mean 23.2 ± 2.8) demonstrated a strongly positive correlation [r s = 0.95 (0.94, 0.99); p < 0.0001]. There was no correlation found between ADCmin and SUVmax from FDG-PET/MR [r = 0.17(-0.07, 0.66); p = 0.09]. CONCLUSION FDG-PET/MR offers an equivalent whole-body staging examination as compared with PET/CT with an improved radiation safety profile in lymphoma patients. Correlation of ADC to SUVmax was weak, understating their lack of equivalence, but not undermining their potential synergy and differing importance.
Collapse
Affiliation(s)
- Wendy Atkinson
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Ciprian Catana
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Jeremy S Abramson
- Division of Hematology and Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Grae Arabasz
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Shanaugh McDermott
- Division of Abdominal Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Onofrio Catalano
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Victorine Muse
- Division of Thoracic Radiology, Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Michael A Blake
- Division of Abdominal Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jeffrey Barnes
- Division of Hematology and Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Martin Shelly
- Division of Abdominal Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Ephraim Hochberg
- Division of Hematology and Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Bruce R Rosen
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Alexander R Guimaraes
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA.
- Division of Abdominal Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Division of Body Imaging, Department of Diagnostic Radiology, Oregon Health Sciences University, 3181 SW Sam Jackson Park Rd., Mail Code L340, Portland, OR, 97239, USA.
| |
Collapse
|