1
|
Sadeghi-Alavijeh O, Chan MM, Doctor GT, Voinescu CD, Stuckey A, Kousathanas A, Ho AT, Stanescu HC, Bockenhauer D, Sandford RN, Levine AP, Gale DP. Quantifying variant contributions in cystic kidney disease using national-scale whole-genome sequencing. J Clin Invest 2024; 134:e181467. [PMID: 39190624 PMCID: PMC11444187 DOI: 10.1172/jci181467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUNDCystic kidney disease (CyKD) is a predominantly familial disease in which gene discovery has been led by family-based and candidate gene studies, an approach that is susceptible to ascertainment and other biases.METHODSUsing whole-genome sequencing data from 1,209 cases and 26,096 ancestry-matched controls participating in the 100,000 Genomes Project, we adopted hypothesis-free approaches to generate quantitative estimates of disease risk for each genetic contributor to CyKD, across genes, variant types and allelic frequencies.RESULTSIn 82.3% of cases, a qualifying potentially disease-causing rare variant in an established gene was found. There was an enrichment of rare coding, splicing, and structural variants in known CyKD genes, with statistically significant gene-based signals in COL4A3 and (monoallelic) PKHD1. Quantification of disease risk for each gene (with replication in the separate UK Biobank study) revealed substantially lower risk associated with genes more recently associated with autosomal dominant polycystic kidney disease, with odds ratios for some below what might usually be regarded as necessary for classical Mendelian inheritance. Meta-analysis of common variants did not reveal significant associations, but suggested this category of variation contributes 3%-9% to the heritability of CyKD across European ancestries.CONCLUSIONBy providing unbiased quantification of risk effects per gene, this research suggests that not all rare variant genetic contributors to CyKD are equally likely to manifest as a Mendelian trait in families. This information may inform genetic testing and counseling in the clinic.
Collapse
Affiliation(s)
- Omid Sadeghi-Alavijeh
- Centre for Kidney and Bladder Health, University College London, London, United Kingdom
| | - Melanie My Chan
- Centre for Kidney and Bladder Health, University College London, London, United Kingdom
| | - Gabriel T Doctor
- Centre for Kidney and Bladder Health, University College London, London, United Kingdom
| | - Catalin D Voinescu
- Centre for Kidney and Bladder Health, University College London, London, United Kingdom
| | - Alexander Stuckey
- Genomics England, Queen Mary University of London, London, United Kingdom
| | | | - Alexander T Ho
- Genomics England, Queen Mary University of London, London, United Kingdom
| | - Horia C Stanescu
- Centre for Kidney and Bladder Health, University College London, London, United Kingdom
| | - Detlef Bockenhauer
- Centre for Kidney and Bladder Health, University College London, London, United Kingdom
- University Hospital and Katholic University Leuven, Leuven, Belgium
| | - Richard N Sandford
- Academic Department of Medical Genetics, Cambridge University, Cambridge, United Kingdom
| | - Adam P Levine
- Centre for Kidney and Bladder Health, University College London, London, United Kingdom
- Research Department of Pathology, University College London, London, United Kingdom
| | - Daniel P Gale
- Centre for Kidney and Bladder Health, University College London, London, United Kingdom
| |
Collapse
|
2
|
Hort Y, Sullivan P, Wedd L, Fowles L, Stevanovski I, Deveson I, Simons C, Mallett A, Patel C, Furlong T, Cowley MJ, Shine J, Mallawaarachchi A. Atypical splicing variants in PKD1 explain most undiagnosed typical familial ADPKD. NPJ Genom Med 2023; 8:16. [PMID: 37419908 DOI: 10.1038/s41525-023-00362-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/26/2023] [Indexed: 07/09/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic cause of kidney failure and is primarily associated with PKD1 or PKD2. Approximately 10% of patients remain undiagnosed after standard genetic testing. We aimed to utilise short and long-read genome sequencing and RNA studies to investigate undiagnosed families. Patients with typical ADPKD phenotype and undiagnosed after genetic diagnostics were recruited. Probands underwent short-read genome sequencing, PKD1 and PKD2 coding and non-coding analyses and then genome-wide analysis. Targeted RNA studies investigated variants suspected to impact splicing. Those undiagnosed then underwent Oxford Nanopore Technologies long-read genome sequencing. From over 172 probands, 9 met inclusion criteria and consented. A genetic diagnosis was made in 8 of 9 (89%) families undiagnosed on prior genetic testing. Six had variants impacting splicing, five in non-coding regions of PKD1. Short-read genome sequencing identified novel branchpoint, AG-exclusion zone and missense variants generating cryptic splice sites and a deletion causing critical intron shortening. Long-read sequencing confirmed the diagnosis in one family. Most undiagnosed families with typical ADPKD have splice-impacting variants in PKD1. We describe a pragmatic method for diagnostic laboratories to assess PKD1 and PKD2 non-coding regions and validate suspected splicing variants through targeted RNA studies.
Collapse
Affiliation(s)
- Yvonne Hort
- Molecular Genetics of Inherited Kidney Disorders Laboratory, Garvan Institute of Medical Research, Sydney, Australia
| | - Patricia Sullivan
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
| | - Laura Wedd
- Molecular Genetics of Inherited Kidney Disorders Laboratory, Garvan Institute of Medical Research, Sydney, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, NSW, Australia
| | - Lindsay Fowles
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Igor Stevanovski
- Genomic Technologies, Garvan Institute of Medical Research, Sydney, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Sydney, Australia
| | - Ira Deveson
- Genomic Technologies, Garvan Institute of Medical Research, Sydney, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Sydney, Australia
| | - Cas Simons
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, NSW, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Andrew Mallett
- Department of Renal Medicine, Townsville University Hospital, Townsville, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| | - Chirag Patel
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Timothy Furlong
- Molecular Genetics of Inherited Kidney Disorders Laboratory, Garvan Institute of Medical Research, Sydney, Australia
| | - Mark J Cowley
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
| | - John Shine
- Molecular Genetics of Inherited Kidney Disorders Laboratory, Garvan Institute of Medical Research, Sydney, Australia
| | - Amali Mallawaarachchi
- Molecular Genetics of Inherited Kidney Disorders Laboratory, Garvan Institute of Medical Research, Sydney, Australia.
- Clinical Genetics Service, Institute of Precision Medicine and Bioinformatics, Royal Prince Alfred Hospital, Sydney, Australia.
| |
Collapse
|
3
|
Wang Y, Wang Z, Pavel MA, Ng C, Kashyap P, Li B, Morais TDC, Ulloa GA, Yu Y. The diverse effects of pathogenic point mutations on ion channel activity of a gain-of-function polycystin-2. J Biol Chem 2023; 299:104674. [PMID: 37028763 PMCID: PMC10192930 DOI: 10.1016/j.jbc.2023.104674] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Autosomal dominant polycystic kidney disease is caused by mutations in PKD1 or PKD2 genes. The latter encodes polycystin-2 (PC2, also known as TRPP2), a member of the transient receptor potential ion channel family. Despite most pathogenic mutations in PKD2 being truncation variants, there are also many point mutations, which cause small changes in protein sequences but dramatic changes in the in vivo function of PC2. How these mutations affect PC2 ion channel function is largely unknown. In this study, we systematically tested the effects of 31 point mutations on the ion channel activity of a gain-of-function PC2 mutant, PC2_F604P, expressed in Xenopus oocytes. The results show that all mutations in the transmembrane domains and channel pore region, and most mutations in the extracellular tetragonal opening for polycystins domain, are critical for PC2_F604P channel function. In contrast, the other mutations in the tetragonal opening for polycystins domain and most mutations in the C-terminal tail cause mild or no effects on channel function as assessed in Xenopus oocytes. To understand the mechanism of these effects, we have discussed possible conformational consequences of these mutations based on the cryo-EM structures of PC2. The results help gain insight into the structure and function of the PC2 ion channel and the molecular mechanism of pathogenesis caused by these mutations.
Collapse
Affiliation(s)
- Yan Wang
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Zhifei Wang
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Mahmud Arif Pavel
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Courtney Ng
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Parul Kashyap
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Bin Li
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Tiago D C Morais
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Gabriella A Ulloa
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Yong Yu
- Department of Biological Sciences, St. John's University, Queens, New York, USA.
| |
Collapse
|
4
|
Zhang Z, Blumenfeld J, Ramnauth A, Barash I, Zhou P, Levine D, Parker T, Rennert H. A common intronic single nucleotide variant modifies PKD1 expression level. Clin Genet 2022; 102:483-493. [PMID: 36029107 PMCID: PMC10947153 DOI: 10.1111/cge.14214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/26/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), caused by mutations in PKD1 and PKD2 (PKD1/2), has unexplained phenotypic variability likely affected by environmental and other genetic factors. Approximately 10% of individuals with ADPKD phenotype have no causal mutation detected, possibly due to unrecognized risk variants of PKD1/2. This study was designed to identify risk variants of PKD genes through population genetic analyses. We used Wright's F-statistics (Fst) to evaluate common single nucleotide variants (SNVs) potentially favored by positive natural selection in PKD1 from 1000 Genomes Project (1KG) and genotyped 388 subjects from the Rogosin Institute ADPKD Data Repository. The variants with >90th percentile Fst scores underwent further investigation by in silico analysis and molecular genetics analyses. We identified a deep intronic SNV, rs3874648G> A, located in a conserved binding site of the splicing regulator Tra2-β in PKD1 intron 30. Reverse-transcription PCR (RT-PCR) of peripheral blood leukocytes (PBL) from an ADPKD patient homozygous for rs3874648-A identified an atypical PKD1 splice form. Functional analyses demonstrated that rs3874648-A allele increased Tra2-β binding affinity and activated a cryptic acceptor splice-site, causing a frameshift that introduced a premature stop codon in mRNA, thereby decreasing PKD1 full-length transcript level. PKD1 transcript levels were lower in PBL from rs3874648-G/A carriers than in rs3874648-G/G homozygotes in a small cohort of normal individuals and patients with PKD2 inactivating mutations. Our findings indicate that rs3874648G > A is a PKD1 expression modifier attenuating PKD1 expression through Tra2-β, while the derived G allele advantageously maintains PKD1 expression and is predominant in all subpopulations.
Collapse
Affiliation(s)
- Zhengmao Zhang
- Departments of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Jon Blumenfeld
- Department of Medicine, Weill Cornell Medicine, New York, NY
- The Rogosin Institute, New York, NY
| | - Andrew Ramnauth
- Departments of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Irina Barash
- Department of Medicine, Weill Cornell Medicine, New York, NY
- The Rogosin Institute, New York, NY
| | - Pengbo Zhou
- Departments of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Daniel Levine
- Department of Biochemistry, Weill Cornell Medicine, New York, NY
- The Rogosin Institute, New York, NY
| | - Thomas Parker
- Department of Biochemistry, Weill Cornell Medicine, New York, NY
- The Rogosin Institute, New York, NY
| | - Hanna Rennert
- Departments of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| |
Collapse
|
5
|
Kesselheim A, Ashton E, Bockenhauer D. Potential and pitfalls in the genetic diagnosis of kidney diseases. Clin Kidney J 2017; 10:581-585. [PMID: 28980668 PMCID: PMC5622903 DOI: 10.1093/ckj/sfx075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 06/13/2017] [Indexed: 12/14/2022] Open
Abstract
Next-generation sequencing has dramatically decreased the cost of gene sequencing, facilitating the simultaneous analysis of multiple genes at the same time; obtaining a genetic result for an individual patient has become much easier. The article by Ars and Torra in this issue of the Clinical Kidney Journal provides examples of the ever-increasing ability to understand a given patient's disease on the molecular level, so that in some cases not only the causative variants in a disease gene are identified, but also potential modifiers in other genes. Yet, with increased sequencing, a large number of variants are discovered that are difficult to interpret. These so-called 'variants of uncertain significance' raise important questions: when and how can pathogenicity be clearly attributed? This is of critical importance, as there are potentially serious consequences attached: decisions about various forms of treatment and even about life and death, such as termination of pregnancy, may hinge on the answer to these questions. Geneticists, thus, need to use the utmost care in the interpretation of identified variants and clinicians must be aware of this problem. We here discuss the potential of genetics to facilitate personalized treatment, but also the pitfalls and how to deal with them.
Collapse
Affiliation(s)
- Anne Kesselheim
- Centre for Nephrology, University College London, London, UK
| | - Emma Ashton
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- North East Thames Regional Genetics Service, Molecular Genetics, London, UK
| | - Detlef Bockenhauer
- Centre for Nephrology, University College London, London, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
6
|
Iliuta IA, Kalatharan V, Wang K, Cornec-Le Gall E, Conklin J, Pourafkari M, Ting R, Chen C, Borgo AC, He N, Song X, Heyer CM, Senum SR, Hwang YH, Paterson AD, Harris PC, Khalili K, Pei Y. Polycystic Kidney Disease without an Apparent Family History. J Am Soc Nephrol 2017; 28:2768-2776. [PMID: 28522688 DOI: 10.1681/asn.2016090938] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 03/24/2017] [Indexed: 01/14/2023] Open
Abstract
The absence of a positive family history (PFH) in 10%-25% of patients poses a diagnostic challenge for autosomal dominant polycystic kidney disease (ADPKD). In the Toronto Genetic Epidemiology Study of Polycystic Kidney Disease, 210 affected probands underwent renal function testing, abdominal imaging, and comprehensive PKD1 and PKD2 mutation screening. From this cohort, we reviewed all patients with and without an apparent family history, examined their parental medical records, and performed renal imaging in all available parents of unknown disease status. Subsequent reclassification of 209 analyzed patients revealed 72.2% (151 of 209) with a PFH, 15.3% (32 of 209) with de novo disease, 10.5% (22 of 209) with an indeterminate family history, and 1.9% (four of 209) with PFH in retrospect. Among the patients with de novo cases, we found two families with germline mosaicism and one family with somatic mosaicism. Additionally, analysis of renal imaging revealed that 16.3% (34 of 209) of patients displayed atypical PKD, most of which followed one of three patterns: asymmetric or focal PKD with PFH and an identified PKD1 or PKD2 mutation (15 of 34), asymmetric and de novo PKD with proven or suspected somatic mosaicism (seven of 34), or focal PKD without any identifiable PKD1 or PKD2 mutation (eight of 34). In conclusion, PKD without an apparent family history may be due to de novo disease, missing parental medical records, germline or somatic mosaicism, or mild disease from hypomorphic PKD1 and PKD2 mutations. Furthermore, mutations of a newly identified gene for ADPKD, GANAB, and somatic mosaicism need to be considered in the mutation-negative patients with focal disease.
Collapse
Affiliation(s)
| | | | | | | | - John Conklin
- Department of Medical Imaging, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Marina Pourafkari
- Department of Medical Imaging, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | - Christina M Heyer
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Sarah R Senum
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | | - Andrew D Paterson
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Korosh Khalili
- Department of Medical Imaging, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
7
|
Schmid F, Hiller T, Korner G, Glaus E, Berger W, Neidhardt J. A Gene Therapeutic Approach to Correct Splice Defects with Modified U1 and U6 snRNPs. Hum Gene Ther 2013; 24:97-104. [DOI: 10.1089/hum.2012.110] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Fabian Schmid
- Institute of Medical Molecular Genetics, University of Zurich, 8603 Schwerzenbach, Switzerland
| | - Thomas Hiller
- Institute of Medical Molecular Genetics, University of Zurich, 8603 Schwerzenbach, Switzerland
| | - Germaine Korner
- Institute of Medical Molecular Genetics, University of Zurich, 8603 Schwerzenbach, Switzerland
| | - Esther Glaus
- Institute of Medical Molecular Genetics, University of Zurich, 8603 Schwerzenbach, Switzerland
| | - Wolfgang Berger
- Institute of Medical Molecular Genetics, University of Zurich, 8603 Schwerzenbach, Switzerland
- Neuroscience Center Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), Zurich, Switzerland
| | - John Neidhardt
- Institute of Medical Molecular Genetics, University of Zurich, 8603 Schwerzenbach, Switzerland
- Life Science Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
The transient receptor potential channel TRPA1: from gene to pathophysiology. Pflugers Arch 2012; 464:425-58. [DOI: 10.1007/s00424-012-1158-z] [Citation(s) in RCA: 262] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 09/06/2012] [Accepted: 09/06/2012] [Indexed: 12/13/2022]
|
9
|
Tan YC, Michaeel A, Blumenfeld J, Donahue S, Parker T, Levine D, Rennert H. A novel long-range PCR sequencing method for genetic analysis of the entire PKD1 gene. J Mol Diagn 2012; 14:305-13. [PMID: 22608885 DOI: 10.1016/j.jmoldx.2012.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 02/12/2012] [Accepted: 02/22/2012] [Indexed: 12/20/2022] Open
Abstract
Genetic testing of PKD1 and PKD2 is useful for the diagnosis and prognosis of autosomal dominant polycystic kidney disease; however, analysis is complicated by the large transcript size, the complexity of the gene region, and the high level of gene variations. We developed a novel mutation screening assay for PKD1 by directly sequencing long-range (LR) PCR products. By using this method, the entire PKD1 coding region was amplified by nine reactions, generating product sizes from 2 to 6 kb, circumventing the need for specific PCR amplification of individual exons. This method was compared with direct sequencing used by a reference laboratory and the SURVEYOR-WAVE Nucleic Acid High Sensitivity Fragment Analysis System (Transgenomic) screening method for five patients with autosomal dominant polycystic kidney disease. A total of 53 heterozygous genetic changes were identified by LR PCR sequencing, including 41 (of 42) variations detected by SURVEYOR nuclease and all 32 variations reported by the reference laboratory, detecting an additional 12 intronic changes not identified by the other two methods. Compared with the reference laboratory, LR PCR sequencing had a sensitivity of 100%, a specificity of 98.5%, and an accuracy of 98.8%; compared with the SURVEYOR-WAVE method, it had a sensitivity of 97.1%, a specificity of 100%, and an accuracy of 99.4%. In conclusion, LR PCR sequencing was superior to the direct sequencing and screening methods for detecting genetic variations, achieving high sensitivity and improved intronic coverage with a faster turnaround time and lower costs, and providing a reliable tool for complex genetic analyses.
Collapse
Affiliation(s)
- Ying-Cai Tan
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Tan YC, Blumenfeld J, Rennert H. Autosomal dominant polycystic kidney disease: genetics, mutations and microRNAs. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1202-12. [PMID: 21392578 DOI: 10.1016/j.bbadis.2011.03.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 02/26/2011] [Accepted: 03/01/2011] [Indexed: 12/20/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a common, monogenic multi-systemic disorder characterized by the development of renal cysts and various extrarenal manifestations. Worldwide, it is a common cause of end-stage renal disease. ADPKD is caused by mutation in either one of two principal genes, PKD1 and PKD2, but has large phenotypic variability among affected individuals, attributable to PKD genic and allelic variability and, possibly, modifier gene effects. Recent studies have generated considerable information regarding the genetic basis and molecular diagnosis of this disease, its pathogenesis, and potential strategies for targeted treatment. The purpose of this article is to provide a comprehensive review of the genetics of ADPKD, including mechanisms responsible for disease development, the role of gene variations and mutations in disease presentation, and the putative role of microRNAs in ADPKD etiology. The emerging and important role of genetic testing and the advent of novel molecular diagnostic applications also are reviewed. This article is part of a Special Issue entitled: Polycystic Kidney Disease.
Collapse
Affiliation(s)
- Ying-Cai Tan
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | |
Collapse
|
11
|
Tan YC, Blumenfeld J, Michaeel A, Donahue S, Balina M, Parker T, Levine D, Rennert H. Aberrant PKD2 splicing due to a presumed novel missense mutation in autosomal-dominant polycystic kidney disease. Clin Genet 2010; 80:287-92. [DOI: 10.1111/j.1399-0004.2010.01555.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Does retinitis pigmentosa relate with polycystic kidney disease? Int Urol Nephrol 2010; 42:1103-5. [PMID: 20111998 DOI: 10.1007/s11255-010-9709-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 01/12/2010] [Indexed: 12/29/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common genetic disorders. A 21-year-old woman presented with temporary visual loss and gross hematuria. Fundoscopy showed retinitis pigmentosa, which was confirmed by electroretinogram. Her serum creatinine concentration was 1.6 mg/dl, and her renal ultrasonography revealed bilateral polycystic kidneys; she was unaware of having this condition. In this patient, there was probably an inherited ciliary defect, which may explain the association of ADPKD and retinitis pigmentosa.
Collapse
|