1
|
Ruiz MA, Zhang X, Mansilla MA, Zahr RS, Thomas CP, Smith RJ, Gordeuk VR, Saraf SL. Prevalence of kidney health genetic variants in adults with sickle cell nephropathy. Br J Haematol 2024; 205:316-319. [PMID: 38735682 PMCID: PMC11245361 DOI: 10.1111/bjh.19525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
The pathophysiology and genetic risk for sickle cell disease (SCD)-related chronic kidney disease (CKD) are not well understood. In 70 adults with SCD-related CKD and without APOL1 inherited in a high-risk pattern, 24 (34%) had pathogenic variants in candidate genes using KidneySeq™. A moderate impact INF2 variant was observed in 20 (29%) patients and those with 3 versus 0-2 pathogenic or moderate impact glomerular genetic variants had higher albuminuria and lower estimated glomerular filtration rate (adjusted p ≤ 0.015). Using a panel of preselected genes implicated in kidney health, we observed several variants in people with sickle cell nephropathy.
Collapse
Affiliation(s)
- Maria Armila Ruiz
- Division of Hematology and Oncology, Sickle Cell Center, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Xu Zhang
- Division of Hematology and Oncology, Sickle Cell Center, University of Illinois at Chicago, Chicago, Illinois, USA
| | - M Adela Mansilla
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Rima S Zahr
- Division of Pediatric Nephrology and Hypertension, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Christie P Thomas
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Richard J Smith
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Victor R Gordeuk
- Division of Hematology and Oncology, Sickle Cell Center, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Santosh L Saraf
- Division of Hematology and Oncology, Sickle Cell Center, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
2
|
Joshi H, Vastrad B, Joshi N, Vastrad C. Integrated bioinformatics analysis reveals novel key biomarkers in diabetic nephropathy. SAGE Open Med 2022; 10:20503121221137005. [PMID: 36385790 PMCID: PMC9661593 DOI: 10.1177/20503121221137005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 10/18/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives: The underlying molecular mechanisms of diabetic nephropathy have yet not been investigated clearly. In this investigation, we aimed to identify key genes involved in the pathogenesis and prognosis of diabetic nephropathy. Methods: We downloaded next-generation sequencing data set GSE142025 from Gene Expression Omnibus database having 28 diabetic nephropathy samples and nine normal control samples. The differentially expressed genes between diabetic nephropathy and normal control samples were analyzed. Biological function analysis of the differentially expressed genes was enriched by Gene Ontology and REACTOME pathways. Then, we established the protein–protein interaction network, modules, miRNA-differentially expressed gene regulatory network and transcription factor-differentially expressed gene regulatory network. Hub genes were validated by using receiver operating characteristic curve analysis. Results: A total of 549 differentially expressed genes were detected including 275 upregulated and 274 downregulated genes. The biological process analysis of functional enrichment showed that these differentially expressed genes were mainly enriched in cell activation, integral component of plasma membrane, lipid binding, and biological oxidations. Analyzing the protein–protein interaction network, miRNA-differentially expressed gene regulatory network and transcription factor-differentially expressed gene regulatory network, we screened hub genes MDFI, LCK, BTK, IRF4, PRKCB, EGR1, JUN, FOS, ALB, and NR4A1 by the Cytoscape software. The receiver operating characteristic curve analysis confirmed that hub genes were of diagnostic value. Conclusions: Taken above, using integrated bioinformatics analysis, we have identified key genes and pathways in diabetic nephropathy, which could improve our understanding of the cause and underlying molecular events, and these key genes and pathways might be therapeutic targets for diabetic nephropathy.
Collapse
Affiliation(s)
- Harish Joshi
- Endocrine and Diabetes Care Center, Hubbali, India
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, KLE Society’s College of Pharmacy, Gadag, India
| | - Nidhi Joshi
- Dr. D. Y. Patil Medical College, Kolhapur, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Dharwad, India
- Chanabasayya Vastrad, Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, India.
| |
Collapse
|
3
|
Mathkar PP, Chen X, Sulovari A, Li D. Characterization of Hepatitis B Virus Integrations Identified in Hepatocellular Carcinoma Genomes. Viruses 2021; 13:v13020245. [PMID: 33557409 PMCID: PMC7915589 DOI: 10.3390/v13020245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality. Almost half of HCC cases are associated with hepatitis B virus (HBV) infections, which often lead to HBV sequence integrations in the human genome. Accurate identification of HBV integration sites at a single nucleotide resolution is critical for developing a better understanding of the cancer genome landscape and of the disease itself. Here, we performed further analyses and characterization of HBV integrations identified by our recently reported VIcaller platform in recurrent or known HCC genes (such as TERT, MLL4, and CCNE1) as well as non-recurrent cancer-related genes (such as CSMD2, NKD2, and RHOU). Our pathway enrichment analysis revealed multiple pathways involving the alcohol dehydrogenase 4 gene, such as the metabolism pathways of retinol, tyrosine, and fatty acid. Further analysis of the HBV integration sites revealed distinct patterns involving the integration upper breakpoints, integrated genome lengths, and integration allele fractions between tumor and normal tissues. Our analysis also implies that the VIcaller method has diagnostic potential through discovering novel clonal integrations in cancer-related genes. In conclusion, although VIcaller is a hypothesis free virome-wide approach, it can still be applied to accurately identify genome-wide integration events of a specific candidate virus and their integration allele fractions.
Collapse
Affiliation(s)
- Pranav P. Mathkar
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA; (P.P.M.); (A.S.)
| | - Xun Chen
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA; (P.P.M.); (A.S.)
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto 606-8501, Japan
- Correspondence: (X.C.); (D.L.)
| | - Arvis Sulovari
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA; (P.P.M.); (A.S.)
- Cajal Neuroscience Inc., Seattle, WA 98102, USA
| | - Dawei Li
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA; (P.P.M.); (A.S.)
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
- Correspondence: (X.C.); (D.L.)
| |
Collapse
|
4
|
Yamada H, Shirata N, Makino S, Miyake T, Trejo JAO, Yamamoto-Nonaka K, Kikyo M, Empitu MA, Kadariswantiningsih IN, Kimura M, Ichimura K, Yokoi H, Mukoyama M, Hotta A, Nishimori K, Yanagita M, Asanuma K. MAGI-2 orchestrates the localization of backbone proteins in the slit diaphragm of podocytes. Kidney Int 2020; 99:382-395. [PMID: 33144214 DOI: 10.1016/j.kint.2020.09.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 08/22/2020] [Accepted: 09/10/2020] [Indexed: 01/19/2023]
Abstract
Podocytes are highly specialized cells within the glomerulus that are essential for ultrafiltration. The slit diaphragm between the foot processes of podocytes functions as a final filtration barrier to prevent serum protein leakage into urine. The slit-diaphragm consists mainly of Nephrin and Neph1, and localization of these backbone proteins is essential to maintaining the integrity of the glomerular filtration barrier. However, the mechanisms that regulate the localization of these backbone proteins have remained elusive. Here, we focused on the role of membrane-associated guanylate kinase inverted 2 (MAGI-2) in order to investigate mechanisms that orchestrate localization of slit-diaphragm backbone proteins. MAGI-2 downregulation coincided with a reduced expression of slit-diaphragm backbone proteins in human kidneys glomerular disease such as focal segmental glomerulosclerosis or IgA nephropathy. Podocyte-specific deficiency of MAGI-2 in mice abrogated localization of Nephrin and Neph1 independently of other scaffold proteins. Although a deficiency of zonula occuldens-1 downregulated the endogenous Neph1 expression, MAGI-2 recovered Neph1 expression at the cellular edge in cultured podocytes. Additionally, overexpression of MAGI-2 preserved Nephrin localization to intercellular junctions. Co-immunoprecipitation and pull-down assays also revealed the importance of the PDZ domains of MAGI-2 for the interaction between MAGI-2 and slit diaphragm backbone proteins in podocytes. Thus, localization and stabilization of Nephrin and Neph1 in intercellular junctions is regulated mainly via the PDZ domains of MAGI-2 together with other slit-diaphragm scaffold proteins. Hence, these findings may elucidate a mechanism by which the backbone proteins are maintained.
Collapse
Affiliation(s)
- Hiroyuki Yamada
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naritoshi Shirata
- Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharmaceutical Corporation, Saitama, Japan
| | - Shinichi Makino
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takafumi Miyake
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Kanae Yamamoto-Nonaka
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mitsuhiro Kikyo
- Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharmaceutical Corporation, Saitama, Japan
| | - Maulana A Empitu
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | - Maiko Kimura
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichiro Ichimura
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideki Yokoi
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Akitsu Hotta
- Department of Reprogramming Science, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Katsuhiko Nishimori
- Department of Obesity and Inflammation Research, Fukushima Medical University, Fukushima, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Katsuhiko Asanuma
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan; Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
5
|
Little MH, Quinlan C. Advances in our understanding of genetic kidney disease using kidney organoids. Pediatr Nephrol 2020; 35:915-926. [PMID: 31065797 DOI: 10.1007/s00467-019-04259-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/27/2019] [Accepted: 04/02/2019] [Indexed: 12/16/2022]
Abstract
A significant proportion of kidney disease presenting in childhood is likely genetic in origin with a growing number of genes implicated in its development. However, many children may have changes in previously undescribed or unrecognised genes. The recent development of methods for generating human kidney organoids from human pluripotent stem cells has the potential to substantially change the rate of diagnosis and the development of new treatments for some forms of genetic kidney disease. In this review, we discuss how accurately a kidney organoid models the human kidney, identifying the strengths and weaknesses of these potentially patient-derived models of renal disease.
Collapse
Affiliation(s)
- Melissa H Little
- Murdoch Children's Research Institute, Flemington Rd., Parkville, VIC, Australia. .,Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC, Australia. .,Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia.
| | - Catherine Quinlan
- Murdoch Children's Research Institute, Flemington Rd., Parkville, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia.,Department of Nephrology, Royal Children's Hospital, Flemington Rd., Parkville, VIC, Australia
| |
Collapse
|
6
|
Umeukeje EM, Young BA. Genetics and ESKD Disparities in African Americans. Am J Kidney Dis 2019; 74:811-821. [PMID: 31606237 PMCID: PMC7373097 DOI: 10.1053/j.ajkd.2019.06.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/09/2019] [Indexed: 12/22/2022]
Abstract
African Americans have a 2- to 4-fold greater incidence of end-stage kidney disease (ESKD) than whites, which has long raised the possibility of a genetic cause for this disparity. Recent advances in genetic studies have shown a causal association of polymorphisms at the apolipoprotein L1 gene (APOL1) with the markedly increased risk for the nondiabetic component of the overall disparity in ESKD in African Americans. Although APOL1-associated kidney disease is thought to account for a substantial proportion of ESKD in African Americans, not all the increased risk for ESKD is accounted for, and a complete cataloging of disparities in genetic causes of ESKD eludes our current understanding of genetic-associated kidney disease. Genetic testing aids the screening, diagnosis, prognosis, and treatment of diseases with a genetic basis. Widespread use of genetic testing in clinical practice is limited by the small number of actionable genetic variants, limited health literacy of providers and patients, and underlying complex ethical, legal, and social issues. This perspective reviews racial and ethnic differences associated with genetic diseases and the development of ESKD in African Americans and discusses potential uncertainties associated with our current understanding of penetrance of genetically linked kidney disease and population-attributable risk percent.
Collapse
Affiliation(s)
- Ebele M Umeukeje
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN; Vanderbilt Center for Kidney Disease, Nashville, TN
| | - Bessie A Young
- Nephrology, Hospital and Specialty Medicine and Center for Innovation for Veteran-Centered and Value Driven Care, Veterans Affairs Puget Sound Health Care System, Seattle, WA; Kidney Research Institute and Division of Nephrology, University of Washington, Seattle, WA.
| |
Collapse
|
7
|
Yu SMW, Nissaisorakarn P, Husain I, Jim B. Proteinuric Kidney Diseases: A Podocyte's Slit Diaphragm and Cytoskeleton Approach. Front Med (Lausanne) 2018; 5:221. [PMID: 30255020 PMCID: PMC6141722 DOI: 10.3389/fmed.2018.00221] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/18/2018] [Indexed: 01/19/2023] Open
Abstract
Proteinuric kidney diseases are a group of disorders with diverse pathological mechanisms associated with significant losses of protein in the urine. The glomerular filtration barrier (GFB), comprised of the three important layers, the fenestrated glomerular endothelium, the glomerular basement membrane (GBM), and the podocyte, dictates that disruption of any one of these structures should lead to proteinuric disease. Podocytes, in particular, have long been considered as the final gatekeeper of the GFB. This specialized visceral epithelial cell contains a complex framework of cytoskeletons forming foot processes and mediate important cell signaling to maintain podocyte health. In this review, we will focus on slit diaphragm proteins such as nephrin, podocin, TRPC6/5, as well as cytoskeletal proteins Rho/small GTPases and synaptopodin and their respective roles in participating in the pathogenesis of proteinuric kidney diseases. Furthermore, we will summarize the potential therapeutic options targeting the podocyte to treat this group of kidney diseases.
Collapse
Affiliation(s)
- Samuel Mon-Wei Yu
- Department of Medicine, Jacobi Medical Center, Bronx, NY, United States
| | | | - Irma Husain
- Department of Medicine, James J. Peters VA Medical Center, Bronx, NY, United States
| | - Belinda Jim
- Department of Medicine, Jacobi Medical Center, Bronx, NY, United States.,Renal Division, Jacobi Medical Center, Bronx, NY, United States
| |
Collapse
|
8
|
Guan M, Keaton JM, Dimitrov L, Hicks PJ, Xu J, Palmer ND, Wilson JG, Freedman BI, Bowden DW, Ng MC. An Exome-wide Association Study for Type 2 Diabetes-Attributed End-Stage Kidney Disease in African Americans. Kidney Int Rep 2018; 3:867-878. [PMID: 29989002 PMCID: PMC6035163 DOI: 10.1016/j.ekir.2018.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/20/2018] [Accepted: 03/05/2018] [Indexed: 12/12/2022] Open
Abstract
Introduction Compared with European Americans, African Americans (AAs) are at higher risk for developing end-stage kidney disease (ESKD). Genome-wide association studies (GWAS) have identified >70 genetic variants associated with kidney function and chronic kidney disease (CKD) in patients with and without diabetes. However, these variants explain a small proportion of disease liability. This study examined the contribution of coding genetic variants for risk of type 2 diabetes (T2D)-attributed ESKD and advanced CKD in AAs. Methods Exome sequencing was performed in 456 AA T2D-ESKD cases, and 936 AA nondiabetic, non-nephropathy control individuals at the discovery stage. A mixed logistic regression model was used for association analysis. Nominal associations (P < 0.05) were replicated in an additional 2020 T2D-ESKD cases and 1121 nondiabetic, non-nephropathy control individuals. A meta-analysis combining 4533 discovery and replication samples was performed. Putative T2D-ESKD associations were tested in additional 1910 nondiabetic ESKD and 219 T2D-ESKD cases, as well as 912 AA nondiabetic non-nephropathy control individuals. Results A total of 11 suggestive T2D-ESKD associations (P < 1 x 10−4) from 8 loci (PLEKHN1, NADK, RAD51AP2, RREB1, PEX6, GRM8, PRX, APOL1) were apparent in the meta-analysis. Exclusion of APOL1 renal-risk genotype carriers identified 3 additional suggestive loci (OTUD7B, IFITM3, DLGAP5). Rs41302867 in RREB1 displayed consistent association with T2D-ESKD and nondiabetic ESKD (odds ratio: 0.47; P = 1.2 x 10−6 in 4605 all-cause ESKD and 2969 nondiabetic non-nephropathy control individuals). Conclusion Our findings suggest that coding genetic variants are implicated in predisposition to T2D-ESKD in AAs.
Collapse
Affiliation(s)
- Meijian Guan
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jacob M. Keaton
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Latchezar Dimitrov
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Pamela J. Hicks
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jianzhao Xu
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Nicholette D. Palmer
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - James G. Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Barry I. Freedman
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Donald W. Bowden
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Maggie C.Y. Ng
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Correspondence: Maggie C. Y. Ng, Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| |
Collapse
|
9
|
Capriolli TV, Visentainer JEL, Sell AM. Lack of association between Kidd blood group system and chronic kidney disease. Rev Bras Hematol Hemoter 2017; 39:301-305. [PMID: 29150101 PMCID: PMC5693269 DOI: 10.1016/j.bjhh.2017.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The Kidd blood group system has three antigens, Jka, Jkb and Jk3, found on red blood cells and on endothelial cells of the inner lining of blood vessels in the renal medulla. These are known as urea transporter B (UT-B). Researchers have found that individuals carrying the Jk(a-b-) or Jk-null (UT-B null) phenotypes have a lower urine-concentrating capability and risk of severe renal impairment. This study evaluated the distribution of the Kidd phenotypes in patients with chronic kidney disease and a possible association of Kidd antigens with the development of renal disease. METHODS Jka and Jkb antigens were phenotyped using the gel column agglutination test (ID-cards Bio-RAD) in 197 patients with chronic kidney disease and 444 blood donors, as the control group. The phenotype and antigen frequencies between patients and controls were evaluated using the Chi-square method with Yates correction and logistic regression after adjustments for gender and age. RESULTS No differences were observed between the Kidd phenotypes frequency distribution between patients with chronic kidney disease and blood donors [Jk(a-b+)=22.3% and 27.2%; Jk(a+b-)=30.5% and 24.3%; Jk(a+b+)=47.25% and 48.4%, respectively]. CONCLUSION The distribution of Kidd phenotypes found in the studied population is expected for Caucasians; Jka and Jkb antigens and phenotypes were not found to be related to susceptibility for chronic kidney disease.
Collapse
Affiliation(s)
| | | | - Ana Maria Sell
- Universidade Estadual de Maringá (UEM), Maringá, PR, Brazil.
| |
Collapse
|
10
|
Vikulova OK, Zheleznyakova AV, Lebedeva NO, Nikitin AG, Nosikov VV, Shestakova MV. Genetic factors in the development of chronic kidney disease in patients with diabetes mellitus. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417030140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Guan M, Ma J, Keaton JM, Dimitrov L, Mudgal P, Stromberg M, Bonomo JA, Hicks PJ, Freedman BI, Bowden DW, Ng MCY. Association of kidney structure-related gene variants with type 2 diabetes-attributed end-stage kidney disease in African Americans. Hum Genet 2016; 135:1251-1262. [PMID: 27461219 DOI: 10.1007/s00439-016-1714-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/15/2016] [Indexed: 02/08/2023]
Abstract
African Americans (AAs) are at higher risk for developing end-stage kidney disease (ESKD) compared to European Americans. Genome-wide association studies have identified variants associated with diabetic and non-diabetic kidney diseases. Nephropathy loci, including SLC7A9, UMOD, and SHROOM3, have been implicated in the maintenance of normal glomerular and renal tubular structure and function. Herein, 47 genes important in podocyte, glomerular basement membrane, mesangial cell, mesangial matrix, renal tubular cell, and renal interstitium structure were examined for association with type 2 diabetes (T2D)-attributed ESKD in AAs. Single-variant association analysis was performed in the discovery stage, including 2041 T2D-ESKD cases and 1140 controls (non-diabetic, non-nephropathy). Discrimination analyses in 667 T2D cases-lacking nephropathy excluded T2D-associated SNPs. Nominal associations were tested in an additional 483 T2D-ESKD cases and 554 controls in the replication stage. Meta-analysis of 4218 discovery and replication samples revealed three significant associations with T2D-ESKD at CD2AP and MMP2 (P corr < 0.05 corrected for effective number of SNPs in each locus). Removal of APOL1 renal-risk genotype carriers revealed additional association at five loci, TTC21B, COL4A3, NPHP3-ACAD11, CLDN8, and ARHGAP24 (P corr < 0.05). Genetic variants at COL4A3, CLDN8, and ARHGAP24 were potentially pathogenic. Gene-based associations revealed suggestive significant aggregate effects of coding variants at four genes. Our findings suggest that genetic variation in kidney structure-related genes may contribute to T2D-attributed ESKD in the AA population.
Collapse
Affiliation(s)
- Meijian Guan
- Center for Genomics and Personalized Medicine Research, Medical Center Boulevard, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Jun Ma
- Section on Nephrology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Nephrology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jacob M Keaton
- Center for Genomics and Personalized Medicine Research, Medical Center Boulevard, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.,Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Latchezar Dimitrov
- Center for Genomics and Personalized Medicine Research, Medical Center Boulevard, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Poorva Mudgal
- Center for Genomics and Personalized Medicine Research, Medical Center Boulevard, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Mary Stromberg
- Center for Genomics and Personalized Medicine Research, Medical Center Boulevard, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Jason A Bonomo
- Center for Genomics and Personalized Medicine Research, Medical Center Boulevard, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.,Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Pamela J Hicks
- Center for Genomics and Personalized Medicine Research, Medical Center Boulevard, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Barry I Freedman
- Section on Nephrology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Donald W Bowden
- Center for Genomics and Personalized Medicine Research, Medical Center Boulevard, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.,Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Maggie C Y Ng
- Center for Genomics and Personalized Medicine Research, Medical Center Boulevard, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA. .,Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
12
|
Ma J, Guan M, Bowden DW, Ng MC, Hicks PJ, Lea JP, Ma L, Gao C, Palmer ND, Freedman BI. Association Analysis of the Cubilin (CUBN) and Megalin (LRP2) Genes with ESRD in African Americans. Clin J Am Soc Nephrol 2016; 11:1034-1043. [PMID: 27197912 PMCID: PMC4891762 DOI: 10.2215/cjn.12971215] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/23/2016] [Indexed: 01/31/2023]
Abstract
BACKGROUND AND OBJECTIVES Genetic variation in the cubilin (CUBN) gene is associated with albuminuria and CKD. Common and rare coding variants in CUBN and the gene encoding its transport partner megalin (LRP2) were assessed for association with ESRD in blacks. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Sixty-six CUBN and LRP2 single-nucleotide polymorphisms (SNPs) were selected and analyzed in this multistage study. Exome sequencing data from 529 blacks with type 2 diabetes (T2D) -associated ESRD and 535 controls lacking T2D or nephropathy (the Type 2 Diabetes Genes [T2D-GENES] Consortium) were first evaluated, focusing on coding variants in CUBN and LRP2; 15 potentially associated SNPs identified from the T2D-GENES Consortium as well as 51 other selected SNPs were then assessed in an independent T2D-ESRD sample set of blacks (the Affymetrix Axiom Biobank Genotyping Array [AXIOM]; 2041 patients with T2D-ESRD, 627 patients with T2D without nephropathy, and 1140 nondiabetic, non-nephropathy controls). A meta-analysis combining the T2D-GENES Consortium and the AXIOM data was performed for 18 overlapping SNPs. Additionally, all 66 SNPs were genotyped in the Wake Forest School of Medicine samples of blacks with nondiabetic ESRD (885 patients with nondiabetic ESRD and 721 controls). Association testing with ESRD was performed in models including age, sex, African ancestry proportion, and apolipoprotein L1 gene renal-risk variants. RESULTS CUBN SNP rs1801239 (I2984V), previously associated with albuminuria, was significantly associated with T2D-ESRD in blacks (the T2D-GENES Consortium and the AXIOM meta-analysis, P=0.03; odds ratio, 1.31; 95% confidence interval, 1.03 to 1.67; minor allele frequency =0.028). A novel LRP2 missense variant, rs17848169 (N2632D), was also significantly protective from T2D-ESRD (the T2D-GENES Consortium and the AXIOM, P<0.002; odds ratio, 0.47; 95% confidence interval, 0.29 to 0.75; meta-analysis minor allele frequency =0.007). Neither SNP was associated with T2D when contrasting patients with T2D with controls lacking diabetes. CUBN and LRP2 SNPs were not associated with nondiabetic etiologies of ESRD. CONCLUSIONS Evidence for genetic association exists between a cubilin and a rare megalin variant with diabetes-associated ESRD in populations with recent African ancestry.
Collapse
Affiliation(s)
- Jun Ma
- Department of Internal Medicine, Section on Nephrology and
- Department of Nephrology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; and
| | - Meijian Guan
- Department of Biochemistry and Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Donald W. Bowden
- Department of Biochemistry and Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Maggie C.Y. Ng
- Department of Biochemistry and Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Pamela J. Hicks
- Department of Biochemistry and Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Janice P. Lea
- Division of Renal Medicine, Department of Medicine, Emory School of Medicine, Atlanta, Georgia
| | - Lijun Ma
- Department of Internal Medicine, Section on Nephrology and
| | - Chuan Gao
- Department of Biochemistry and Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Nicholette D. Palmer
- Department of Biochemistry and Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | |
Collapse
|
13
|
Abstract
The rising global prevalence of diabetes mellitus is accompanied by an increasing burden of morbidity and mortality that is attributable to the complications of chronic hyperglycaemia. These complications include blindness, renal failure and cardiovascular disease. Current therapeutic options for chronic hyperglycaemia reduce, but do not eradicate, the risk of these complications. Success in defining new preventative and therapeutic strategies hinges on an improved understanding of the molecular processes involved in the development of these complications. This Review explores the role of human genetics in delivering such insights, and describes progress in characterizing the sequence variants that influence individual predisposition to diabetic kidney disease, retinopathy, neuropathy and accelerated cardiovascular disease. Numerous risk variants for microvascular complications of diabetes have been reported, but very few have shown robust replication. Furthermore, only limited evidence exists of a difference in the repertoire of risk variants influencing macrovascular disease between those with and those without diabetes. Here, we outline the challenges associated with the genetic analysis of diabetic complications and highlight ongoing efforts to deliver biological insights that can drive translational benefits.
Collapse
|