1
|
Lennartz S, Zopfs D, Große Hokamp N. Dual-energy CT revisited: a focused review of clinical use cases. ROFO-FORTSCHR RONTG 2024; 196:794-806. [PMID: 38176436 DOI: 10.1055/a-2203-2945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Affiliation(s)
- Simon Lennartz
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - David Zopfs
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Nils Große Hokamp
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
2
|
Dizdar SK, Salepci E, Ağrıdağ B, Seyhun N, Gemalmaz A, Turgut S. Can Hounsfield unit density value accurately predict prelaryngeal invasion in laryngeal carcinoma cases. Auris Nasus Larynx 2024; 51:803-810. [PMID: 38964030 DOI: 10.1016/j.anl.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/15/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024]
Abstract
OBJECTIVE The Hounsfield unit density value (HUDV) is a relative quantitative measurement of radio density used by radiologists in the interpretation of computed tomography (CT) images. Our aim is to investigate the role of HUDV in evaluating pre-epiglottic space (PES) involvement of laryngeal carcinoma. METHODS Seventy-four patients treated for laryngeal carcinoma in our clinic between 2014 and 2019 were included in the study. The invasion status of PES was determined radiologically and pathologically. HUDV was measured with a circular selected region of interest, with a constant size of 10 mm2 for PES. The relationship between patological PES invasion, radiological PES invasion, and HUDV was evaluated. RESULTS Measuring HUDV to determine PES invasion (74.3 %) was significantly higher than conventional CT evaluation (59.5 %) (p = 0.001). The agreement coefficient (kappa value) of the conventional CT evaluation and the HUDV regarding PES involvement was 0.673, which was interpreted as 'good'. CONCLUSION HUDV could be used as an additional tool in diagnosing pre-epiglottic space invasion in laryngeal cancer.
Collapse
Affiliation(s)
- Senem Kurt Dizdar
- University of Health Science Hamidiye Sisli Etfal Education and Research Hospital, İstanbul, Turkey.
| | - Egehan Salepci
- University of Health Science Erzurum Education and Research Hospital, Erzurum, Turkey
| | - Burçin Ağrıdağ
- University of Health Science Hamidiye Sisli Etfal Education and Research Hospital, İstanbul, Turkey
| | - Nurullah Seyhun
- University of Health Science Hamidiye Sisli Etfal Education and Research Hospital, İstanbul, Turkey
| | - Ali Gemalmaz
- University of Health Science Hamidiye Sisli Etfal Education and Research Hospital, İstanbul, Turkey
| | - Suat Turgut
- University of Health Science Hamidiye Sisli Etfal Education and Research Hospital, İstanbul, Turkey
| |
Collapse
|
3
|
Coppola A, Tessitore L, Fontana F, Piacentino F, Recaldini C, Minenna M, Capogrosso P, Minici R, Laganà D, Ierardi AM, Carrafiello G, D’Angelo F, Carcano G, Cacioppa LM, Dehò F, Venturini M. Dual-Energy Computed Tomography in Urological Diseases: A Narrative Review. J Clin Med 2024; 13:4069. [PMID: 39064110 PMCID: PMC11277677 DOI: 10.3390/jcm13144069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Dual-Energy computed tomography (DECT) with its various advanced techniques, including Virtual Non-Contrast (VNC), effective atomic number (Z-eff) calculation, Z-maps, Iodine Density Index (IDI), and so on, holds great promise in the diagnosis and management of urogenital tumours. In this narrative review, we analyze the current status of knowledge of this technology to provide better lesion characterization, improve the staging accuracy, and give more precise treatment response assessments in relation to urological tumours.
Collapse
Affiliation(s)
- Andrea Coppola
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| | - Luigi Tessitore
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| | - Federico Fontana
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| | - Filippo Piacentino
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| | - Chiara Recaldini
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| | - Manuela Minenna
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| | - Paolo Capogrosso
- Urology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy
| | - Roberto Minici
- Radiology Unit, Dulbecco University Hospital, 88100 Catanzaro, Italy
| | - Domenico Laganà
- Radiology Unit, Dulbecco University Hospital, 88100 Catanzaro, Italy
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Anna Maria Ierardi
- Radiology Unit, IRCCS Ca Granda Ospedale Maggiore Policlinico, Via Sforza 35, 20122 Milan, Italy
| | - Gianpaolo Carrafiello
- Radiology Unit, IRCCS Ca Granda Ospedale Maggiore Policlinico, Via Sforza 35, 20122 Milan, Italy
| | - Fabio D’Angelo
- Department of Medicine and Surgery, Insubria University, 21100 Varese, Italy
- Orthopedic Surgery Unit, ASST Sette Laghi, 21100 Varese, Italy
| | - Giulio Carcano
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
- Emergency and Transplant Surgery Department, ASST Sette Laghi, 21100 Varese, Italy
| | - Laura Maria Cacioppa
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60126 Ancona, Italy
- Division of Interventional Radiology, Department of Radiological Sciences, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, 60126 Ancona, Italy
| | - Federico Dehò
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
- Urology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy
| | - Massimo Venturini
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| |
Collapse
|
4
|
Bellin MF, Valente C, Bekdache O, Maxwell F, Balasa C, Savignac A, Meyrignac O. Update on Renal Cell Carcinoma Diagnosis with Novel Imaging Approaches. Cancers (Basel) 2024; 16:1926. [PMID: 38792005 PMCID: PMC11120239 DOI: 10.3390/cancers16101926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
This review highlights recent advances in renal cell carcinoma (RCC) imaging. It begins with dual-energy computed tomography (DECT), which has demonstrated a high diagnostic accuracy in the evaluation of renal masses. Several studies have suggested the potential benefits of iodine quantification, particularly for distinguishing low-attenuation, true enhancing solid masses from hyperdense cysts. By determining whether or not a renal mass is present, DECT could avoid the need for additional imaging studies, thereby reducing healthcare costs. DECT can also provide virtual unenhanced images, helping to reduce radiation exposure. The review then provides an update focusing on the advantages of multiparametric magnetic resonance (MR) imaging performance in the histological subtyping of RCC and in the differentiation of benign from malignant renal masses. A proposed standardized stepwise reading of images helps to identify clear cell RCC and papillary RCC with a high accuracy. Contrast-enhanced ultrasound may represent a promising diagnostic tool for the characterization of solid and cystic renal masses. Several combined pharmaceutical imaging strategies using both sestamibi and PSMA offer new opportunities in the diagnosis and staging of RCC, but their role in risk stratification needs to be evaluated. Although radiomics and tumor texture analysis are hampered by poor reproducibility and need standardization, they show promise in identifying new biomarkers for predicting tumor histology, clinical outcomes, overall survival, and the response to therapy. They have a wide range of potential applications but are still in the research phase. Artificial intelligence (AI) has shown encouraging results in tumor classification, grade, and prognosis. It is expected to play an important role in assessing the treatment response and advancing personalized medicine. The review then focuses on recently updated algorithms and guidelines. The Bosniak classification version 2019 incorporates MRI, precisely defines previously vague imaging terms, and allows a greater proportion of masses to be placed in lower-risk classes. Recent studies have reported an improved specificity of the higher-risk categories and better inter-reader agreement. The clear cell likelihood score, which adds standardization to the characterization of solid renal masses on MRI, has been validated in recent studies with high interobserver agreement. Finally, the review discusses the key imaging implications of the 2017 AUA guidelines for renal masses and localized renal cancer.
Collapse
Affiliation(s)
- Marie-France Bellin
- Service de Radiologie Diagnostique et Interventionnelle, Hôpital de Bicêtre AP-HP, 78 Rue du Général Leclerc, 94275 Le Kremlin-Bicêtre, France; (C.V.); (O.B.); (F.M.); (A.S.); (O.M.)
- Faculté de Médecine, University of Paris-Saclay, 63 Rue Gabriel Péri, 94276 Le Kremlin-Bicêtre, France
- BioMaps, UMR1281 INSERM, CEA, CNRS, University of Paris-Saclay, 94805 Villejuif, France
| | - Catarina Valente
- Service de Radiologie Diagnostique et Interventionnelle, Hôpital de Bicêtre AP-HP, 78 Rue du Général Leclerc, 94275 Le Kremlin-Bicêtre, France; (C.V.); (O.B.); (F.M.); (A.S.); (O.M.)
| | - Omar Bekdache
- Service de Radiologie Diagnostique et Interventionnelle, Hôpital de Bicêtre AP-HP, 78 Rue du Général Leclerc, 94275 Le Kremlin-Bicêtre, France; (C.V.); (O.B.); (F.M.); (A.S.); (O.M.)
| | - Florian Maxwell
- Service de Radiologie Diagnostique et Interventionnelle, Hôpital de Bicêtre AP-HP, 78 Rue du Général Leclerc, 94275 Le Kremlin-Bicêtre, France; (C.V.); (O.B.); (F.M.); (A.S.); (O.M.)
| | - Cristina Balasa
- Service de Radiologie Diagnostique et Interventionnelle, Hôpital de Bicêtre AP-HP, 78 Rue du Général Leclerc, 94275 Le Kremlin-Bicêtre, France; (C.V.); (O.B.); (F.M.); (A.S.); (O.M.)
| | - Alexia Savignac
- Service de Radiologie Diagnostique et Interventionnelle, Hôpital de Bicêtre AP-HP, 78 Rue du Général Leclerc, 94275 Le Kremlin-Bicêtre, France; (C.V.); (O.B.); (F.M.); (A.S.); (O.M.)
| | - Olivier Meyrignac
- Service de Radiologie Diagnostique et Interventionnelle, Hôpital de Bicêtre AP-HP, 78 Rue du Général Leclerc, 94275 Le Kremlin-Bicêtre, France; (C.V.); (O.B.); (F.M.); (A.S.); (O.M.)
- Faculté de Médecine, University of Paris-Saclay, 63 Rue Gabriel Péri, 94276 Le Kremlin-Bicêtre, France
- BioMaps, UMR1281 INSERM, CEA, CNRS, University of Paris-Saclay, 94805 Villejuif, France
| |
Collapse
|
5
|
Steiner J, Richter H, Kaufmann R, Ohlerth S. Characterization of Normal Bone in the Equine Distal Limb with Effective Atomic Number and Electron Density Determined with Single-Source Dual Energy and Detector-Based Spectral Computed Tomography. Animals (Basel) 2024; 14:1064. [PMID: 38612304 PMCID: PMC11010807 DOI: 10.3390/ani14071064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/23/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Single-source dual energy (SSDECT) and detector-based spectral computed tomography (DBSCT) are emerging technologies allowing the interrogation of materials that have different attenuation properties at different energies. Both technologies enable the calculation of effective atomic number (EAN), an index to determine tissue composition, and electron density (ED), which is assumed to be associated with cellularity in tissues. In the present prospective observational study, EAN and ED values were determined for 16 zones in normal subchondral and trabecular bone of 37 equine cadaver limbs. Using both technologies, the following findings were obtained: 1. palmar/plantar EAN zone values in the fetlock increased significantly with increasing age of the horse; 2. all EAN and ED values were significantly lower in the trabecular bone than in the subchondral bone of all phalanges; 3. in the distal phalanx and navicular bone, most EAN and ED values were significantly lower compared to the proximal and middle phalanx; and 4. some EAN and ED values were significantly different between front and hind limbs. Several EAN and ED values significantly differed between SSDECT and DBSCT. The reported EAN and ED values in the subchondral and trabecular bone of the equine distal limb may serve as preliminary reference values and aid future evaluation and classification of diseases.
Collapse
Affiliation(s)
- Janine Steiner
- Clinic of Diagnostic Imaging, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; (J.S.); (H.R.)
| | - Henning Richter
- Clinic of Diagnostic Imaging, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; (J.S.); (H.R.)
| | | | - Stefanie Ohlerth
- Clinic of Diagnostic Imaging, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; (J.S.); (H.R.)
| |
Collapse
|
6
|
Reizine E, Blain M, Pescatori L, Longère B, Ingels A, Boughamni W, Bouanane M, Mulé S, Luciani A. Applicability of Bosniak 2019 for renal mass classification on portal venous phase at the era of spectral CT imaging using rapid kV-switching dual-energy CT. Eur Radiol 2024; 34:1816-1824. [PMID: 37667141 DOI: 10.1007/s00330-023-10145-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 05/30/2023] [Accepted: 07/10/2023] [Indexed: 09/06/2023]
Abstract
OBJECTIVES To evaluate the applicability of Bosniak 2019 criteria on a monophasic portal venous phase using rapid kilovoltage-switching DECT (rsDECT). MATERIALS AND METHODS One hundred twenty-seven renal masses assessed on rsDECT were included, classified according to Bosniak 2019 classification using MRI as the reference standard. Using the portal venous phase, virtual monochromatic images at 40, 50, and 77 keV; virtual unenhanced (VUE) images; and iodine map images were reconstructed. Changes in attenuation values between VUE and 40 keV, 50 keV, and 77 keV measurements were computed and respectively defined as ∆HU40keV, ∆HU50keV, and ∆HU77keV. The values of ∆HU40keV, ∆HU50keV, and ∆HU77keV thresholds providing the optimal diagnostic performance for the detection of internal enhancement were determined using Youden index. RESULTS Population study included 25 solid renal masses (25/127, 20%) and 102 cystic renal masses (102/127, 80%). To differentiate solid to cystic masses, the specificity of the predefined 20 HU threshold reached 88% (95%CI: 82, 93) using ∆HU77keV and 21% (95%CI: 15, 28) using ∆HU40keV. The estimated optimal threshold of attenuation change was 19 HU on ∆HU77keV, 69 HU on ∆HU50eV, and 111 HU on ∆HU40eV. The rsDECT classification was highly similar to that of MRI for solid renal masses (23/25, 92%) and for Bosniak 1 masses (62/66, 94%). However, 2 hyperattenuating Bosniak 2 renal masses (2/26, 8%) were classified as solid renal masses on rsDECT. CONCLUSION DECT is a promising tool for Bosniak classification particularly to differentiate solid from Bosniak I-II cyst. However, known enhancement thresholds must be adapted especially to the energy level of virtual monochromatic reconstructions. CLINICAL STATEMENT DECT is a promising tool for Bosniak classification; however, known enhancement thresholds must be adapted according to the types of reconstructions used and especially to the energy level of virtual monochromatic reconstructions. KEY POINTS • To differentiate solid to cystic renal masses, predefined 20 HU threshold had a poor specificity using 40 keV virtual monochromatic images. • Most of Bosniak 1 masses according to MRI were also classified as Bosniak 1 on rapid kV-switching dual-energy CT (rsDECT). • Bosniak 2 hyperattenuating renal cysts mimicked solid lesion on rsDECT.
Collapse
Affiliation(s)
- Edouard Reizine
- Department of Radiology, APHP, HU Henri Mondor, Creteil, Val-de-Marne, France.
- Faculté de Médecine, Université Paris Est Creteil, 94010, Creteil, France.
- INSERM Unit U 955, Equipe 18, 94010, Creteil, France.
- Imagerie Médicale, CHU Henri Mondor, 51 Avenue du Marechal de Lattre de Tassigny, 94010, Créteil, France.
| | - Maxime Blain
- Department of Radiology, APHP, HU Henri Mondor, Creteil, Val-de-Marne, France
- Faculté de Médecine, Université Paris Est Creteil, 94010, Creteil, France
| | - Lorenzo Pescatori
- Department of Radiology, APHP, HU Henri Mondor, Creteil, Val-de-Marne, France
| | - Benjamin Longère
- Department of Radiology, APHP, HU Henri Mondor, Creteil, Val-de-Marne, France
- University Lille, U1011 - European Genomic Institute for Diabetes, 59000, Lille, France
- INSERM U1011, 59000, Lille, France
- Department of Cardiovascular Radiology, CHU Lille, 59000, Lille, France
- Institut Pasteur Lille, 59000, Lille, France
| | | | - Wafa Boughamni
- Department of Radiology, APHP, HU Henri Mondor, Creteil, Val-de-Marne, France
| | - Mohamed Bouanane
- Department of Radiology, APHP, HU Henri Mondor, Creteil, Val-de-Marne, France
| | - Sébastien Mulé
- Department of Radiology, APHP, HU Henri Mondor, Creteil, Val-de-Marne, France
- Faculté de Médecine, Université Paris Est Creteil, 94010, Creteil, France
- INSERM Unit U 955, Equipe 18, 94010, Creteil, France
| | - Alain Luciani
- Department of Radiology, APHP, HU Henri Mondor, Creteil, Val-de-Marne, France
- Faculté de Médecine, Université Paris Est Creteil, 94010, Creteil, France
- INSERM Unit U 955, Equipe 18, 94010, Creteil, France
| |
Collapse
|
7
|
Chakravarti S, Uyeda JW. Expanding Role of Dual-Energy CT for Genitourinary Tract Assessment in the Emergency Department, From the AJR Special Series on Emergency Radiology. AJR Am J Roentgenol 2023; 221:720-730. [PMID: 37073900 DOI: 10.2214/ajr.22.27864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Among explored applications of dual-energy CT (DECT) in the abdomen and pelvis, the genitourinary (GU) tract represents an area where accumulated evidence has established the role of DECT to provide useful information that may change management. This review discusses established applications of DECT for GU tract assessment in the emergency department (ED) setting, including characterization of renal stones, evaluation of traumatic injuries and hemorrhage, and characterization of incidental renal and adrenal findings. Use of DECT for such applications can reduce the need for additional multiphase CT or MRI examinations and reduce follow-up imaging recommendations. Emerging applications are also highlighted, including use of low-energy virtual monoenergetic images (VMIs) to improve image quality and potentially reduce contrast media doses and use of high-energy VMIs to mitigate renal mass pseudoenhancement. Finally, implementation of DECT into busy ED radiology practices is presented, weighing the trade-off of additional image acquisition, processing time, and interpretation time against potential additional useful clinical information. Automatic generation of DECT-derived images with direct PACS transfer can facilitate radiologists' adoption of DECT in busy ED environments and minimize impact on interpretation times. Using the described approaches, radiologists can apply DECT technology to improve the quality and efficiency of care in the ED.
Collapse
Affiliation(s)
| | - Jennifer W Uyeda
- Department of Emergency Radiology, Brigham and Women's Hospital/Harvard Medical School, 75 Francis St, Boston, MA 02115
| |
Collapse
|
8
|
Schawkat K, Krajewski KM. Insights into Renal Cell Carcinoma with Novel Imaging Approaches. Hematol Oncol Clin North Am 2023; 37:863-875. [PMID: 37302934 DOI: 10.1016/j.hoc.2023.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This article presents a comprehensive overview of new imaging approaches and techniques for improving the assessment of renal masses and renal cell carcinoma. The Bosniak classification, version 2019, as well as the clear cell likelihood score, version 2.0, will be discussed as new imaging algorithms using established techniques. Additionally, newer modalities, such as contrast-enhanced ultrasound, dual energy computed tomography, and molecular imaging, will be discussed in conjunction with emerging radiomics and artificial intelligence techniques. Current diagnostic algorithms combined with newer approaches may be an effective way to overcome existing limitations in renal mass and RCC characterization.
Collapse
Affiliation(s)
- Khoschy Schawkat
- Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA; Harvard Medical School
| | - Katherine M Krajewski
- Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA; Harvard Medical School; Dana-Farber Cancer Institute, 440 Brookline Avenue, Building MA Floor L1 Room 04AC, Boston, MA 02215, USA.
| |
Collapse
|
9
|
Towfighi S, Bajaj S, Aggarwal T, Nguan C, Pang E. An evaluation of the contribution of routine ultrasound when performed with multiphase CT in renal donor imaging assessment. Eur Radiol 2023; 33:6592-6598. [PMID: 37017701 DOI: 10.1007/s00330-023-09578-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/14/2023] [Accepted: 03/19/2023] [Indexed: 04/06/2023]
Abstract
OBJECTIVES We sought to examine the contribution of routine ultrasound when performed with computed tomography in identifying exclusion criteria in potential living kidney donors. METHODS We performed a 10-year retrospective cohort study including all cases of potential renal donors at our center. For each case, the donor workup ultrasound (US) and multiphase computed tomography (MPCT) original reports and imaging were reviewed by a fellowship-trained abdominal radiologist in consultation with a transplant urologist and placed into one of 3 groups: (1) no significant US contribution, (2) US was useful to characterize an incidental finding (either US exclusive or US aided in CT interpretation) but did not impact donor eligibility, and (3) an US exclusive finding contributed to donor exclusion. RESULTS A total of 432 potential live renal donors were evaluated (mean age 41, 263 women). In total, 340 (78.7%, group 1) cases had no significant US contribution. In 90 cases (20.8%, group 2), US helped to characterize one or more incidental findings but did not contribute to donor exclusion. In 1 (0.2%, group 3) case, an US exclusive finding (suspected medullary nephrocalcinosis) contributed towards donor exclusion. CONCLUSION US provided limited contribution to renal donor eligibility decisions when performed routinely with MPCT. CLINICAL RELEVANCE Routine ultrasound could potentially be omitted in the live renal donor workup, with alternative strategies including a selective approach to incorporating ultrasound and an expanded role of dual-energy CT. KEY POINTS • Ultrasound is performed routinely with CT for renal donor assessment in some jurisdictions; however, this practice has come into question particularly with advances in dual-energy CT. • Our study found that routine use of ultrasound provided limited contribution, primarily assisting CT in characterization of benign findings with only 1/432 (0.2%) potential donors in a 10-year period excluded based in part on an ultrasound exclusive finding. • The role of ultrasound can be narrowed to a targeted approach for certain at-risk patients, and can be further reduced if dual-energy CT is utilized.
Collapse
Affiliation(s)
- Sohrab Towfighi
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Sargun Bajaj
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Trisha Aggarwal
- Faculty of Science, University of British Columbia, Vancouver, BC, Canada
| | - Christopher Nguan
- Department of Urology, Vancouver General Hospital, Vancouver, BC, Canada
| | - Emily Pang
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
10
|
Magnetta MJ, Schieda N, Murphy P, Miller FH. Accumulation of iodine or other similar K-edge equivalent element within renal cysts mimics enhancing masses at single-phase dual-energy CT. Br J Radiol 2023; 96:20221079. [PMID: 36802978 PMCID: PMC10078865 DOI: 10.1259/bjr.20221079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
OBJECTIVE To describe instances of iodine, or other element with similar K-edge to iodine, accumulating in benign renal cysts and simulating solid renal masses (SRM) at single-phase contrast-enhanced (CE) dual-energy CT (DECT). METHODS During the course of routine clinical practice, instances of benign renal cysts (reference standard true non-contrast enhanced CT [NCCT] homogeneous attenuation <10 HU and not enhancing, or MRI) simulating SRM at follow-up single-phase CE-DECT due to iodine (or other element) accumulation were documented in two institutions over a 3-month observation period in 2021. RESULTS Five Bosniak one renal cysts (12 ± 7 mm) in five patients changed nature on follow-up imaging simulating SRM at CE-DECT. At time of DECT, cyst attenuation on true NCCT (mean 91 ± 25 HU [Range 56-120]) was significantly higher compared to virtual NCCT (mean 11 ± 22 HU [-23-30], p = 0.003) and all five cysts showed internal iodine content on DECT iodine maps with concentration >1.9 mg ml-1 (mean 8.2 ± 7.6 mg ml-1 [2.8-20.9]). CONCLUSION The accumulation of iodine, or other element with similar K-edge to iodine, in benign renal cysts could simulate enhancing renal masses at single-phase contrast-enhanced DECT.
Collapse
Affiliation(s)
- Michael J Magnetta
- Department of Radiology, Northwestern Memorial Hospital, Northwestern University, Chicago, IL, USA
| | - Nicola Schieda
- Department of Medical Imaging, The Ottawa Hospital, The University of Ottawa, 1053 Carling Ave, Ottawa, Canada
| | - Patrick Murphy
- Department of Radiology, Northwestern Memorial Hospital, Northwestern University, Chicago, IL, USA
| | - Frank H Miller
- Department of Radiology, Northwestern Memorial Hospital, Northwestern University, Chicago, IL, USA
| |
Collapse
|
11
|
Li Q, Hou W, Li L, Xu J, Ren Y, Zou K, Tian R, Sun X. Measuring quality of reporting in systematic reviews of diagnostic test accuracy studies in medical imaging: comparison of PRISMA-DTA and PRISMA. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2023; 61:257-266. [PMID: 36633905 DOI: 10.1002/uog.26043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/24/2022] [Accepted: 07/18/2022] [Indexed: 05/27/2023]
Abstract
OBJECTIVES To compare the reporting quality measured by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses of Diagnostic Test Accuracy studies (PRISMA-DTA) vs the original PRISMA checklist for systematic reviews of diagnostic test accuracy studies in imaging and survey the use of PRISMA-DTA by researchers and endorsement by journals. METHODS Systematic reviews of DTA studies published in 2020 and 2021 in Quartile 1 and Quartile 3 medical imaging journals (defined by Journal Citation Reports) were identified through PubMed. The reporting of each systematic review was assessed using PRISMA-DTA, PRISMA-2009 and PRISMA-2020. The item scores and overall score were compared among the three checklists. We also examined checklist adoption by the included systematic reviews and surveyed checklist endorsement from author instructions of included journals. RESULTS A total of 173 systematic reviews from 66 journals were included. The use of PRISMA-DTA, compared with PRISMA-2009 and PRISMA-2020, identified more issues in the reporting of title (proportion of systematic reviews with proper reporting, 27.2% vs 98.8% vs 98.8%), abstract (39.3% vs 97.1% vs 64.7%), eligibility criteria (67.6% vs 94.2% vs 94.2%), search (28.9% vs 72.3% vs 28.9%), definitions for data extraction (14.5% vs 91.9% vs 91.9%), diagnostic accuracy measures (38.2% vs 93.6% vs 93.6%), synthesis of results (28.9% vs 89.6% vs 73.4%) and results of individual studies (40.5% vs 80.3% vs 80.3%). The overall median reporting score measured by PRISMA-DTA (72.0% (interquartile range (IQR), 66.7-77.8%)) was lower than that measured by PRISMA-2009 (88.9% (IQR, 84.0-92.6%)) and similar to that measured by PRISMA-2020 (74.1% (IQR, 66.7-77.8%)). Additionally, PRISMA-DTA was used by only 43 (24.9%) systematic reviews and endorsed by two (3.0%) journals. These trends remained consistent for reviews published in journals with diverse scientific impact. CONCLUSIONS The use of PRISMA-DTA may identify more reporting inadequacies compared with the original PRISMA checklists when assessing diagnostic test accuracy systematic reviews, especially in critical sections such as title, abstract and methods. However, this tool is not commonly used by researchers and is inadequately endorsed by imaging journals. Our findings suggest a strong need to use PRISMA-DTA for reporting of diagnostic test accuracy systematic reviews by authors and its endorsement by journals. © 2022 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- Q Li
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
- Chinese Evidence-Based Medicine Center, Cochrane China Center and MAGIC China Center, West China Hospital, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Real World Data Research and Evaluation in Hainan, Chengdu, China
- Sichuan Center of Technology Innovation for Real World Data, Chengdu, Sichuan, China
| | - W Hou
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - L Li
- Chinese Evidence-Based Medicine Center, Cochrane China Center and MAGIC China Center, West China Hospital, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Real World Data Research and Evaluation in Hainan, Chengdu, China
- Sichuan Center of Technology Innovation for Real World Data, Chengdu, Sichuan, China
| | - J Xu
- Chinese Evidence-Based Medicine Center, Cochrane China Center and MAGIC China Center, West China Hospital, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Real World Data Research and Evaluation in Hainan, Chengdu, China
- Sichuan Center of Technology Innovation for Real World Data, Chengdu, Sichuan, China
| | - Y Ren
- Chinese Evidence-Based Medicine Center, Cochrane China Center and MAGIC China Center, West China Hospital, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Real World Data Research and Evaluation in Hainan, Chengdu, China
- Sichuan Center of Technology Innovation for Real World Data, Chengdu, Sichuan, China
| | - K Zou
- Chinese Evidence-Based Medicine Center, Cochrane China Center and MAGIC China Center, West China Hospital, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Real World Data Research and Evaluation in Hainan, Chengdu, China
- Sichuan Center of Technology Innovation for Real World Data, Chengdu, Sichuan, China
| | - R Tian
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - X Sun
- Chinese Evidence-Based Medicine Center, Cochrane China Center and MAGIC China Center, West China Hospital, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Real World Data Research and Evaluation in Hainan, Chengdu, China
- Sichuan Center of Technology Innovation for Real World Data, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Multi-Energy CT Applications. Radiol Clin North Am 2023; 61:1-21. [DOI: 10.1016/j.rcl.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Aggarwal A, Das CJ, Sharma S. Recent advances in imaging techniques of renal masses. World J Radiol 2022; 14:137-150. [PMID: 35978979 PMCID: PMC9258310 DOI: 10.4329/wjr.v14.i6.137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/04/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
Multiphasic multidetector computed tomography (CT) forms the mainstay for the characterization of renal masses whereas magnetic resonance imaging (MRI) acts as a problem-solving tool in some cases. However, a few of the renal masses remain indeterminate even after evaluation by conventional imaging methods. To overcome the deficiency in current imaging techniques, advanced imaging methods have been devised and are being tested. This review will cover the role of contrast-enhanced ultrasonography, shear wave elastography, dual-energy CT, perfusion CT, MR perfusion, diffusion-weighted MRI, blood oxygen level-dependent MRI, MR spectroscopy, positron emission tomography (PET)/prostate-specific membrane antigen-PET in the characterization of renal masses.
Collapse
Affiliation(s)
- Ankita Aggarwal
- Department of Radiology, Vardhman Mahavir Medical College& Safdarjung Hospital, Delhi 110029, India
| | - Chandan J Das
- Department of Radiodiagnosis and Interventional Radiology, All India Institute of Medical Sciences, Delhi 110029, India
| | - Sanjay Sharma
- Department of Radiology (RPC), All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
14
|
Bosniak Classification Version 2019: A CT-Based Update for Radiologists. CURRENT RADIOLOGY REPORTS 2022. [DOI: 10.1007/s40134-022-00397-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Kazi S, Frank RA, Salameh J, Fabiano N, Absi M, Pozdnyakov A, Islam N, Korevaar DA, Cohen JF, Bossuyt PM, Leeflang MM, Cobey KD, Moher D, Schweitzer M, Menu Y, Patlas M, McInnes MD. Evaluating the Impact of Peer Review on the Completeness of Reporting in Imaging Diagnostic Test Accuracy Research. J Magn Reson Imaging 2022; 56:680-690. [DOI: 10.1002/jmri.28116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Sakib Kazi
- Faculty of Medicine University of Ottawa Ottawa Ontario Canada
| | - Robert A. Frank
- Department of Radiology, Faculty of Medicine University of Ottawa Ottawa Ontario Canada
| | - Jean‐Paul Salameh
- Faculty of Health Sciences Queen's University Kingston Ontario Canada
- Clinical Epidemiology Program Ottawa Hospital Research Institute Ottawa Ontario Canada
| | | | - Marissa Absi
- Faculty of Medicine University of Ottawa Ottawa Ontario Canada
| | - Alex Pozdnyakov
- Michael G. DeGroote School of Medicine McMaster University Hamilton Ontario Canada
| | - Nayaar Islam
- Clinical Epidemiology Program Ottawa Hospital Research Institute Ottawa Ontario Canada
- School of Epidemiology and Public Health University of Ottawa Ottawa Ontario Canada
| | - Daniël A. Korevaar
- Department of Respiratory Medicine Amsterdam University Medical Centers, University of Amsterdam Amsterdam Netherlands
| | - Jérémie F. Cohen
- Department of Pediatrics Inserm UMR 1153 (Centre of Research in Epidemiology and Statistics), Necker–Enfants Malades Hospital, Assistance Publique – Hôpitaux de Paris Université de Paris Paris France
| | - Patrick M. Bossuyt
- Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC University of Amsterdam Amsterdam Netherlands
| | - Mariska M.G. Leeflang
- Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC University of Amsterdam Amsterdam Netherlands
| | - Kelly D. Cobey
- The University of Ottawa Heart Institute Ottawa Ontario Canada
| | - David Moher
- Centre for Journalology, Clinical Epidemiology Program Ottawa Hospital Research Institute, University of Ottawa Ottawa Ontario Canada
| | - Mark Schweitzer
- Department of Radiology Wayne State University School of Medicine Detroit Michigan USA
| | - Yves Menu
- Department of Radiology Sorbonne Université‐APHP Paris France
| | - Michael Patlas
- Department of Radiology McMaster University Hamilton Ontario Canada
| | - Matthew D.F. McInnes
- Clinical Epidemiology Program Ottawa Hospital Research Institute Ottawa Ontario Canada
- Department of Radiology University of Ottawa Ottawa Ontario Canada
| |
Collapse
|
16
|
Rahmanuddin S, Korn R, Cridebring D, Borazanci E, Brase J, Boswell W, Jamil A, Cai W, Sabir A, Motarjem P, Koay E, Mitra A, Goel A, Ho J, Chung V, Von Hoff DD. Role of 3D Volumetric and Perfusion Imaging for Detecting Early Changes in Pancreatic Adenocarcinoma. Front Oncol 2021; 11:678617. [PMID: 34568010 PMCID: PMC8456995 DOI: 10.3389/fonc.2021.678617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/13/2021] [Indexed: 12/30/2022] Open
Abstract
Purpose There is a major shortage of reliable early detection methods for pancreatic cancer in high-risk groups. The focus of this preliminary study was to use Time Intensity-Density Curve (TIDC) and Marley Equation analyses, in conjunction with 3D volumetric and perfusion imaging to demonstrate their potential as imaging biomarkers to assist in the early detection of Pancreatic Ductal Adenocarcinoma (PDAC). Experimental Designs A quantitative retrospective and prospective study was done by analyzing multi-phase Computed Tomography (CT) images of 28 patients undergoing treatment at different stages of pancreatic adenocarcinoma using advanced 3D imaging software to identify the perfusion and radio density of tumors. Results TIDC and the Marley Equation proved useful in quantifying tumor aggressiveness. Perfusion delays in the venous phase can be linked to Vascular Endothelial Growth Factor (VEGF)-related activity which represents the active part of the tumor. 3D volume analysis of the multiphase CT scan of the patient showed clear changes in arterial and venous perfusion indicating the aggressive state of the tumor. Conclusion TIDC and 3D volumetric analysis can play a significant role in defining the response of the tumor to treatment and identifying early-stage aggressiveness.
Collapse
Affiliation(s)
- Syed Rahmanuddin
- National Medical Center & Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Ronald Korn
- Virginia G Piper Cancer Center, Honor Health, Scottsdale, AZ, United States
| | - Derek Cridebring
- Molecular Medicine Division, Translational Genomics Research Institute (TGEN), Phoenix, AZ, United States
| | - Erkut Borazanci
- Virginia G Piper Cancer Center, Honor Health, Scottsdale, AZ, United States
| | - Jordyn Brase
- National Medical Center & Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - William Boswell
- National Medical Center & Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Asma Jamil
- National Medical Center & Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Wenli Cai
- Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
| | - Aqsa Sabir
- National Medical Center & Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Pejman Motarjem
- National Medical Center & Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Eugene Koay
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anirban Mitra
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ajay Goel
- Molecular Diagnostic and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Monrovia, CA, United States
| | - Joyce Ho
- Molecular Diagnostic and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Monrovia, CA, United States
| | - Vincent Chung
- Molecular Diagnostic and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Monrovia, CA, United States
| | - Daniel D Von Hoff
- National Medical Center & Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States.,Virginia G Piper Cancer Center, Honor Health, Scottsdale, AZ, United States.,Molecular Medicine Division, Translational Genomics Research Institute (TGEN), Phoenix, AZ, United States
| |
Collapse
|
17
|
Robustness of dual-energy CT-derived radiomic features across three different scanner types. Eur Radiol 2021; 32:1959-1970. [PMID: 34542695 DOI: 10.1007/s00330-021-08249-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/13/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To investigate the robustness of radiomic features between three dual-energy CT (DECT) systems. METHODS An anthropomorphic body phantom was scanned on three different DECT scanners, a dual-source (dsDECT), a rapid kV-switching (rsDECT), and a dual-layer detector DECT (dlDECT). Twenty-four patients who underwent abdominal DECT examinations on each of the scanner types during clinical follow-up were retrospectively included (n = 72 examinations). Radiomic features were extracted after standardized image processing, following ROI placement in phantom tissues and healthy appearing hepatic, splenic and muscular tissue of patients using virtual monoenergetic images at 65 keV (VMI65keV) and virtual unenhanced images (VUE). In total, 774 radiomic features were extracted including 86 original features and 8 wavelet transformations hereof. Concordance correlation coefficients (CCC) and analysis of variances (ANOVA) were calculated to determine inter-scanner robustness of radiomic features with a CCC of ≥ 0.9 deeming a feature robust. RESULTS None of the phantom-derived features attained the threshold for high feature robustness for any inter-scanner comparison. The proportion of robust features obtained from patients scanned on all three scanners was low both in VMI65keV (dsDECT vs. rsDECT:16.1% (125/774), dlDECT vs. rsDECT:2.5% (19/774), dsDECT vs. dlDECT:2.6% (20/774)) and VUE (dsDECT vs. rsDECT:11.1% (86/774), dlDECT vs. rsDECT:2.8% (22/774), dsDECT vs. dlDECT:2.7% (21/774)). The proportion of features without significant differences as per ANOVA was higher both in patients (51.4-71.1%) and in the phantom (60.6-73.4%). CONCLUSIONS The robustness of radiomic features across different DECT scanners in patients was low and the few robust patient-derived features were not reflected in the phantom experiment. Future efforts should aim to improve the cross-platform generalizability of DECT-derived radiomics. KEY POINTS • Inter-scanner robustness of dual-energy CT-derived radiomic features was on a low level in patients who underwent clinical examinations on three DECT platforms. • The few robust patient-derived features were not confirmed in our phantom experiment. • Limited inter-scanner robustness of dual-energy CT derived radiomic features may impact the generalizability of models built with features from one particular dual-energy CT scanner type.
Collapse
|
18
|
Abou Elkassem AM, Lo SS, Gunn AJ, Shuch BM, Dewitt-Foy ME, Abouassaly R, Vaidya SS, Clark JI, Louie AV, Siva S, Grosu AL, Smith AD. Role of Imaging in Renal Cell Carcinoma: A Multidisciplinary Perspective. Radiographics 2021; 41:1387-1407. [PMID: 34270355 DOI: 10.1148/rg.2021200202] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With the expansion in cross-sectional imaging over the past few decades, there has been an increase in the number of incidentally detected renal masses and an increase in the incidence of renal cell carcinomas (RCCs). The complete characterization of an indeterminate renal mass on CT or MR images is challenging, and the authors provide a critical review of the best imaging methods and essential, important, and optional reporting elements used to describe the indeterminate renal mass. While surgical staging remains the standard of care for RCC, the role of renal mass CT or MRI in staging RCC is reviewed, specifically with reference to areas that may be overlooked at imaging such as detection of invasion through the renal capsule or perirenal (Gerota) fascia. Treatment options for localized RCC are expanding, and a multidisciplinary group of experts presents an overview of the role of advanced medical imaging in surgery, percutaneous ablation, transarterial embolization, active surveillance, and stereotactic body radiation therapy. Finally, the arsenal of treatments for advanced renal cancer continues to grow to improve response to therapy while limiting treatment side effects. Imaging findings are important in deciding the best treatment options and to monitor response to therapy. However, evaluating response has increased in complexity. The unique imaging findings associated with antiangiogenic targeted therapy and immunotherapy are discussed. An invited commentary by Remer is available online. Online supplemental material is available for this article. ©RSNA, 2021.
Collapse
Affiliation(s)
- Asser M Abou Elkassem
- From the Department of Radiology, University of Alabama at Birmingham, 619 19th St S, JTN 452, Birmingham, AL 35249-6830 (A.M.A.E., A.J.G., A.D.S.); Department of Radiation Oncology (S.S.L.) and Department of Radiology (S.S.V.), University of Washington School of Medicine, Seattle, Wash; Department of Urology, UCLA Medical Center, Santa Monica, Calif (B.M.S.); Department of Urology, Cleveland Clinic Foundation, Cleveland, Ohio (M.E.D.F., R.A.); Division of Hematology/Oncology, Department of Internal Medicine, Loyola University Medical Center, Maywood, Ill (J.I.C.); Department of Radiation Oncology, Sunnybrook Health Science Centre, University of Toronto, Toronto, Ontario, Canada (A.V.L.); Division of Radiation Oncology, Peter MacCallum Cancer Centre, University of Melbourne, Parkville, Victoria, Australia (S.S.); and Department of Radiation Oncology, University of Freiburg, Freiburg, Germany (A.L.G.)
| | - Simon S Lo
- From the Department of Radiology, University of Alabama at Birmingham, 619 19th St S, JTN 452, Birmingham, AL 35249-6830 (A.M.A.E., A.J.G., A.D.S.); Department of Radiation Oncology (S.S.L.) and Department of Radiology (S.S.V.), University of Washington School of Medicine, Seattle, Wash; Department of Urology, UCLA Medical Center, Santa Monica, Calif (B.M.S.); Department of Urology, Cleveland Clinic Foundation, Cleveland, Ohio (M.E.D.F., R.A.); Division of Hematology/Oncology, Department of Internal Medicine, Loyola University Medical Center, Maywood, Ill (J.I.C.); Department of Radiation Oncology, Sunnybrook Health Science Centre, University of Toronto, Toronto, Ontario, Canada (A.V.L.); Division of Radiation Oncology, Peter MacCallum Cancer Centre, University of Melbourne, Parkville, Victoria, Australia (S.S.); and Department of Radiation Oncology, University of Freiburg, Freiburg, Germany (A.L.G.)
| | - Andrew J Gunn
- From the Department of Radiology, University of Alabama at Birmingham, 619 19th St S, JTN 452, Birmingham, AL 35249-6830 (A.M.A.E., A.J.G., A.D.S.); Department of Radiation Oncology (S.S.L.) and Department of Radiology (S.S.V.), University of Washington School of Medicine, Seattle, Wash; Department of Urology, UCLA Medical Center, Santa Monica, Calif (B.M.S.); Department of Urology, Cleveland Clinic Foundation, Cleveland, Ohio (M.E.D.F., R.A.); Division of Hematology/Oncology, Department of Internal Medicine, Loyola University Medical Center, Maywood, Ill (J.I.C.); Department of Radiation Oncology, Sunnybrook Health Science Centre, University of Toronto, Toronto, Ontario, Canada (A.V.L.); Division of Radiation Oncology, Peter MacCallum Cancer Centre, University of Melbourne, Parkville, Victoria, Australia (S.S.); and Department of Radiation Oncology, University of Freiburg, Freiburg, Germany (A.L.G.)
| | - Brian M Shuch
- From the Department of Radiology, University of Alabama at Birmingham, 619 19th St S, JTN 452, Birmingham, AL 35249-6830 (A.M.A.E., A.J.G., A.D.S.); Department of Radiation Oncology (S.S.L.) and Department of Radiology (S.S.V.), University of Washington School of Medicine, Seattle, Wash; Department of Urology, UCLA Medical Center, Santa Monica, Calif (B.M.S.); Department of Urology, Cleveland Clinic Foundation, Cleveland, Ohio (M.E.D.F., R.A.); Division of Hematology/Oncology, Department of Internal Medicine, Loyola University Medical Center, Maywood, Ill (J.I.C.); Department of Radiation Oncology, Sunnybrook Health Science Centre, University of Toronto, Toronto, Ontario, Canada (A.V.L.); Division of Radiation Oncology, Peter MacCallum Cancer Centre, University of Melbourne, Parkville, Victoria, Australia (S.S.); and Department of Radiation Oncology, University of Freiburg, Freiburg, Germany (A.L.G.)
| | - Molly E Dewitt-Foy
- From the Department of Radiology, University of Alabama at Birmingham, 619 19th St S, JTN 452, Birmingham, AL 35249-6830 (A.M.A.E., A.J.G., A.D.S.); Department of Radiation Oncology (S.S.L.) and Department of Radiology (S.S.V.), University of Washington School of Medicine, Seattle, Wash; Department of Urology, UCLA Medical Center, Santa Monica, Calif (B.M.S.); Department of Urology, Cleveland Clinic Foundation, Cleveland, Ohio (M.E.D.F., R.A.); Division of Hematology/Oncology, Department of Internal Medicine, Loyola University Medical Center, Maywood, Ill (J.I.C.); Department of Radiation Oncology, Sunnybrook Health Science Centre, University of Toronto, Toronto, Ontario, Canada (A.V.L.); Division of Radiation Oncology, Peter MacCallum Cancer Centre, University of Melbourne, Parkville, Victoria, Australia (S.S.); and Department of Radiation Oncology, University of Freiburg, Freiburg, Germany (A.L.G.)
| | - Robert Abouassaly
- From the Department of Radiology, University of Alabama at Birmingham, 619 19th St S, JTN 452, Birmingham, AL 35249-6830 (A.M.A.E., A.J.G., A.D.S.); Department of Radiation Oncology (S.S.L.) and Department of Radiology (S.S.V.), University of Washington School of Medicine, Seattle, Wash; Department of Urology, UCLA Medical Center, Santa Monica, Calif (B.M.S.); Department of Urology, Cleveland Clinic Foundation, Cleveland, Ohio (M.E.D.F., R.A.); Division of Hematology/Oncology, Department of Internal Medicine, Loyola University Medical Center, Maywood, Ill (J.I.C.); Department of Radiation Oncology, Sunnybrook Health Science Centre, University of Toronto, Toronto, Ontario, Canada (A.V.L.); Division of Radiation Oncology, Peter MacCallum Cancer Centre, University of Melbourne, Parkville, Victoria, Australia (S.S.); and Department of Radiation Oncology, University of Freiburg, Freiburg, Germany (A.L.G.)
| | - Sandeep S Vaidya
- From the Department of Radiology, University of Alabama at Birmingham, 619 19th St S, JTN 452, Birmingham, AL 35249-6830 (A.M.A.E., A.J.G., A.D.S.); Department of Radiation Oncology (S.S.L.) and Department of Radiology (S.S.V.), University of Washington School of Medicine, Seattle, Wash; Department of Urology, UCLA Medical Center, Santa Monica, Calif (B.M.S.); Department of Urology, Cleveland Clinic Foundation, Cleveland, Ohio (M.E.D.F., R.A.); Division of Hematology/Oncology, Department of Internal Medicine, Loyola University Medical Center, Maywood, Ill (J.I.C.); Department of Radiation Oncology, Sunnybrook Health Science Centre, University of Toronto, Toronto, Ontario, Canada (A.V.L.); Division of Radiation Oncology, Peter MacCallum Cancer Centre, University of Melbourne, Parkville, Victoria, Australia (S.S.); and Department of Radiation Oncology, University of Freiburg, Freiburg, Germany (A.L.G.)
| | - Joseph I Clark
- From the Department of Radiology, University of Alabama at Birmingham, 619 19th St S, JTN 452, Birmingham, AL 35249-6830 (A.M.A.E., A.J.G., A.D.S.); Department of Radiation Oncology (S.S.L.) and Department of Radiology (S.S.V.), University of Washington School of Medicine, Seattle, Wash; Department of Urology, UCLA Medical Center, Santa Monica, Calif (B.M.S.); Department of Urology, Cleveland Clinic Foundation, Cleveland, Ohio (M.E.D.F., R.A.); Division of Hematology/Oncology, Department of Internal Medicine, Loyola University Medical Center, Maywood, Ill (J.I.C.); Department of Radiation Oncology, Sunnybrook Health Science Centre, University of Toronto, Toronto, Ontario, Canada (A.V.L.); Division of Radiation Oncology, Peter MacCallum Cancer Centre, University of Melbourne, Parkville, Victoria, Australia (S.S.); and Department of Radiation Oncology, University of Freiburg, Freiburg, Germany (A.L.G.)
| | - Alexander V Louie
- From the Department of Radiology, University of Alabama at Birmingham, 619 19th St S, JTN 452, Birmingham, AL 35249-6830 (A.M.A.E., A.J.G., A.D.S.); Department of Radiation Oncology (S.S.L.) and Department of Radiology (S.S.V.), University of Washington School of Medicine, Seattle, Wash; Department of Urology, UCLA Medical Center, Santa Monica, Calif (B.M.S.); Department of Urology, Cleveland Clinic Foundation, Cleveland, Ohio (M.E.D.F., R.A.); Division of Hematology/Oncology, Department of Internal Medicine, Loyola University Medical Center, Maywood, Ill (J.I.C.); Department of Radiation Oncology, Sunnybrook Health Science Centre, University of Toronto, Toronto, Ontario, Canada (A.V.L.); Division of Radiation Oncology, Peter MacCallum Cancer Centre, University of Melbourne, Parkville, Victoria, Australia (S.S.); and Department of Radiation Oncology, University of Freiburg, Freiburg, Germany (A.L.G.)
| | - Shankar Siva
- From the Department of Radiology, University of Alabama at Birmingham, 619 19th St S, JTN 452, Birmingham, AL 35249-6830 (A.M.A.E., A.J.G., A.D.S.); Department of Radiation Oncology (S.S.L.) and Department of Radiology (S.S.V.), University of Washington School of Medicine, Seattle, Wash; Department of Urology, UCLA Medical Center, Santa Monica, Calif (B.M.S.); Department of Urology, Cleveland Clinic Foundation, Cleveland, Ohio (M.E.D.F., R.A.); Division of Hematology/Oncology, Department of Internal Medicine, Loyola University Medical Center, Maywood, Ill (J.I.C.); Department of Radiation Oncology, Sunnybrook Health Science Centre, University of Toronto, Toronto, Ontario, Canada (A.V.L.); Division of Radiation Oncology, Peter MacCallum Cancer Centre, University of Melbourne, Parkville, Victoria, Australia (S.S.); and Department of Radiation Oncology, University of Freiburg, Freiburg, Germany (A.L.G.)
| | - Anca-Ligia Grosu
- From the Department of Radiology, University of Alabama at Birmingham, 619 19th St S, JTN 452, Birmingham, AL 35249-6830 (A.M.A.E., A.J.G., A.D.S.); Department of Radiation Oncology (S.S.L.) and Department of Radiology (S.S.V.), University of Washington School of Medicine, Seattle, Wash; Department of Urology, UCLA Medical Center, Santa Monica, Calif (B.M.S.); Department of Urology, Cleveland Clinic Foundation, Cleveland, Ohio (M.E.D.F., R.A.); Division of Hematology/Oncology, Department of Internal Medicine, Loyola University Medical Center, Maywood, Ill (J.I.C.); Department of Radiation Oncology, Sunnybrook Health Science Centre, University of Toronto, Toronto, Ontario, Canada (A.V.L.); Division of Radiation Oncology, Peter MacCallum Cancer Centre, University of Melbourne, Parkville, Victoria, Australia (S.S.); and Department of Radiation Oncology, University of Freiburg, Freiburg, Germany (A.L.G.)
| | - Andrew D Smith
- From the Department of Radiology, University of Alabama at Birmingham, 619 19th St S, JTN 452, Birmingham, AL 35249-6830 (A.M.A.E., A.J.G., A.D.S.); Department of Radiation Oncology (S.S.L.) and Department of Radiology (S.S.V.), University of Washington School of Medicine, Seattle, Wash; Department of Urology, UCLA Medical Center, Santa Monica, Calif (B.M.S.); Department of Urology, Cleveland Clinic Foundation, Cleveland, Ohio (M.E.D.F., R.A.); Division of Hematology/Oncology, Department of Internal Medicine, Loyola University Medical Center, Maywood, Ill (J.I.C.); Department of Radiation Oncology, Sunnybrook Health Science Centre, University of Toronto, Toronto, Ontario, Canada (A.V.L.); Division of Radiation Oncology, Peter MacCallum Cancer Centre, University of Melbourne, Parkville, Victoria, Australia (S.S.); and Department of Radiation Oncology, University of Freiburg, Freiburg, Germany (A.L.G.)
| |
Collapse
|
19
|
Mastrodicasa D, Willemink MJ, Madhuripan N, Chima RS, Ho AA, Ding Y, Marin D, Patel BN. Diagnostic performance of single-phase dual-energy CT to differentiate vascular and nonvascular incidental renal lesions on portal venous phase: comparison with CT. Eur Radiol 2021; 31:9600-9611. [PMID: 34114058 DOI: 10.1007/s00330-021-08097-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/13/2021] [Accepted: 05/25/2021] [Indexed: 01/14/2023]
Abstract
OBJECTIVES To determine whether single-phase dual-energy CT (DECT) differentiates vascular and nonvascular renal lesions in the portal venous phase (PVP). Optimal iodine threshold was determined and compared to Hounsfield unit (HU) measurements. METHODS We retrospectively included 250 patients (266 renal lesions) who underwent a clinically indicated PVP abdominopelvic CT on a rapid-kilovoltage-switching single-source DECT (rsDECT) or a dual-source DECT (dsDECT) scanner. Iodine concentration and HU measurements were calculated by four experienced readers. Diagnostic accuracy was determined using biopsy results and follow-up imaging as reference standard. Area under the curve (AUC) was calculated for each DECT scanner to differentiate vascular from nonvascular lesions and vascular lesions from hemorrhagic/proteinaceous cysts. Univariable and multivariable logistic regression analyses evaluated the association between variables and the presence of vascular lesions. RESULTS A normalized iodine concentration threshold of 0.25 mg/mL yielded high accuracy in differentiating vascular and nonvascular lesions (AUC 0.93, p < 0.001), with comparable performance to HU measurements (AUC 0.93). Both iodine concentration and HU measurements were independently associated with vascular lesions when adjusted for age, gender, body mass index, and lesion size (AUC 0.95 and 0.95, respectively). When combined, diagnostic performance was higher (AUC 0.96). Both absolute and normalized iodine concentrations performed better than HU measurements (AUC 0.92 vs. AUC 0.87) in differentiating vascular lesions from hemorrhagic/proteinaceous cysts. CONCLUSION A single-phase (PVP) DECT scan yields high accuracy to differentiate vascular from nonvascular renal lesions. Iodine concentration showed a slightly higher performance than HU measurements in differentiating vascular lesions from hemorrhagic/proteinaceous cysts. KEY POINTS • A single-phase dual-energy CT scan in the portal venous phase differentiates vascular from nonvascular renal lesions with high accuracy (AUC 0.93). • When combined, iodine concentration and HU measurements showed the highest diagnostic performance (AUC 0.96) to differentiate vascular from nonvascular renal lesions. • Compared to HU measurements, iodine concentration showed a slightly higher performance in differentiating vascular lesions from hemorrhagic/proteinaceous cysts.
Collapse
Affiliation(s)
- Domenico Mastrodicasa
- Department of Radiology, Stanford University School of Medicine, 300 Pasteur Dr, Stanford, CA, 94305, USA
| | - Martin J Willemink
- Department of Radiology, Stanford University School of Medicine, 300 Pasteur Dr, Stanford, CA, 94305, USA
| | - Nikhil Madhuripan
- Department of Radiology, Stanford University School of Medicine, 300 Pasteur Dr, Stanford, CA, 94305, USA.,Department of Radiology, University of Colorado, 12401 East 17th Avenue, Aurora, CO, 80045, USA
| | - Ranjit Singh Chima
- Department of Radiology, Stanford University School of Medicine, 300 Pasteur Dr, Stanford, CA, 94305, USA
| | - Amanzo A Ho
- Department of Radiology, Stanford University School of Medicine, 300 Pasteur Dr, Stanford, CA, 94305, USA
| | - Yuqin Ding
- Department of Radiology, Duke University Medical Center, 2301 Erwin Rd, Durham, NC, 27710, USA.,Department of Radiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Medical Imaging, Shanghai, 200032, People's Republic of China
| | - Daniele Marin
- Department of Radiology, Duke University Medical Center, 2301 Erwin Rd, Durham, NC, 27710, USA
| | - Bhavik N Patel
- Department of Radiology, Mayo Clinic, 13400 E Shea Blvd, Scottsdale, AZ, 85259, USA.
| |
Collapse
|
20
|
Tsili AC, Andriotis E, Gkeli MG, Krokidis M, Stasinopoulou M, Varkarakis IM, Moulopoulos LA. The role of imaging in the management of renal masses. Eur J Radiol 2021; 141:109777. [PMID: 34020173 DOI: 10.1016/j.ejrad.2021.109777] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 12/26/2022]
Abstract
The wide availability of cross-sectional imaging is responsible for the increased detection of small, usually asymptomatic renal masses. More than 50 % of renal cell carcinomas (RCCs) represent incidental findings on noninvasive imaging. Multimodality imaging, including conventional US, contrast-enhanced US (CEUS), CT and multiparametric MRI (mpMRI) is pivotal in diagnosing and characterizing a renal mass, but also provides information regarding its prognosis, therapeutic management, and follow-up. In this review, imaging data for renal masses that urologists need for accurate treatment planning will be discussed. The role of US, CEUS, CT and mpMRI in the detection and characterization of renal masses, RCC staging and follow-up of surgically treated or untreated localized RCC will be presented. The role of percutaneous image-guided ablation in the management of RCC will be also reviewed.
Collapse
Affiliation(s)
- Athina C Tsili
- Department of Clinical Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110, Ioannina, Greece.
| | - Efthimios Andriotis
- Department of Newer Imaging Methods of Tomography, General Anti-Cancer Hospital Agios Savvas, 11522, Athens, Greece.
| | - Myrsini G Gkeli
- 1st Department of Radiology, General Anti-Cancer Hospital Agios Savvas, 11522, Athens, Greece.
| | - Miltiadis Krokidis
- 1st Department of Radiology, School of Medicine, National and Kapodistrian University of Athens, Areteion Hospital, 11528, Athens, Greece; Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital Bern University Hospital, University of Bern, 3010, Bern, Switzerland.
| | - Myrsini Stasinopoulou
- Department of Newer Imaging Methods of Tomography, General Anti-Cancer Hospital Agios Savvas, 11522, Athens, Greece.
| | - Ioannis M Varkarakis
- 2nd Department of Urology, National and Kapodistrian University of Athens, Sismanoglio Hospital, 15126, Athens, Greece.
| | - Lia-Angela Moulopoulos
- 1st Department of Radiology, School of Medicine, National and Kapodistrian University of Athens, Areteion Hospital, 11528, Athens, Greece.
| | | |
Collapse
|
21
|
Gonçalves GFB, Silva MEM, Sampaio FJB, Pereira-Sampaio MA, de Souza DB. Quercetin as a nephroprotector after warm ischemia: histomorphometric evaluation in a rodent model. Int Braz J Urol 2021; 47:796-802. [PMID: 33848072 PMCID: PMC8321496 DOI: 10.1590/s1677-5538.ibju.2020.0358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/20/2020] [Indexed: 01/20/2023] Open
Abstract
Purpose: To quantitatively evaluate the possible long-term protective effects of quercetin during renal warm ischemia. Materials and Methods: Male rats were allocated into 4 groups: sham (S), sham quercetin (SQ), ischemia (I), and ischemia quercetin (IQ). Groups SQ and IQ received quercetin (50mg/kg) before and after surgery. Groups I and IQ had their left renal vessels clamped for 60 minutes. All animals were euthanized four weeks after the procedure, and serum urea and creatinine levels were measured. Renal weight and volume, cortex-non-cortex area ratio (C-NC), cortical volume (CV), glomerular volumetric density (Vv[glom]), volume-weighted glomerular volume (VWGV) and number of glomeruli per kidney (N[glom]) were evaluated by stereological methods. Results were considered statistically significant when p <0.05. Results: Serum urea levels in group I increased by 10.4% in relation to group S, but no differences were observed among the other groups. The C-NC of group I was lower than those of all other groups, and group IQ had similar results to sham groups. The Vv[glom] and N[glom] of group I were lower than those of group S (33.7% and 28.3%, respectively) and group IQ had no significant difference compared to the S group. Conclusions: Quercetin was effective as a nephroprotective agent in preventing the glomerular loss observed when the kidney was subjected to warm ischemia. This suggests that this flavonoid may be used preventively in kidney surgery, when warm ischemia is necessary, such as partial nephrectomy.
Collapse
Affiliation(s)
- Gabriela F Buys Gonçalves
- Unidade de Pesquisa Urogenital, Universidade do Estado do Rio de Janeiro - UERJ, Rio de Janeiro, RJ, Brasil
| | - Maria Eduarda M Silva
- Departamento de Medicina Veterinária, Fundação Educacional Serra dos Órgãos, Teresópolis, RJ, Brasil
| | - Francisco J B Sampaio
- Unidade de Pesquisa Urogenital, Universidade do Estado do Rio de Janeiro - UERJ, Rio de Janeiro, RJ, Brasil
| | - Marco A Pereira-Sampaio
- Unidade de Pesquisa Urogenital, Universidade do Estado do Rio de Janeiro - UERJ, Rio de Janeiro, RJ, Brasil.,Departamento de Morfologia, Universidade Federal Fluminense - UFF, Niterói, RJ, Brasil
| | - Diogo Benchimol de Souza
- Unidade de Pesquisa Urogenital, Universidade do Estado do Rio de Janeiro - UERJ, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
22
|
Cohen JF, Deeks JJ, Hooft L, Salameh JP, Korevaar DA, Gatsonis C, Hopewell S, Hunt HA, Hyde CJ, Leeflang MM, Macaskill P, McGrath TA, Moher D, Reitsma JB, Rutjes AWS, Takwoingi Y, Tonelli M, Whiting P, Willis BH, Thombs B, Bossuyt PM, McInnes MDF. Preferred reporting items for journal and conference abstracts of systematic reviews and meta-analyses of diagnostic test accuracy studies (PRISMA-DTA for Abstracts): checklist, explanation, and elaboration. BMJ 2021; 372:n265. [PMID: 33722791 PMCID: PMC7957862 DOI: 10.1136/bmj.n265] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
For many users of the biomedical literature, abstracts may be the only source of information about a study. Hence, abstracts should allow readers to evaluate the objectives, key design features, and main results of the study. Several evaluations have shown deficiencies in the reporting of journal and conference abstracts across study designs and research fields, including systematic reviews of diagnostic test accuracy studies. Incomplete reporting compromises the value of research to key stakeholders. The authors of this article have developed a 12 item checklist of preferred reporting items for journal and conference abstracts of systematic reviews and meta-analyses of diagnostic test accuracy studies (PRISMA-DTA for Abstracts). This article presents the checklist, examples of complete reporting, and explanations for each item of PRISMA-DTA for Abstracts.
Collapse
Affiliation(s)
- Jérémie F Cohen
- Department of Pediatrics and Inserm UMR 1153 (Centre of Research in Epidemiology and Statistics), Necker - Enfants Malades Hospital, Assistance Publique - Hôpitaux de Paris, Université de Paris, Paris, France
| | - Jonathan J Deeks
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Lotty Hooft
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, Utrecht University, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jean-Paul Salameh
- The Ottawa Hospital Research Institute Clinical Epidemiology Program, Ottawa, ON, Canada
- Faculty of Medicine, Queen's University, Kingston, ON, Canada
| | - Daniël A Korevaar
- Department of Respiratory Medicine, Academic Medical Centers, Amsterdam, Netherlands
| | | | - Sally Hopewell
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Harriet A Hunt
- Exeter Test Group, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Chris J Hyde
- Exeter Test Group, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Mariska M Leeflang
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam Public Health, Academic Medical Centers, Amsterdam, Netherlands
| | | | - Trevor A McGrath
- Department of Radiology, University of Ottawa, Ottawa, ON, Canada
| | - David Moher
- Centre for Journalology, Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Johannes B Reitsma
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, Utrecht University, University Medical Center Utrecht, Utrecht, Netherlands
| | - Anne W S Rutjes
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Yemisi Takwoingi
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Marcello Tonelli
- Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Penny Whiting
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Brian H Willis
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Brett Thombs
- Lady Davis Institute of the Jewish General Hospital and Department of Psychiatry, McGill University, Montréal, QC, Canada
| | - Patrick M Bossuyt
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam Public Health, Academic Medical Centers, Amsterdam, Netherlands
| | - Matthew D F McInnes
- University of Ottawa, Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
23
|
Sosna J. The Value of Virtual Unenhanced Dual-Energy CT for Renal Mass and Hematuria Evaluation. Radiology 2021; 298:620-621. [PMID: 33475468 DOI: 10.1148/radiol.2021203947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jacob Sosna
- From the Department of Radiology, Hebrew University School of Medicine, Hadassah Medical Center, Jerusalem, Israel 91120
| |
Collapse
|
24
|
Thiravit S, Brunnquell C, Cai LM, Flemon M, Mileto A. Use of dual-energy CT for renal mass assessment. Eur Radiol 2020; 31:3721-3733. [PMID: 33210200 DOI: 10.1007/s00330-020-07426-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/11/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022]
Abstract
Although dual-energy CT (DECT) may prove useful in a variety of abdominal imaging tasks, renal mass evaluation represents the area where this technology can be most impactful in abdominal imaging compared to routinely performed contrast-enhanced-only single-energy CT exams. DECT post-processing techniques, such as creation of virtual unenhanced and iodine density images, can help in the characterization of incidentally discovered renal masses that would otherwise remain indeterminate based on post-contrast imaging only. The purpose of this article is to review the use of DECT for renal mass assessment, including its benefits and existing limitations. KEY POINTS: • If DECT is selected as the scanning mode for most common abdominal protocols, many incidentally found renal masses can be fully triaged within the same exam. • Virtual unenhanced and iodine density DECT images can provide additional information when renal masses are discovered in the post-contrast-only setting. • For renal mass evaluation, virtual unenhanced and iodine density DECT images should be interpreted side-by-side to troubleshoot pitfalls that can potentially lead to erroneous interpretation.
Collapse
Affiliation(s)
- Shanigarn Thiravit
- Department of Radiology, University of Washington School of Medicine, 1959 NE Pacific Street, Box 357115, Seattle, WA, 98195, USA.,Division of Diagnostic Radiology, Department of Radiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Christina Brunnquell
- Department of Radiology, University of Washington School of Medicine, 1959 NE Pacific Street, Box 357115, Seattle, WA, 98195, USA
| | - Larry M Cai
- Department of Radiology, University of Washington School of Medicine, 1959 NE Pacific Street, Box 357115, Seattle, WA, 98195, USA
| | - Mena Flemon
- Department of Radiology, University of Washington School of Medicine, 1959 NE Pacific Street, Box 357115, Seattle, WA, 98195, USA
| | - Achille Mileto
- Department of Radiology, University of Washington School of Medicine, 1959 NE Pacific Street, Box 357115, Seattle, WA, 98195, USA.
| |
Collapse
|
25
|
Salameh JP, Bossuyt PM, McGrath TA, Thombs BD, Hyde CJ, Macaskill P, Deeks JJ, Leeflang M, Korevaar DA, Whiting P, Takwoingi Y, Reitsma JB, Cohen JF, Frank RA, Hunt HA, Hooft L, Rutjes AWS, Willis BH, Gatsonis C, Levis B, Moher D, McInnes MDF. Preferred reporting items for systematic review and meta-analysis of diagnostic test accuracy studies (PRISMA-DTA): explanation, elaboration, and checklist. BMJ 2020; 370:m2632. [PMID: 32816740 DOI: 10.1136/bmj.m2632] [Citation(s) in RCA: 270] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jean-Paul Salameh
- Ottawa Hospital Research Institute, Clinical Epidemiology Program, Ottawa, ON, Canada
| | - Patrick M Bossuyt
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centres, University Medical Centres, University of Amsterdam, Amsterdam, Netherlands
| | - Trevor A McGrath
- University of Ottawa Department of Radiology, Ottawa, ON, Canada
| | - Brett D Thombs
- Lady Davis Institute of the Jewish General Hospital and Department of Psychiatry, McGill University, Montréal, QC, Canada
| | - Christopher J Hyde
- Exeter Test Group, College of Medicine and Health, University of Exeter, Exeter, UK
| | | | - Jonathan J Deeks
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Mariska Leeflang
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centers, University Medical Centres, University of Amsterdam, Amsterdam, Netherlands
| | - Daniël A Korevaar
- Department of Respiratory Medicine, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, Netherlands
| | - Penny Whiting
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Yemisi Takwoingi
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Johannes B Reitsma
- Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Cochrane Netherlands, Utrecht, Netherlands
| | - Jérémie F Cohen
- Department of Paediatrics and Inserm UMR 1153 (Centre of Research in Epidemiology and Statistics), Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris Descartes University, Paris, France
| | - Robert A Frank
- University of Ottawa Department of Radiology, Ottawa, ON, Canada
| | - Harriet A Hunt
- Exeter Test Group, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Lotty Hooft
- Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Cochrane Netherlands, Utrecht, Netherlands
| | - Anne W S Rutjes
- Institute of Social and Preventive Medicine, Berner Institut für Hausarztmedizin, University of Bern, Bern, Switzerland
| | | | | | - Brooke Levis
- Lady Davis Institute of the Jewish General Hospital and Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC, Canada
| | - David Moher
- Ottawa Hospital Research Institute Clinical Epidemiology Program (Centre for Journalology), Ottawa, ON, Canada
| | - Matthew D F McInnes
- Clinical Epidemiology Programme, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1E 4M9, Canada
| |
Collapse
|
26
|
Krishna S, Leckie A, Kielar A, Hartman R, Khandelwal A. Imaging of Renal Cancer. Semin Ultrasound CT MR 2020; 41:152-169. [DOI: 10.1053/j.sult.2019.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Diagnostic accuracy of dual-energy computed tomography (DECT) to differentiate uric acid from non-uric acid calculi: systematic review and meta-analysis. Eur Radiol 2020; 30:2791-2801. [DOI: 10.1007/s00330-019-06559-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/22/2019] [Accepted: 10/30/2019] [Indexed: 01/16/2023]
|
28
|
Udare A, Walker D, Krishna S, Chatelain R, McInnes MD, Flood TA, Schieda N. Characterization of clear cell renal cell carcinoma and other renal tumors: evaluation of dual-energy CT using material-specific iodine and fat imaging. Eur Radiol 2019; 30:2091-2102. [PMID: 31858204 DOI: 10.1007/s00330-019-06590-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/02/2019] [Accepted: 11/12/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE This study aimed to assess material-specific iodine and fat images for diagnosis of clear cell renal cell carcinoma (cc-RCC) compared to papillary RCC (p-RCC) and other renal masses. MATERIALS AND METHODS With IRB approval, we identified histologically confirmed solid renal masses that underwent rapid-kVp-switch DECT between 2016 and 2018: 25 cc-RCC (7 low grade versus 18 high grade), 11 p-RCC, and 6 other tumors (2 clear cell papillary RCC, 2 chromophobe RCC, 1 oncocytoma, 1 renal angiomyomatous tumor). A blinded radiologist measured iodine and fat concentration on material-specific iodine-water and fat-water basis pair images. Comparisons were performed between groups using univariate analysis and diagnostic accuracy calculated by ROC. RESULTS Iodine concentration was higher in cc-RCC (6.14 ± 1.79 mg/mL) compared to p-RCC (1.40 ± 0.54 mg/mL, p < 0.001), but not compared to other tumors (5.0 ± 2.2 mg/mL, p = 0.370). Intratumoral fat was seen in 36.0% (9/25) cc-RCC (309.6 ± 234.3 mg/mL [71.1-762.3 ng/mL]), 9.1% (1/11) papillary RCC (97.11 mg/mL), and no other tumors (p = 0.036). Iodine concentration ≥ 3.99 mg/mL achieved AUC and sensitivity/specificity of 0.88 (CI 0.76-1.00) and 92.31%/82.40% to diagnose cc-RCC. To diagnose p-RCC, iodine concentration ≤ 2.5 mg/mL achieved AUC and sensitivity/specificity of 0.99 (0.98-1.00) and 100%/100%. The presence of intratumoral fat had AUC 0.64 (CI 0.53-0.75) and sensitivity/specificity of 34.6%/93.8% to diagnose cc-RCC. A logistic regression model combining iodine concentration and presence of fat increased AUC to 0.91 (CI 0.81-1.0) with sensitivity/specificity of 80.8%/93.8% to diagnose cc-RCC. CONCLUSION Iodine concentration values are highly accurate to differentiate clear cell RCC from papillary RCC; however, they overlap with other tumors. Fat-specific images may improve differentiation of clear cell RCC from other avidly enhancing tumors. KEY POINTS • Clear cell renal cell carcinoma (RCC) has significantly higher iodine concentration than papillary RCC, but there is an overlap in values comparing clear cell RCC to other renal tumors. • Iodine concentration ≤ 2.5 mg/mL is highly accurate to differentiate papillary RCC from clear cell RCC and other renal tumors. • The presence of microscopic fat on material-specific fat images was specific for clear cell RCC, helping to differentiate clear cell RCC from other avidly enhancing renal tumors.
Collapse
Affiliation(s)
- Amar Udare
- Department of Medical Imaging, The Ottawa Hospital, University of Ottawa, 1053 Carling Avenue, Ottawa, ON, K1Y 4E9, Canada
| | - Daniel Walker
- Department of Medical Imaging, The Ottawa Hospital, University of Ottawa, 1053 Carling Avenue, Ottawa, ON, K1Y 4E9, Canada
| | - Satheesh Krishna
- Joint Department of Medical Imaging, Toronto General Hospital, The University of Toronto, Toronto, Canada
| | - Robert Chatelain
- Department of Medical Imaging, The Ottawa Hospital, University of Ottawa, 1053 Carling Avenue, Ottawa, ON, K1Y 4E9, Canada
| | - Matthew Df McInnes
- Department of Medical Imaging, The Ottawa Hospital, University of Ottawa, 1053 Carling Avenue, Ottawa, ON, K1Y 4E9, Canada
| | - Trevor A Flood
- Department of Anatomical Pathology, The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| | - Nicola Schieda
- Department of Medical Imaging, The Ottawa Hospital, University of Ottawa, 1053 Carling Avenue, Ottawa, ON, K1Y 4E9, Canada.
| |
Collapse
|
29
|
Joe WB, Zarzour JG, Gunn AJ. Renal Cell Carcinoma Ablation: Preprocedural, Intraprocedural, and Postprocedural Imaging. Radiol Imaging Cancer 2019; 1:e190002. [PMID: 33778679 DOI: 10.1148/rycan.2019190002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 01/20/2023]
Abstract
The rising incidence of renal cell carcinoma (RCC) in recent decades necessitates careful consideration of additional treatment options, especially for patients who may be poor surgical candidates. An emerging body of evidence suggests that ablation may be performed effectively and safely even in patients with multiple comorbidities. Accordingly, clinical guidelines now include thermal ablation as an alternative for such patients with localized tumors that are 4.0 cm or smaller. Recent experience with these minimally invasive techniques has led to a greater understanding of the imaging findings that merit close attention when ablation is anticipated, or after it is performed. These imaging findings may guide the interventionalist's perception of the risks, technical challenges, and likelihood of treatment success associated with RCC ablation. The present review provides an overview of clinically relevant radiologic findings during the preprocedural, intraprocedural, and postprocedural period in the context of image-guided renal ablation. Keywords: Interventional-Body, Kidney, Percutaneous, Urinary © RSNA, 2019.
Collapse
Affiliation(s)
- Winston B Joe
- University of Alabama at Birmingham School of Medicine, Birmingham, Ala (W.B.J.); and Divisions of Abdominal Imaging (J.G.Z.) and Vascular and Interventional Radiology (A.J.G.), Department of Radiology, University of Alabama at Birmingham, 619 19th St S, Birmingham, AL 35249
| | - Jessica G Zarzour
- University of Alabama at Birmingham School of Medicine, Birmingham, Ala (W.B.J.); and Divisions of Abdominal Imaging (J.G.Z.) and Vascular and Interventional Radiology (A.J.G.), Department of Radiology, University of Alabama at Birmingham, 619 19th St S, Birmingham, AL 35249
| | - Andrew J Gunn
- University of Alabama at Birmingham School of Medicine, Birmingham, Ala (W.B.J.); and Divisions of Abdominal Imaging (J.G.Z.) and Vascular and Interventional Radiology (A.J.G.), Department of Radiology, University of Alabama at Birmingham, 619 19th St S, Birmingham, AL 35249
| |
Collapse
|
30
|
An overview of non-invasive imaging modalities for diagnosis of solid and cystic renal lesions. Med Biol Eng Comput 2019; 58:1-24. [DOI: 10.1007/s11517-019-02049-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 09/17/2019] [Indexed: 12/22/2022]
|
31
|
Reducing radiation dose for multi-phase contrast-enhanced dual energy renal CT: pilot study evaluating prior iterative reconstruction. Abdom Radiol (NY) 2019; 44:3350-3358. [PMID: 31422439 DOI: 10.1007/s00261-019-02150-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE Prior iterative reconstruction (PIR) uses spatial information from one phase of enhancement to reduce image noise in other phases. We sought to determine if PIR could reduce radiation dose while preserving observer performance and CT number at multi-phase dual energy (DE) renal CT. METHODS CT projection data from multi-phase DE renal CT examinations were collected. Images corresponding to 40% radiation dose were reconstructed using validated noise insertion and PIR. Three genitourinary radiologists examined routine and 40% dose PIR images. Probability of malignancy was assessed [from 0 to 100] with malignancy assumed at probability ≥ 75. Observer performance was compared on a per patient and per lesion level. CT number accuracy was measured. RESULTS Twenty-three patients had 49 renal lesions (11 solid renal neoplasms). CT number was nearly identical between techniques (mean CT number difference: unenhanced 2 ± 2 HU; enhanced 4 ± 4 HU). AUC for malignancy was similar between multi-phase routine dose DE and lower dose PIR images [per patient: 0.950 vs. 0.916 (p = 0.356); per lesion: 0.931 vs. 0.884 (p = 0.304)]. Per patient sensitivity was also similar (78% routine dose vs. 82% lower dose [p ≥ 0.99]), as was specificity (91% routine dose vs. 93% lower dose PIR [p > 0.99]), with similar findings on a per lesion level. Subjective image quality was also similar (p = 0.34). CONCLUSIONS Prior iterative reconstruction is a new reconstruction method for multi-phase CT examinations that promises to facilitate radiation dose reduction by over 50% for multi-phase DE renal CT exams without compromising CT number or observer performance.
Collapse
|
32
|
Kessner R, Große Hokamp N, Ciancibello L, Ramaiya N, Herrmann KA. Renal cystic lesions characterization using spectral detector CT (SDCT): Added value of spectral results. Br J Radiol 2019; 92:20180915. [PMID: 31124701 DOI: 10.1259/bjr.20180915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES To evaluate the added value of spectral results derived from Spectral Detector CT (SDCT) to the characterization of renal cystic lesions (RCL). METHODS This retrospective study was approved by the local Institutional review board. 70 consecutive patients who underwent abdominopelvic SDCT and had at least one RCL were included. 84 RCL were categorized as simple, complex or neoplastic based on attenuation values on single-phase post-contrast images. Attenuation values were measured in each lesion on standard conventional CT images (stCI) and virtual monoenergetic images of 40keV and 100keV. A spectral curve slope was calculated and intra lesional iodine concentration (IC) was measured using iodine-density maps. Reference standard was established using histopathologic correlation, prior and follow-up imaging. Analysis of variance (ANOVA) was used to compare between the groups. RESULTS Mean attenuation values for benign simple and complex RCL differed significantly (42 ± 16 vs 8 ± 3 HU; p < 0.001). IC was almost identical in benign simple and complex RCL (0.23 ± 0.04 mg ml-1 vs 0.24 ± 0.04 mg ml-1), while IC in neoplastic RCL was significantly higher (2.10 ± 0.08 mg ml-1 ; p < 0.001). The mean spectral curve slope did not differ significantly between simple and complex RCL (0.30 ± 0.03 vs 0.33 ± 0.05) but was significantly higher in neoplastic RCL (2.60 ± 0.10; p < 0.001). CONCLUSIONS Spectral results of SDCT are highly promising in distinguishing benign complex RCL from enhancing neoplastic RCL based on single-phase post-contrast imaging only. ADVANCES IN KNOWLEDGE SDCT can assist in differentiating between benign complex and neoplastic renal cystic lesions.
Collapse
Affiliation(s)
- Rivka Kessner
- 1 Department of Radiology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, Ohio, USA.,2 Department of Diagnostic Imaging, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nils Große Hokamp
- 1 Department of Radiology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, Ohio, USA.,3 University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Cologne, Germany
| | - Les Ciancibello
- 1 Department of Radiology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, Ohio, USA
| | - Nikhil Ramaiya
- 1 Department of Radiology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, Ohio, USA
| | - Karin A Herrmann
- 1 Department of Radiology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
33
|
Diagnostic Accuracy of Attenuation Difference and Iodine Concentration Thresholds at Rapid-Kilovoltage-Switching Dual-Energy CT for Detection of Enhancement in Renal Masses. AJR Am J Roentgenol 2019; 213:619-625. [PMID: 31120787 DOI: 10.2214/ajr.18.20990] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE. The objective of our study was to evaluate iodine concentration and attenuation change in Hounsfield unit (ΔHU) thresholds to diagnose enhancement in renal masses at rapid-kilovoltage-switching dual-energy CT (DECT). MATERIALS AND METHODS. We evaluated 30 consecutive histologically confirmed solid renal masses (including nine papillary renal cell carcinomas [RCCs]) and 27 benign cysts (17 simple and 10 hemorrhagic or proteinaceous cysts) with DECT December 2016 and May 2018. A blinded radiologist measured iodine concentration (in milligrams per milliliter) and ΔHU (attenuation on enhanced CT - attenuation on unenhanced CT) using 70-keV corticomedullary (CM) phase virtual monochromatic and 120-kVp nephrographic (NG) phase images. The accuracies of previously described enhancement thresholds were compared by ROC curve analysis. RESULTS. An iodine concentration of ≥ 2.0 mg/mL and an iodine concentration of ≥ 1.2 mg/mL achieved sensitivity, specificity, and the area under the ROC curve (AUC) of 73.3%, 100.0%, and 0.87 and 86.7%, 100.0%, and 0.93, respectively. On 70-keV CM phase images, ΔHU ≥ 20 HU and ΔHU ≥ 15 HU yielded sensitivity, specificity, and AUC of 80.0%, 100.0%, and 0.90 and 90.0%, 100.0%, and 0.95, respectively. The numbers of incorrectly classified papillary RCCs were as follows: iodine concentration of ≥ 2.0 mg/mL, 77.8% (7/9; range, 0.7-1.6 mg/mL); iodine concentration of ≥ 1.2 mg/mL, 44.4% (4/9; range, 0.7-0.9 mg/mL); ΔHU ≥ 20 HU on 70-keV CM phase images, 66.7% (6/9; range, 4-17 HU); and ΔHU ≥ 15 HU on 70-keV DECT images, 33.3% (3/9; 4-12 HU). No cyst pseudoenhancement occurred on DECT. For 120-kVp NG phase DECT, ΔHU ≥ 20 HU and ΔHU ≥ 15 HU yielded sensitivity, specificity, and AUC of 93.3%, 96.3%, and 0.95 and 100.0%, 88.9%, and 0.94, respectively. With ΔHU ≥ 20 HU, 22.2% (2/9) (range, 15-18 HU) of papillary RCCs were misclassified and there was one pseudoenhancing cyst. With ΔHU ≥ 15 HU, no papillary RCCs were misclassified but 11.1% (3/27) of cysts showed pseudoenhancement. Only an iodine concentration of ≥ 2.0 mg/mL showed significantly lower accuracy than other measures (p = 0.031-0.045). CONCLUSION. DECT applied in the CM phase performed best using an iodine concentration of ≥ 1.2 mg/mL or a 70-keV ΔHU ≥ 15 HU; these parameters improved sensitivity for the detection of enhancement in renal masses without instances of cyst pseudoenhancement.
Collapse
|