1
|
Bai Y, Zou Y, Zeng Y, Hu L, Huang S, Wu K, Yi Q, Chen J, Liang G, Li Y, Huang W, Chen C. Benzylic rearrangement for urinary analysis of guanidino and ureido compounds in cardiac surgery-associated acute kidney injury using high-performance liquid chromatography-tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9853. [PMID: 38923063 DOI: 10.1002/rcm.9853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/16/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
RationaleBecause acute kidney injury (AKI) is closely related to poor prognosis in critically ill patients, developing biomarkers for its prediction and early diagnosis is particularly important. Endogenous guanidino compounds (GCs) and ureido compounds (UCs) can participate in various biochemical processes because of their important physiological activities. The aim of this study was to investigate the alteration profiles of urinary GCs/UCs as potential biomarkers in patients with cardiac surgery–associated acute kidney injury (CSA‐AKI) at different stages.MethodsGCs/UCs were reacted with benzil via benzylic rearrangement, and their derivatives were used to investigate fragmentation mechanisms using tandem mass spectrometry (MS/MS) in positive ion mode. Furthermore, a high‐performance liquid chromatography (HPLC)–MS/MS method was developed to measure the concentrations of GCs/UCs in urine samples taken from patients with CSA‐AKI at different time points.ResultsMS/MS analysis in positive ion mode showed that benzylic GCs/UCs exhibited similar fragmentation processes, which could produce the characteristic ion (C13H12N+) at m/z 182.0. Furthermore, an obviously different fragmentation pattern of benzylic UCs in the positive ion mode might be due to the neutral loss of the H2CO2 group under low collision energy. Of the eight selected GCs/UCs, methylguanidine exhibited significantly increased concentrations in urine when CSA‐AKI occurred, whereas guanidinoethyl sulfonate (GDS), homoarginine (HArg) and homocitrulline (HCit) exhibited decreased concentrations. After recovery from AKI, the urinary concentrations of the aforementioned GCs/UCs returned to normal. Some of the aforementioned metabolites with significant changes (GDS, HArg and HCit) had large areas under the curve in the receiver operating characteristic curve for distinguishing AKI stages on the third day after surgery.ConclusionsIn patients with CSA‐AKI, urinary GCs/UCs were significantly disrupted due to injured kidney, and some GC/UC metabolites exhibited a good ability to become potential biomarkers for AKI stages. The present study provides essential resources and new therapeutic targets for further research on CSA‐AKI.
Collapse
Affiliation(s)
- Yunpeng Bai
- Center of Scientific Research, Maoming People's Hospital, Maoming, China
- Department of Critical Care Medicine, Maoming People's Hospital, Maoming, China
| | - Yuming Zou
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yingjia Zeng
- The Second Clinical Medical School of Kunming Medical University, Kunming, China
| | - Linhui Hu
- Department of Critical Care Medicine, Maoming People's Hospital, Maoming, China
| | - Sumei Huang
- Center of Scientific Research, Maoming People's Hospital, Maoming, China
- Biological Resource Center of Maoming People's Hospital, Maoming, China
| | - Kunyong Wu
- Center of Scientific Research, Maoming People's Hospital, Maoming, China
- Biological Resource Center of Maoming People's Hospital, Maoming, China
| | - Qingxia Yi
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jingchun Chen
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Guowu Liang
- Center of Scientific Research, Maoming People's Hospital, Maoming, China
| | - Yingbang Li
- Center of Scientific Research, Maoming People's Hospital, Maoming, China
| | - Wendong Huang
- Center of Scientific Research, Maoming People's Hospital, Maoming, China
| | - Chunbo Chen
- Department of Critical Care Medicine, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Department of Emergency, Maoming People's Hospital, Maoming, China
| |
Collapse
|
2
|
Awwad A, Rhee EP, Grams M, Choles HR, Sondheimer J, He J, Chen J, Hsu CY, Vasan RS, Kimmel PL, Wulczyn K, Berg A, Lash J, Tang M, Kalim S. Comparative CKD risk prediction using homocitrulline and carbamylated albumin: two circulating markers of protein carbamylation. BMC Nephrol 2024; 25:185. [PMID: 38816682 PMCID: PMC11140876 DOI: 10.1186/s12882-024-03619-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Protein carbamylation, a post-translational protein modification primarily driven by urea, independently associates with adverse clinical outcomes in patients with CKD. Biomarkers used to quantify carbamylation burden have mainly included carbamylated albumin (C-Alb) and homocitrulline (HCit, carbamylated lysine). In this study, we aimed to compare the prognostic utility of these two markers in order to facilitate comparisons of existing studies employing either marker alone, and to inform future carbamylation studies. METHODS Both serum C-Alb and free HCit levels were assayed from the same timepoint in 1632 individuals with CKD stages 2-4 enrolled in the prospective Chronic Renal Insufficiency Cohort (CRIC) study. Adjusted Cox proportional hazard models were used to assess risks for the outcomes of death (primary) and end stage kidney disease (ESKD) using each marker. C-statistics, net reclassification improvement, and integrated discrimination improvement were used to compare the prognostic value of each marker. RESULTS Participant demographics included mean (SD) age 59 (11) years; 702 (43%) females; 700 (43%) white. C-Alb and HCit levels were positively correlated with one another (Pearson correlation coefficient 0.64). Higher C-Alb and HCit levels showed similar increased risk of death (e.g., the adjusted hazard ratio [HR] for death in the 4th carbamylation quartile compared to the 1st was 1.90 (95% confidence interval [CI] 1.35-2.66) for C-Alb, and 1.89 [1.27-2.81] for HCit; and on a continuous scale, the adjusted HR for death using C-Alb was 1.24 [1.11 to 1.39] per standard deviation increase, and 1.27 [1.10-1.46] using HCit). Both biomarkers also had similar HRs for ESKD. The C-statistics were similar when adding each carbamylation biomarker to base models (e.g., for mortality models, the C-statistic was 0.725 [0.707-0.743] with C-Alb and 0.725 [0.707-0.743] with HCit, both compared to a base model 0.723). Similarities were also observed for the net reclassification improvement and integrated discrimination improvement metrics. CONCLUSIONS C-Alb and HCit had similar performance across multiple prognostic assessments. The markers appear readily comparable in CKD epidemiological studies.
Collapse
Affiliation(s)
- Aya Awwad
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eugene P Rhee
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Morgan Grams
- Department of Medicine, New York University, New York, NY, USA
| | - Hernan Rincon Choles
- Department of Nephrology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - James Sondheimer
- Department of Medicine, Wayne State University, Detroit, MI, USA
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Jing Chen
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Chi-Yuan Hsu
- Division of Nephrology, University of California San Francisco School of Medicine, San Francisco, CA, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Ramachandran S Vasan
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Department of Medicine, Sections of Preventive Medicine and Epidemiology and Cardiology, Boston University School of Medicine, Boston, MA, USA
| | - Paul L Kimmel
- Division of Kidney, Urologic, and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, MD, USA
| | - Kendra Wulczyn
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anders Berg
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jim Lash
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Mengyao Tang
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sahir Kalim
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Faerber V, Kuhn KS, Garneata L, Kalantar-Zadeh K, Kalim S, Raj DS, Westphal M. The Microbiome and Protein Carbamylation: Potential Targets for Protein-Restricted Diets Supplemented with Ketoanalogues in Predialysis Chronic Kidney Disease. Nutrients 2023; 15:3503. [PMID: 37630693 PMCID: PMC10459041 DOI: 10.3390/nu15163503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
In chronic kidney disease (CKD), metabolic derangements resulting from the interplay between decreasing renal excretory capacity and impaired gut function contribute to accelerating disease progression and enhancing the risk of complications. To protect residual kidney function and improve quality of life in conservatively managed predialysis CKD patients, current guidelines recommend protein-restricted diets supplemented with essential amino acids (EAAs) and their ketoanalogues (KAs). In clinical studies, such an approach improved nitrogen balance and other secondary metabolic disturbances, translating to clinical benefits, mainly the delayed initiation of dialysis. There is also increasing evidence that a protein-restricted diet supplemented with KAs slows down disease progression. In the present review article, recent insights into the role of KA/EAA-supplemented protein-restricted diets in delaying CKD progression are summarized, and possible mechanistic underpinnings, such as protein carbamylation and gut dysbiosis, are elucidated. Emerging evidence suggests that lowering urea levels may reduce protein carbamylation, which might contribute to decreased morbidity and mortality. Protein restriction, alone or in combination with KA/EAA supplementation, modulates gut dysbiosis and decreases the generation of gut-derived uremic toxins associated, e.g., with cardiovascular disease, inflammation, protein energy wasting, and disease progression. Future studies are warranted to assess the effects on the gut microbiome, the generation of uremic toxins, as well as markers of carbamylation.
Collapse
Affiliation(s)
- Valentin Faerber
- Department of Medical Scientific Affairs, Pharma and Nutrition, Fresenius Kabi Deutschland GmbH, 61352 Bad Homburg, Germany; (K.S.K.); (M.W.)
| | - Katharina S. Kuhn
- Department of Medical Scientific Affairs, Pharma and Nutrition, Fresenius Kabi Deutschland GmbH, 61352 Bad Homburg, Germany; (K.S.K.); (M.W.)
| | - Liliana Garneata
- “Dr. Carol Davila” Teaching Hospital of Nephrology, 4 Calea Grivitei, Sector 1, 010731 Bucharest, Romania;
| | - Kamyar Kalantar-Zadeh
- Division of Nephrology Hypertension and Kidney Transplantation, Department of Medicine, University of California Irvine (UCI), Orange, CA 90286, USA;
| | - Sahir Kalim
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Dominic S. Raj
- Division of Kidney Diseases and Hypertension, George Washington University School of Medicine, Washington, DC 20037, USA;
| | - Martin Westphal
- Department of Medical Scientific Affairs, Pharma and Nutrition, Fresenius Kabi Deutschland GmbH, 61352 Bad Homburg, Germany; (K.S.K.); (M.W.)
| |
Collapse
|
4
|
Foussard N, Larroumet A, Ferrière A, Blanco L, Mohammedi K, Rigalleau V. Comment on Tang et al. The Impact of Carbamylation and Anemia on HbA1c's Association With Renal Outcomes in Patients With Diabetes and Chronic Kidney Disease. Diabetes Care 2023;46:130-137. Diabetes Care 2023; 46:e115. [PMID: 37185682 DOI: 10.2337/dc23-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 05/17/2023]
Affiliation(s)
- Ninon Foussard
- Department of Endocrinology-Diabetology-Nutrition, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Alice Larroumet
- Department of Endocrinology-Diabetology-Nutrition, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Amandine Ferrière
- Department of Endocrinology-Diabetology-Nutrition, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Laurence Blanco
- Department of Endocrinology-Diabetology-Nutrition, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Kamel Mohammedi
- Department of Endocrinology-Diabetology-Nutrition, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Vincent Rigalleau
- Department of Endocrinology-Diabetology-Nutrition, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| |
Collapse
|
5
|
Tang M, Berg A, Rhee EP, Allegretti AS, Nigwekar S, Karumanchi SA, Lash JP, Kalim S. The Impact of Carbamylation and Anemia on HbA1c's Association With Renal Outcomes in Patients With Diabetes and Chronic Kidney Disease. Diabetes Care 2023; 46:130-137. [PMID: 36399777 PMCID: PMC9797644 DOI: 10.2337/dc22-1399] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/22/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Glycated hemoglobin (HbA1c) can predict risk for microvascular complications in patients with diabetes. However, HbA1c's reliability in chronic kidney disease (CKD) has been questioned, with concerns including competition from another posttranslational protein modification, carbamylation, acting on the same amino groups as glycation, and anemia with reduced erythrocyte lifespans leading to altered glycation accumulation. We investigated whether carbamylation and anemia modify the impact of HbA1c on renal outcomes in patients with diabetes and CKD. RESEARCH DESIGN AND METHODS In 1,516 participants from the Chronic Renal Insufficiency Cohort study with diabetes and CKD, Cox regression models were applied to evaluate the association between HbA1c and CKD progression (composite of end-stage kidney disease or 50% decline in estimated glomerular filtration rate [eGFR]), stratified by carbamylated albumin (C-Alb) quartiles and anemia. RESULTS The mean eGFR was 38.1 mL/min/1.73 m2, mean HbA1c was 7.5% (58 mmol/mol), and median C-Alb was 8.4 mmol/mol. HbA1c was lower in the higher C-Alb quartiles. During a median follow-up of 6.9 years, 763 participants experienced CKD progression. Overall, higher HbA1c was associated with an increased risk of CKD progression (adjusted hazard ratio 1.07 [95% CI 1.02-1.13]). However, using stratified analyses, HbA1c was no longer associated with CKD progression in the highest C-Alb quartile, but did show a monotonic increase in CKD progression risk across each lower C-Alb quartile (P-interaction = 0.022). Anemia also modified the association between HbA1c and CKD progression (P-interaction = 0.025). CONCLUSIONS In patients with coexisting diabetes and CKD, the association between HbA1c and CKD progression is modified by carbamylation and anemia.
Collapse
Affiliation(s)
- Mengyao Tang
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Anders Berg
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Eugene P. Rhee
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Andrew S. Allegretti
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Sagar Nigwekar
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | | | - James P. Lash
- Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Sahir Kalim
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
6
|
Wen D, Zheng Z, Surapaneni A, Yu B, Zhou L, Zhou W, Xie D, Shou H, Avila-Pacheco J, Kalim S, He J, Hsu CY, Parsa A, Rao P, Sondheimer J, Townsend R, Waikar SS, Rebholz CM, Denburg MR, Kimmel PL, Vasan RS, Clish CB, Coresh J, Feldman HI, Grams ME, Rhee EP. Metabolite profiling of CKD progression in the chronic renal insufficiency cohort study. JCI Insight 2022; 7:e161696. [PMID: 36048534 PMCID: PMC9714776 DOI: 10.1172/jci.insight.161696] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUNDMetabolomic profiling in individuals with chronic kidney disease (CKD) has the potential to identify novel biomarkers and provide insight into disease pathogenesis.METHODSWe examined the association between blood metabolites and CKD progression, defined as the subsequent development of end-stage renal disease (ESRD) or estimated glomerular filtrate rate (eGFR) halving, in 1,773 participants of the Chronic Renal Insufficiency Cohort (CRIC) study, 962 participants of the African-American Study of Kidney Disease and Hypertension (AASK), and 5,305 participants of the Atherosclerosis Risk in Communities (ARIC) study.RESULTSIn CRIC, more than half of the measured metabolites were associated with CKD progression in minimally adjusted Cox proportional hazards models, but the number and strength of associations were markedly attenuated by serial adjustment for covariates, particularly eGFR. Ten metabolites were significantly associated with CKD progression in fully adjusted models in CRIC; 3 of these metabolites were also significant in fully adjusted models in AASK and ARIC, highlighting potential markers of glomerular filtration (pseudouridine), histamine metabolism (methylimidazoleacetate), and azotemia (homocitrulline). Our findings also highlight N-acetylserine as a potential marker of kidney tubular function, with significant associations with CKD progression observed in CRIC and ARIC.CONCLUSIONOur findings demonstrate the application of metabolomics to identify potential biomarkers and causal pathways in CKD progression.FUNDINGThis study was supported by the NIH (U01 DK106981, U01 DK106982, U01 DK085689, R01 DK108803, and R01 DK124399).
Collapse
Affiliation(s)
- Donghai Wen
- Nephrology Division and
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Zihe Zheng
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Aditya Surapaneni
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland, USA
| | - Bing Yu
- Department of Epidemiology, Human Genetics & Environmental Sciences, University of Texas Health Sciences Center at Houston School of Public Health, Houston, Texas, USA
| | - Linda Zhou
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland, USA
| | - Wen Zhou
- Nephrology Division and
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Dawei Xie
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Haochang Shou
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - Chi-Yuan Hsu
- Division of Nephrology, University of California San Francisco School of Medicine, San Francisco, California, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - Afshin Parsa
- Division of Kidney, Urologic, and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, Maryland, USA
| | - Panduranga Rao
- Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - James Sondheimer
- Division of Nephrology and Hypertension, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Raymond Townsend
- Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sushrut S. Waikar
- Section of Nephrology, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts, USA
| | - Casey M. Rebholz
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland, USA
| | - Michelle R. Denburg
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Pediatric Nephrology, Children’s Hospital of Philadelphia, and
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paul L. Kimmel
- Division of Kidney, Urologic, and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, Maryland, USA
| | - Ramachandran S. Vasan
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
- Sections of Preventive Medicine and Epidemiology and Cardiology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Clary B. Clish
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland, USA
| | - Harold I. Feldman
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Morgan E. Grams
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Medicine, New York University, New York, New York, USA
| | - Eugene P. Rhee
- Nephrology Division and
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
7
|
Garavaglia ML, Giustarini D, Colombo G, Reggiani F, Finazzi S, Calatroni M, Landoni L, Portinaro NM, Milzani A, Badalamenti S, Rossi R, Dalle-Donne I. Blood Thiol Redox State in Chronic Kidney Disease. Int J Mol Sci 2022; 23:ijms23052853. [PMID: 35269995 PMCID: PMC8911004 DOI: 10.3390/ijms23052853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 02/05/2023] Open
Abstract
Thiols (sulfhydryl groups) are effective antioxidants that can preserve the correct structure of proteins, and can protect cells and tissues from damage induced by oxidative stress. Abnormal levels of thiols have been measured in the blood of patients with moderate-to-severe chronic kidney disease (CKD) compared to healthy subjects, as well as in end-stage renal disease (ESRD) patients on haemodialysis or peritoneal dialysis. The levels of protein thiols (a measure of the endogenous antioxidant capacity inversely related to protein oxidation) and S-thiolated proteins (mixed disulphides of protein thiols and low molecular mass thiols), and the protein thiolation index (the molar ratio of the S-thiolated proteins to free protein thiols in plasma) have been investigated in the plasma or red blood cells of CKD and ESRD patients as possible biomarkers of oxidative stress. This type of minimally invasive analysis provides valuable information on the redox status of the less-easily accessible tissues and organs, and of the whole organism. This review provides an overview of reversible modifications in protein thiols in the setting of CKD and renal replacement therapy. The evidence suggests that protein thiols, S-thiolated proteins, and the protein thiolation index are promising biomarkers of reversible oxidative stress that could be included in the routine monitoring of CKD and ESRD patients.
Collapse
Affiliation(s)
- Maria Lisa Garavaglia
- Department of Biosciences (Department of Excellence 2018–2022), Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy; (M.L.G.); (G.C.); (L.L.); (A.M.)
| | - Daniela Giustarini
- Department of Biotechnology, Chemistry and Pharmacy (Department of Excellence 2018–2022), University of Siena, Via A. Moro 2, 53100 Siena, Italy;
| | - Graziano Colombo
- Department of Biosciences (Department of Excellence 2018–2022), Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy; (M.L.G.); (G.C.); (L.L.); (A.M.)
| | - Francesco Reggiani
- Nephrology and Dialysis Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy or (F.R.); (S.F.); or (M.C.); (S.B.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
| | - Silvia Finazzi
- Nephrology and Dialysis Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy or (F.R.); (S.F.); or (M.C.); (S.B.)
| | - Marta Calatroni
- Nephrology and Dialysis Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy or (F.R.); (S.F.); or (M.C.); (S.B.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
| | - Lucia Landoni
- Department of Biosciences (Department of Excellence 2018–2022), Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy; (M.L.G.); (G.C.); (L.L.); (A.M.)
| | - Nicola Marcello Portinaro
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Aldo Milzani
- Department of Biosciences (Department of Excellence 2018–2022), Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy; (M.L.G.); (G.C.); (L.L.); (A.M.)
| | - Salvatore Badalamenti
- Nephrology and Dialysis Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy or (F.R.); (S.F.); or (M.C.); (S.B.)
| | - Ranieri Rossi
- Department of Biotechnology, Chemistry and Pharmacy (Department of Excellence 2018–2022), University of Siena, Via A. Moro 2, 53100 Siena, Italy;
- Correspondence: (R.R.); (I.D.-D.)
| | - Isabella Dalle-Donne
- Department of Biosciences (Department of Excellence 2018–2022), Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy; (M.L.G.); (G.C.); (L.L.); (A.M.)
- Correspondence: (R.R.); (I.D.-D.)
| |
Collapse
|
8
|
Gorisse L, Jaisson S, Piétrement C, Gillery P. Carbamylated Proteins in Renal Disease: Aggravating Factors or Just Biomarkers? Int J Mol Sci 2022; 23:574. [PMID: 35008998 PMCID: PMC8745352 DOI: 10.3390/ijms23010574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023] Open
Abstract
Carbamylation is a nonenzymatic post-translational modification resulting from the reaction between cyanate, a urea by-product, and proteins. In vivo and in vitro studies have demonstrated that carbamylation modifies protein structures and functions, triggering unfavourable molecular and cellular responses. An enhanced formation of carbamylation-derived products (CDPs) is observed in pathological contexts, especially during chronic kidney disease (CKD), because of increased blood urea. Significantly, studies have reported a positive correlation between serum CDPs and the evolutive state of renal failure. Further, serum concentrations of carbamylated proteins are characterized as strong predictors of mortality in end-stage renal disease patients. Over time, it is likely that these modified compounds become aggravating factors and promote long-term complications, including cardiovascular disorders and inflammation or immune system dysfunctions. These poor clinical outcomes have led researchers to consider strategies to prevent or slow down CDP formation. Even if growing evidence suggests the involvement of carbamylation in the pathophysiology of CKD, the real relevance of carbamylation is still unclear: is it a causal phenomenon, a metabolic consequence or just a biological feature? In this review, we discuss how carbamylation, a consequence of renal function decline, may become a causal phenomenon of kidney disease progression and how CDPs may be used as biomarkers.
Collapse
Affiliation(s)
- Laëtitia Gorisse
- MEDyC Unit CNRS UMR n° 7369, Faculty of Medicine, University of Reims Champagne-Ardenne, 51092 Reims, France; (L.G.); (S.J.); (C.P.)
| | - Stéphane Jaisson
- MEDyC Unit CNRS UMR n° 7369, Faculty of Medicine, University of Reims Champagne-Ardenne, 51092 Reims, France; (L.G.); (S.J.); (C.P.)
- Biochemistry Department, University Hospital of Reims, 51092 Reims, France
| | - Christine Piétrement
- MEDyC Unit CNRS UMR n° 7369, Faculty of Medicine, University of Reims Champagne-Ardenne, 51092 Reims, France; (L.G.); (S.J.); (C.P.)
- Pediatrics Department, University Hospital of Reims, 51092 Reims, France
| | - Philippe Gillery
- MEDyC Unit CNRS UMR n° 7369, Faculty of Medicine, University of Reims Champagne-Ardenne, 51092 Reims, France; (L.G.); (S.J.); (C.P.)
- Biochemistry Department, University Hospital of Reims, 51092 Reims, France
| |
Collapse
|
9
|
Do JY, Kim AY, Kang SH. Peritoneal Protein Loss Is Not Associated With Sarcopenia in Peritoneal Dialysis Patients. Front Med (Lausanne) 2021; 8:653807. [PMID: 34336874 PMCID: PMC8316630 DOI: 10.3389/fmed.2021.653807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/17/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Maintenance of a peritoneal membrane is essential for maintaining long-term peritoneal dialysis (PD). Peritoneal protein loss (PPL) is basically the loss of an essential nutrient, which may lead to malnutrition. We aimed to evaluate the association between PPL and sarcopenia in PD patients. Methods: We conducted a cross-sectional study from September 2017 to November 2020 on all PD patients (n = 199). Finally, the patients were divided into tertiles based on the PPL level as follows: low, middle, and high. PPL (mg/day), appendicular lean mass (ALM) using dual-energy X-ray absorptiometry, and handgrip strength (HGS) were evaluated. Sarcopenia was defined using cut-off values from the Asian Working Group for Sarcopenia. Results: The median PPL (interquartile range, interval) in the low, middle, and high tertiles were 4,229 (904, 1,706–5,111), 6,160 (760, 5,118–7,119), and 8,543 (2,284, 7,145–24,406) mg/day, respectively. HGS in the low, middle, and high tertiles was 23.4 ± 9.2, 23.8 ± 8.9, and 23.6 ± 8.3 kg, respectively (P = 0.967). The ALM index in the low, middle, and high tertiles was 6.0 ± 1.3, 6.0 ± 1.2, and 6.5 ± 1.1 kg/m2, respectively (P = 0.061). Multivariate analyses did not reveal significant differences in HGS and ALM index in among tertiles. The proportions of patients with sarcopenia in the low, middle, and high tertiles was 24 (36.4%), 19 (28.4%), and 21 (31.8%), respectively (P = 0.612). Conclusion: The present study showed that PPL is not independently associated with muscle mass, strength, and sarcopenia in PD patients.
Collapse
Affiliation(s)
- Jun Young Do
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Yeungnam University, Daegu, South Korea
| | - A Young Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Seok Hui Kang
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Yeungnam University, Daegu, South Korea
| |
Collapse
|
10
|
Mikhailova NA. The value of a low-protein diet and ketoanalogues of essential amino acids in the сontrol of protein carbamylation and toxic effects of urea in chronic kidney disease. TERAPEVT ARKH 2021; 93:729-735. [DOI: 10.26442/00403660.2021.06.200915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 07/10/2021] [Indexed: 11/22/2022]
Abstract
Chronic kidney disease (CKD) is characterized by high mortality from cardiovascular diseases, the development of which is facilitated by traditional risk factors (typical for the general population) and by nontraditional ones (specific to patients with CKD) as well. These factors include also uremic toxins, for which a causal relationship has been established with specific pathological processes in patients with CKD, comprising the development of vascular dysfunction and accelerated progression of atherosclerosis. Urea has long been considered not as a uremic toxin, but as a marker of metabolic imbalance or dialysis efficiency (Kt/V) in CKD patients. In recent years, more and more publications have appeared on the study of the toxic effects of urea with the development of toxic-uremic complications and the phenotype of premature aging, common in CKD. It was found that an increase in urea levels in uremic syndrome causes damage to the intestinal epithelial barrier with translocation of bacterial toxins into the bloodstream and the development of systemic inflammation, provokes apoptosis of vascular smooth muscle cells, as well as endothelial dysfunction, which directly contributes to the development of cardiovascular complications. The indirect effects of increased urea levels are associated with carbamylation reactions, when isocyanic acid (a product of urea catabolism) changes the structure and function of proteins in the body. Carbamylation of proteins in CKD patients is associated with the development of renal fibrosis, atherosclerosis and anemia. Thus, urea is now regarded as an important negative agent in the pathogenesis of complications in CKD. Studies on a low-protein diet with using ketoanalogues of essential amino acids to minimize the accumulation of urea and other uremic toxins demonstrate the clinical benefit of such an intervention in slowing the progression of CKD and the development of cardiovascular complications.
Collapse
|
11
|
Cozzolino M, Magagnoli L, Ciceri P, Conte F, Galassi A. Effects of a medium cut-off (Theranova ®) dialyser on haemodialysis patients: a prospective, cross-over study. Clin Kidney J 2021; 14:382-389. [PMID: 33564442 PMCID: PMC7857781 DOI: 10.1093/ckj/sfz155] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/02/2019] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Despite significant advances in haemodialysis (HD) in recent decades, current dialysis techniques are limited by inadequate removal of uraemic solutes such as middle molecules and protein-bound uraemic toxins. Novel medium cut-off (MCO) membrane or 'expanded haemodialysis' (HDx) provides diffusive removal of conventional and large middle molecular weight uraemic toxins, with marginal albumin leak. METHODS This prospective, open-label, controlled, cross-over pilot study compared HDx (novel MCO membrane Theranova® 400) and conventional HD in 20 prevalent HD patients. Biochemical, dialysis adequacy and safety measures (adverse events, infections and hospitalization frequency) were recorded. Ten patients underwent conventional HD high-flux dialyser and 10 patients underwent HDx for 3 months, and the patients then switched and received the other treatment for a further 3 months. RESULTS Treatment with HDx was associated with a significant reduction in serum albumin concentration [median (interquartile range) reduction -0.45 g/dL (-0.575 to -0.05); P = 0.025]. However, median albumin levels were ≥3.5 g/dL and no patients had clinical symptoms of hypoalbuminaemia or needed intravenous albumin administration. The number of infections was lower in patients treated with HDx (n = 7/19) compared with patients treated with HD (n = 14/20; P = 0.03). Patients treated with HDx had reduced levels of interleukin (IL)-1β (from 0.06 ± 0.02 pg/mL versus 0.28 ± 0.18 pg/mL with HD) and IL-6 (6.45 ± 1.57 pg/mL versus 9.48 ± 2.15 pg/mL), while tumour necrosis factor-α levels remain unchanged. CONCLUSIONS This study demonstrates that the chronic use of the novel MCO dialyser Theranova® appears to be safe and well-tolerated, without serious side effects or hypoalbuminaemia, as well as fewer infections. These results need to be confirmed in larger randomized clinical trials.
Collapse
Affiliation(s)
- Mario Cozzolino
- Renal Division, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Lorenza Magagnoli
- Renal Division, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Paola Ciceri
- Renal Research Laboratory, Department of Nephrology, Dialysis and Renal Transplant, Fondazione Ca’ Granda IRCCS, Ospedale Maggiore Policlinico, Milan, Italy
| | - Ferruccio Conte
- Renal Division, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Andrea Galassi
- Renal Division, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| |
Collapse
|
12
|
Kimura H, Sy J, Okuda Y, Wenziger C, Hanna R, Obi Y, Rhee CM, Kovesdy CP, Kalantar-Zadeh K, Streja E. A faster decline of residual kidney function and erythropoietin stimulating agent hyporesponsiveness in incident hemodialysis patients. Hemodial Int 2020; 25:60-70. [PMID: 33034069 DOI: 10.1111/hdi.12877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Erythropoietin stimulating agents (ESA) hyporesposiveness has been associated with increased mortality in hemodialysis (HD) patients. However, the impact of decline of residual kidney function (RKF) on ESA hyporesposiveness has not been adequately elucidated among patients receiving HD. METHODS The associations of RKF decline with erythropoietin resistance index (ERI; average weekly ESA dose [units])/post-dialysis body weight [kg]/hemoglobin [g/dL]) were retrospectively examined across four strata of annual change in RKF (residual renal urea clearance [KRU] < -3.0, -3.0 to <-1.5, -1.5 to <0, ≥0 mL/min/1.73 m2 per year; urinary volume < -600, -600 to<-300, -300 to <0, ≥0 mL/day per year) using logistic regression models adjusted for clinical characteristics and laboratory variables in 5239 incident HD patients in a large US dialysis organization between 1 January 2007 and 31 December 2011. FINDINGS The median values of the annual change in KRU and urinary volume were -1.2 (interquartile range [IQR]: -2.8 to 0.1) mL/min/1.73 m2 per year and -250 (IQR: -600 to 100) mL/day per year. A faster KRU decline in the first year of HD was associated with higher odds for ESA hyporesponsiveness: KRU decline of <-3.0, -3.0 to <-1.5, and -1.5 to <0/min/1.73 m2 per year were associated with adjusted odds ratios (OR) of 2.07 (95% confidence interval [CI]: 1.66-2.58), 1.54 (95%CI: 1.28-1.85), and 1.26 (95%CI: 1.07-1.49), respectively (reference: ≥0 mL/min/1.73 m2 per year). These associations were consistent across strata of baseline KRU, age, sex, race, diabetes, congestive heart failure, hemoglobin, and serum albumin. Sensitivity analyses using urinary volume as another index of RKF showed consistent associations. DISCUSSION A faster RKF decline during the first year of dialysis was associated with ESA hyporesponsiveness and low hemoglobin levels among incident HD patients.
Collapse
Affiliation(s)
- Hiroshi Kimura
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, University of California Irvine, School of Medicine, Orange, California, USA
| | - John Sy
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, University of California Irvine, School of Medicine, Orange, California, USA.,Nephrology Section, Tibor Rubin VA Medical Center, Long Beach, California, USA
| | - Yusuke Okuda
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, University of California Irvine, School of Medicine, Orange, California, USA.,Department of Pediatrics, Kitasato University School of Medicine
| | - Cachet Wenziger
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, University of California Irvine, School of Medicine, Orange, California, USA
| | - Ramy Hanna
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, University of California Irvine, School of Medicine, Orange, California, USA
| | - Yoshitsugu Obi
- Division of Nephrology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Connie M Rhee
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, University of California Irvine, School of Medicine, Orange, California, USA
| | - Csaba P Kovesdy
- Nephrology Section, Memphis Veterans Affairs Medical Center, Memphis, Tennessee, USA.,Division of Nephrology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Kamyar Kalantar-Zadeh
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, University of California Irvine, School of Medicine, Orange, California, USA.,Nephrology Section, Tibor Rubin VA Medical Center, Long Beach, California, USA
| | - Elani Streja
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, University of California Irvine, School of Medicine, Orange, California, USA.,Nephrology Section, Tibor Rubin VA Medical Center, Long Beach, California, USA
| |
Collapse
|
13
|
Wozniak JM, Mills RH, Olson J, Caldera JR, Sepich-Poore GD, Carrillo-Terrazas M, Tsai CM, Vargas F, Knight R, Dorrestein PC, Liu GY, Nizet V, Sakoulas G, Rose W, Gonzalez DJ. Mortality Risk Profiling of Staphylococcus aureus Bacteremia by Multi-omic Serum Analysis Reveals Early Predictive and Pathogenic Signatures. Cell 2020; 182:1311-1327.e14. [PMID: 32888495 PMCID: PMC7494005 DOI: 10.1016/j.cell.2020.07.040] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/11/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022]
Abstract
Staphylococcus aureus bacteremia (SaB) causes significant disease in humans, carrying mortality rates of ∼25%. The ability to rapidly predict SaB patient responses and guide personalized treatment regimens could reduce mortality. Here, we present a resource of SaB prognostic biomarkers. Integrating proteomic and metabolomic techniques enabled the identification of >10,000 features from >200 serum samples collected upon clinical presentation. We interrogated the complexity of serum using multiple computational strategies, which provided a comprehensive view of the early host response to infection. Our biomarkers exceed the predictive capabilities of those previously reported, particularly when used in combination. Last, we validated the biological contribution of mortality-associated pathways using a murine model of SaB. Our findings represent a starting point for the development of a prognostic test for identifying high-risk patients at a time early enough to trigger intensive monitoring and interventions.
Collapse
Affiliation(s)
- Jacob M Wozniak
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Collaborative to Halt Antibiotic-Resistant Microbes, University of California, San Diego, La Jolla, CA 92093, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA
| | - Robert H Mills
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Collaborative to Halt Antibiotic-Resistant Microbes, University of California, San Diego, La Jolla, CA 92093, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joshua Olson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Collaborative to Halt Antibiotic-Resistant Microbes, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - J R Caldera
- Collaborative to Halt Antibiotic-Resistant Microbes, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Gregory D Sepich-Poore
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Marvic Carrillo-Terrazas
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Collaborative to Halt Antibiotic-Resistant Microbes, University of California, San Diego, La Jolla, CA 92093, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chih-Ming Tsai
- Collaborative to Halt Antibiotic-Resistant Microbes, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Fernando Vargas
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rob Knight
- Collaborative to Halt Antibiotic-Resistant Microbes, University of California, San Diego, La Jolla, CA 92093, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA
| | - George Y Liu
- Collaborative to Halt Antibiotic-Resistant Microbes, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Victor Nizet
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Collaborative to Halt Antibiotic-Resistant Microbes, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - George Sakoulas
- Collaborative to Halt Antibiotic-Resistant Microbes, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Warren Rose
- School of Pharmacy, School of Medicine and Public Health University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Medicine, School of Medicine and Public Health University of Wisconsin-Madison, Madison, WI 53705, USA
| | - David J Gonzalez
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Collaborative to Halt Antibiotic-Resistant Microbes, University of California, San Diego, La Jolla, CA 92093, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
14
|
Lim K, Kalim S. The Role of Nonenzymatic Post-translational Protein Modifications in Uremic Vascular Calcification. Adv Chronic Kidney Dis 2019; 26:427-436. [PMID: 31831121 DOI: 10.1053/j.ackd.2019.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 01/11/2023]
Abstract
Considerable technological advances have enabled the identification and linkage of nonenzymatic post-translationally modified proteins to the pathogenesis of cardiovascular disease (CVD) in patients with kidney failure. Through processes such as the nonenzymatic carbamylation reaction as well as the formation of advanced glycation end products, we now know that protein modifications are invariably associated with the development of CVD beyond a mere epiphenomenon and this has become an important focus of nephrology research in recent years. Although the specific mechanisms by which protein modifications occurring in kidney failure that may contribute to CVD are diverse and include pathways such as inflammation and fibrosis, vascular calcification has emerged as a distinct pathological sequelae of protein modifications. In this review, we consider the biological mechanisms and clinical relevance of protein carbamylation and advanced glycation end products in CVD development with a focus on vascular calcification.
Collapse
|
15
|
Di Iorio BR, Marzocco S, Bellasi A, De Simone E, Dal Piaz F, Rocchetti MT, Cosola C, Di Micco L, Gesualdo L. Nutritional therapy reduces protein carbamylation through urea lowering in chronic kidney disease. Nephrol Dial Transplant 2019; 33:804-813. [PMID: 28992314 DOI: 10.1093/ndt/gfx203] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/28/2017] [Indexed: 11/13/2022] Open
Abstract
Background Protein carbamylation is one of the non-enzymatic reactions involved in protein molecular ageing. We sought to investigate the relationship between urea levels and protein carbamylation, and whether a Mediterranean diet (MD) and a very low protein diet (VLPD) reduce protein carbamylation through reduction in urea levels in patients with chronic kidney disease (CKD). Methods This is a prospective, randomized, crossover controlled trial that investigated 60 patients with CKD grades 3B-4 (46 males, mean age of 67 years). The enrolled CKD patients were randomly assigned (1:1) to two different nutritional treatment arms: (i) 3 months of free diet (FD), 6 months of VLPD, 3 months of FD and 6 months of MD; and (ii) 3 months of FD, 6 months of MD, 3 months of FD and 6 months of VLPD. Blood levels of lysine (Lys) and homocitrulline (Hcit) and their ratio were used as markers of cyanate levels. Due to a lack of pre-existing data on the potential effects of different dietary regimens and in light of the exploratory nature of the study, no formal sample size estimation was carried out. Results At study completion, lower diastolic blood pressure and decreased serum levels of urea, sodium, phosphorus and parathyroid hormone, but higher serum levels of bicarbonate and haemoglobin, were noted with MD and VLPD. When compared with FD, both MD and VLPD were also associated with a decrease in serum Hcit levels and Hcit/Lys ratios (P < 0.001). Notably, reductions in urea levels correlated with substantial reductions in Hcit levels (R2 = 0.16 and 0.17 for VLPD and MD, respectively). Conclusion In conclusion, nutritional treatments that significantly decrease serum levels of urea are associated with reduced protein carbamylation.
Collapse
Affiliation(s)
- Biagio R Di Iorio
- Division of Nephrology and Dialysis, 'A. Landolfi Hospital', Solofra (AV), Italy
| | - Stefania Marzocco
- Department of Pharmacology, University of Salerno, Fisciano (SA), Italy
| | - Antonio Bellasi
- Department of Nephrology and Dialysis, ASST-Lariana, Ospedale S. Anna, Como, Italy
| | - Emanuele De Simone
- Department of Nephrology and Dialysis, AORN 'San Giuseppe Moscati', Avellino, Italy
| | - Fabrizio Dal Piaz
- Department of Pharmacology, University of Salerno, Fisciano (SA), Italy
| | - Maria Teresa Rocchetti
- Division of Nephrology, Dialysis, and Transplantation, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Carmela Cosola
- Division of Nephrology, Dialysis, and Transplantation, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Lucia Di Micco
- Division of Nephrology and Dialysis, 'A. Landolfi Hospital', Solofra (AV), Italy
| | - Loreto Gesualdo
- Division of Nephrology, Dialysis, and Transplantation, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| |
Collapse
|
16
|
Protein carbamylation in end stage renal disease: is there a mortality effect? Curr Opin Nephrol Hypertens 2019; 27:454-462. [PMID: 30148723 DOI: 10.1097/mnh.0000000000000454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW Protein carbamylation is a posttranslational protein modification caused, in part, by exposure to urea's dissociation product cyanate. Additional modulators of protein carbamylation include circulating free amino acid levels, inflammation, diet, smoking, and environmental pollution exposures. Carbamylation reactions can modify protein charge, structure, and function, leading to adverse molecular and cellular responses. These changes have been linked to several pathologic biochemical pathways relevant to patients with end stage renal disease (ESRD) such as accelerated atherosclerosis and dysfunctional erythropoiesis, among others. This review examines the consequences of human protein carbamylation and the clinical impact this is thought to have in patients with ESRD. RECENT FINDINGS Recent well-conducted studies across diverse cohorts of patients have independently associated elevations in protein carbamylation to mortality and morbidity in patients with ESRD. Studies are now examining the best strategies to reduce carbamylation load, including interventions aimed at lowering urea levels and restoring amino acid balance. Whether such carbamylation lowering strategies yield clinical improvements remain to be determined. SUMMARY Numerous fundamental studies provide plausible mechanisms for the observed association between protein carbamylation burden and adverse clinical outcomes in ESRD. Studies employing nutritional and dialytic interventions to lower carbamylation may mitigate this risk but the net clinical benefit has not been established.
Collapse
|
17
|
Abstract
Protein carbamylation is a nonenzymatic posttranslational protein modification that can be driven, in part, by exposure to urea's dissociation product, cyanate. In humans, when kidney function is impaired and urea accumulates, systemic protein carbamylation levels increase. Additional mediators of protein carbamylation have been identified including inflammation, diet, smoking, circulating free amino acid levels, and environmental exposures. Carbamylation reactions on proteins are capable of irreversibly changing protein charge, structure, and function, resulting in pathologic molecular and cellular responses. Carbamylation has been mechanistically linked to the biochemical pathways implicated in atherosclerosis, dysfunctional erythropoiesis, kidney fibrosis, autoimmunity, and other pathological domains highly relevant to patients with chronic kidney disease. In this review, we describe the biochemical impact of carbamylation on human proteins, the mechanistic role carbamylation can have on clinical outcomes in kidney disease, the clinical association studies of carbamylation in chronic kidney disease, including patients on dialysis, and the promise of therapies aimed at reducing carbamylation burden in this vulnerable patient population.
Collapse
Affiliation(s)
- Joshua Long
- Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Xavier Vela Parada
- Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Sahir Kalim
- Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
18
|
Jaisson S, Pietrement C, Gillery P. Protein Carbamylation: Chemistry, Pathophysiological Involvement, and Biomarkers. Adv Clin Chem 2018; 84:1-38. [PMID: 29478512 DOI: 10.1016/bs.acc.2017.12.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Protein carbamylation refers to a nonenzymatic modification, which consists in the binding of isocyanic acid on protein functional groups. This reaction is responsible for the alteration in structural and functional properties of proteins, which participate in their molecular aging. Protein molecular aging is now considered a molecular substratum for the development of chronic and inflammatory diseases, including atherosclerosis, chronic kidney disease, or rheumatoid arthritis. As a consequence, carbamylation-derived products have been proposed as interesting biomarkers in various pathological contexts and appropriate analytical methods have been developed for their quantification in biological fluids. The purpose of this review is (i) to describe the biochemical bases of the carbamylation reaction, (ii) to explain how it contributes to protein molecular aging, (iii) to provide evidence of its involvement in aging and chronic diseases, and (iv) to list the available biomarkers of carbamylation process and the related analytical methods.
Collapse
|
19
|
Kang SS, Mun KC, Seo JH, Choe M, Ha E. Cyanate improves insulin sensitivity and hepatic steatosis in normal and high fat-fed mice: Anorexic and antioxidative effects. Chem Biol Interact 2017; 279:121-128. [PMID: 29113807 DOI: 10.1016/j.cbi.2017.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/06/2017] [Accepted: 10/30/2017] [Indexed: 10/18/2022]
Abstract
Obesity is an important contributing factor to progression of chronic kidney disease. Cyanate, known as uremic toxin, is an electrophile produced spontaneously from urea or by myeloperoxidase-catalyzed oxidation of thiocyanate. Herein, we explored metabolic effects of cyanate in normal chow diet (NCD)- and high fat diet (HFD)-fed mice. Mice were treated with cyanate (1 mg/mL in drinking water) and fed NCD or HFD. Peritoneal glucose tolerance test (PGTT) and insulin tolerance test (ITT) were performed. Blood urea nitrogen (BUN) and creatinine concentrations were determined. Kidney and liver tissues were analyzed for reactive oxygen species (ROS) and lipid accumulations. Human albumin was carbamylated and evaluated for ROS scavenging activities. Contrary to our expectations, we found that cyanate treatment improved increased insulin sensitivity and alleviated hepatic steatosis in NCD- and HFD-fed mice. PGTT and ITT revealed faster and immediate glucose clearance in cyanate-treated NCD- and HFD-fed mice. Histological analysis of kidney and serum levels of BUN and creatinine showed no significant differences between cyanate-treated and control mice groups. Cyanate treatment reduced appetite and body weight in both NCD- and HFD-fed mice groups. Cyanate also decreased lipid peroxidation levels in the sera and the kidney, attenuated ROS levels in the kidney, which lead us to the findings that cAlb significantly reduced ROS levels compared to Alb in Caki-1 kidney and human umbilical vein endothelial cells. The results in this study may indicate that cyanate improves insulin sensitivity and hepatic steatosis possibly via exerting anorexic and antioxidative effects.
Collapse
Affiliation(s)
- Seong Sik Kang
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Republic of Korea; Keimyung University Kidney Institute, Daegu, Republic of Korea
| | - Kyo-Cheol Mun
- Department of Biochemistry, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Ji Hae Seo
- Department of Biochemistry, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Misun Choe
- Keimyung University Kidney Institute, Daegu, Republic of Korea; Department of Pathology, Keimyung University School of Medicine, Daegu, Republic of Korea.
| | - Eunyoung Ha
- Keimyung University Kidney Institute, Daegu, Republic of Korea; Department of Biochemistry, Keimyung University School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
20
|
Delanghe S, Delanghe JR, Speeckaert R, Van Biesen W, Speeckaert MM. Mechanisms and consequences of carbamoylation. Nat Rev Nephrol 2017; 13:580-593. [PMID: 28757635 DOI: 10.1038/nrneph.2017.103] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein carbamoylation is a non-enzymatic post-translational modification that binds isocyanic acid, which can be derived from the dissociation of urea or from the myeloperoxidase-mediated catabolism of thiocyanate, to the free amino groups of a multitude of proteins. Although the term 'carbamoylation' is usually replaced by the term "carbamylation" in the literature, carbamylation refers to a different chemical reaction (the reversible interaction of CO2 with α and ε-amino groups of proteins). Depending on the altered molecule (for example, collagen, erythropoietin, haemoglobin, low-density lipoprotein or high-density lipoprotein), carbamoylation can have different pathophysiological effects. Carbamoylated proteins have been linked to atherosclerosis, lipid metabolism, immune system dysfunction (such as inhibition of the classical complement pathway, inhibition of complement-dependent rituximab cytotoxicity, reduced oxidative neutrophil burst, and the formation of anti-carbamoylated protein antibodies) and renal fibrosis. In this Review, we discuss the carbamoylation process and evaluate the available biomarkers of carbamoylation (for example, homocitrulline, the percentage of carbamoylated albumin, carbamoylated haemoglobin, and carbamoylated low-density lipoprotein). We also discuss the relationship between carbamoylation and the occurrence of cardiovascular events and mortality in patients with chronic kidney disease and assess the effects of strategies to lower the carbamoylation load.
Collapse
Affiliation(s)
- Sigurd Delanghe
- Department of Nephrology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Joris R Delanghe
- Department of Clinical Chemistry, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Reinhart Speeckaert
- Department of Clinical Chemistry, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Wim Van Biesen
- Department of Nephrology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
21
|
Urea, a true uremic toxin: the empire strikes back. Clin Sci (Lond) 2017; 131:3-12. [PMID: 27872172 DOI: 10.1042/cs20160203] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 09/12/2016] [Accepted: 09/28/2016] [Indexed: 01/18/2023]
Abstract
Blood levels of urea rise with progressive decline in kidney function. Older studies examining acute urea infusion suggested that urea was well-tolerated at levels 8-10× above normal values. More recent in vitro and in vivo work argue the opposite and demonstrate both direct and indirect toxicities of urea, which probably promote the premature aging phenotype that is pervasive in chronic kidney disease (CKD). Elevated urea at concentrations typically encountered in uremic patients induces disintegration of the gut epithelial barrier, leading to translocation of bacterial toxins into the bloodstream and systemic inflammation. Urea induces apoptosis of vascular smooth muscle cells as well as endothelial dysfunction, thus directly promoting cardiovascular disease. Further, urea stimulates oxidative stress and dysfunction in adipocytes, leading to insulin resistance. Finally, there are widespread indirect effects of elevated urea as a result of the carbamylation reaction, where isocyanic acid (a product of urea catabolism) alters the structure and function of proteins in the body. Carbamylation has been linked with renal fibrosis, atherosclerosis and anaemia. In summary, urea is a re-emerging Dark Force in CKD pathophysiology. Trials examining low protein diet to minimize accumulation of urea and other toxins suggest a clinical benefit in terms of slowing progression of CKD.
Collapse
|
22
|
Locatelli F, Andrulli S, Viganò SM, Concetti M, Urbini S, Giacchino F, Broccoli R, Aucella F, Cossu M, Conti P, Fattori L, Punzo G, Angelini D, Peruzzini M, Di Giulio S, Piroddi M, Galli F, Del Vecchio L. Evaluation of the Impact of a New Synthetic Vitamin E-Bonded Membrane on the Hypo-Responsiveness to the Erythropoietin Therapy in Hemodialysis Patients: A Multicenter Study. Blood Purif 2017; 43:338-345. [PMID: 28249254 DOI: 10.1159/000453442] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/15/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Oxidative stress has been related to hypo-response to erythropoiesis-stimulating agents (ESAs) in hemodialysis (HD) patients. The aim of this study was to verify whether vitamin E (ViE) on a synthetic polysulfone dialyzer can improve ESA responsiveness. METHODS This controlled, multicenter study involved 93 HD patients on stable ESA therapy, who were randomized to either ViE-coated polysulfone dialyzer or to a low-flux synthetic dialyzer. The primary outcome measure was the change in ESA resistance index (ERI) from baseline. RESULTS Mean ERI decreased in the ViE group by 1.45 IU/kg*g/dl and increased in the control group by 0.53 IU/kg*g/dl, with a mean difference of 1.98 IU/kg*g/dl (p = 0.001 after adjusting for baseline ERI, as foreseen by the study protocol). Baseline ERI was inversely related to its changes during follow-up only in the control group (R2 = 0.29). CONCLUSIONS The ViE dialyzer can improve ESA response in HD patients. Changes in ERI during follow-up are independent from baseline ERI only in the ViE group. Video Journal Club 'Cappuccino with Claudio Ronco' at http://www.karger.com/?doi=453442.
Collapse
Affiliation(s)
- Francesco Locatelli
- Department of Nephrology and Dialysis of Alessandro Manzoni Hospital, Lecco, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kalim S, Trottier CA, Wenger JB, Wibecan J, Ahmed R, Ankers E, Karumanchi SA, Thadhani R, Berg AH. Longitudinal Changes in Protein Carbamylation and Mortality Risk after Initiation of Hemodialysis. Clin J Am Soc Nephrol 2016; 11:1809-1816. [PMID: 27445162 PMCID: PMC5053789 DOI: 10.2215/cjn.02390316] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/20/2016] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Carbamylation describes a post-translational protein modification associated with adverse outcomes in ESRD, but the risk implications of changes in carbamylation over time are not well understood. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We investigated the 1-year natural history of protein carbamylation in patients initiating maintenance hemodialysis and determined the prognostic value of longitudinal carbamylation changes in relation to mortality. In a nested patient-control study, we measured serial carbamylated albumin concentrations in select participants from a large incident dialysis cohort followed from 2004 to 2005 (n=10,044); 122 individuals who survived at least 90 days but died within 1 year of initiating hemodialysis (patients) were randomly selected along with 244 individuals who survived for at least 1 year (controls; matched for demographics). Carbamylated albumin concentration was measured using plasma collected at dialysis initiation and every subsequent 90-day period until 1 year or death. RESULTS Baseline carbamylated albumin concentration was similar between controls and patients (mean±SD; 18.9±0.7 and 19.8±1.1 mmol/mol, respectively; P=0.94). From dialysis initiation to day 90, carbamylated albumin concentration markedly fell in all patients, with controls -9.9±0.8 mmol/mol (P<0.001) and patients -10.0±1.2 mmol/mol (P<0.001). Adjusted repeated measures analysis of carbamylated albumin concentration from dialysis initiation to 1 year or death showed that the mean change (95% confidence interval) in carbamylated albumin concentration from baseline to final measure differed significantly between groups (-9.3; 95% confidence interval, -10.8 to -7.7 for controls and -6.3; 95% confidence interval, -7.7 to -2.8 for patients; P<0.01). There were no such between-group differences in blood urea levels, Kt/V, or normalized protein catabolic rate. Mortality prediction assessed using c statistics showed that carbamylated albumin concentration, when modeled continuously as the difference from baseline to final, improved a fully adjusted model from 0.76 to 0.87 (P=0.03). CONCLUSIONS Protein carbamylation decreased with dialysis initiation, and a greater reduction over time was associated with a lower risk for mortality. Carbamylation changes were able to predict individuals' mortality risk beyond traditional variables, including markers of dialysis adequacy and nutrition.
Collapse
Affiliation(s)
- Sahir Kalim
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; and
| | - Caitlin A. Trottier
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; and
| | - Julia B. Wenger
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; and
| | - Josh Wibecan
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; and
| | - Rayhnuma Ahmed
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; and
| | - Elizabeth Ankers
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; and
| | - S. Ananth Karumanchi
- Department of Medicine, Division of Nephrology and Center for Vascular Biology Research and
| | - Ravi Thadhani
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; and
| | - Anders H. Berg
- Department of Pathology, Division of Clinical Chemistry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
24
|
Perl J, Kalim S, Wald R, Goldstein MB, Yan AT, Noori N, Kiaii M, Wenger J, Chan C, Thadhani RI, Karumanchi SA, Berg AH. Reduction of carbamylated albumin by extended hemodialysis. Hemodial Int 2016; 20:510-521. [PMID: 27329430 DOI: 10.1111/hdi.12435] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction Among conventional hemodialysis (CHD) patients, carbamylated serum albumin (C-Alb) correlates with urea and amino acid deficiencies and is associated with mortality. We postulated that reduction of C-Alb by intensive HD may correlate with improvements in protein metabolism and cardiac function. Methods One-year observational study of in-center nocturnal extended hemodialysis (EHD) patients and CHD control subjects. Thirty-three patients receiving 4-hour CHD who converted to 8-hour EHD were enrolled, along with 20 controls on CHD. Serum C-Alb, biochemistries, and cardiac MRI parameters were measured before and after 12 months of EHD. Findings EHD was associated with reduction of C-Alb (average EHD change -3.20 mmol/mol [95% CI -4.23, -2.17] compared to +0.21 [95% CI -1.11, 1.54] change in CHD controls, P < 0.001). EHD was also associated with increases in average essential amino acids (in standardized units) compared to CHD (+0.38 [0.08, 0.68 95%CI]) vs. -0.12 [-0.50, 0.27, 95% CI], P = 0.047). Subjects who reduced C-Alb more than 25% were found to have reduced left ventricular mass, increased urea reduction ratio, and increased serum albumin compared to nonresponders, and % change in C-Alb significantly correlated with % change in left ventricular mass. Discussion EHD was associated with reduction of C-Alb as compared to CHD, and reduction of C-Alb by EHD correlates with reduction of urea. Additional studies are needed to test whether reduction of C-Alb by EHD also correlates with improved clinical outcomes.
Collapse
Affiliation(s)
- Jeffrey Perl
- Division of Nephrology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.
| | - Sahir Kalim
- Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ron Wald
- Division of Nephrology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Marc B Goldstein
- Division of Nephrology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Andrew T Yan
- Division of Cardiology, Department of Medicine, Terrence Donnelly Heart Center, St. Michael's Hospital, University of Toronto, Ontario, Canada
| | - Nazanin Noori
- Division of Nephrology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Mercedeh Kiaii
- Division of Nephrology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julia Wenger
- Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Christopher Chan
- Department of Medicine, Division of Nephrology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Ravi I Thadhani
- Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - S Ananth Karumanchi
- Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Anders H Berg
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School.
| |
Collapse
|
25
|
Chait Y, Kalim S, Horowitz J, Hollot CV, Ankers ED, Germain MJ, Thadhani RI. The greatly misunderstood erythropoietin resistance index and the case for a new responsiveness measure. Hemodial Int 2016; 20:392-8. [PMID: 26843352 DOI: 10.1111/hdi.12407] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction The optimal use of erythropoiesis stimulating agents (ESAs) to treat anemia in end stage renal disease remains controversial due to reported associations with adverse events. In analyzing these associations, studies often utilize ESA resistance indices (ERIs), to characterize a patient's response to ESA. In this study, we examine whether ERI is an adequate measure of ESA resistance. Methods We used retrospective data from a nonconcurrent cohort study of incident hemodialysis patients in the United States (n = 9386). ERI is defined as average weekly erythropoietin (EPO) dose per kg body weight (wt) per average hemoglobin (Hgb), over a 3-month period (ERI = (EPO/wt)/Hgb). Linear regression was used to demonstrate the relationship between ERI and weight-adjusted EPO. The coefficient of variation was used to compare the variability of Hgb with that of weight-adjusted EPO to explain this relationship. This analysis was done for each quarter during the first year of dialysis. Findings ERI is strongly linearly related with weight-adjusted EPO dose in each of the four quarters by the equation ERI = 0.0899*(EPO/wt) (range of R(2) = 0.97-0.98) and weakly linearly related to 1/Hgb (range of R(2) = 0.06-0.16). These correlations hold independent of age, sex, hgb level, ERI level, and epo-naïve stratifications. Discussion ERI is strongly linearly related to weight-adjusted (and nonweight-adjusted) EPO dose by a "universal," not patient-specific formula, and thus is a surrogate of EPO dose. Therefore, associations between ERI and clinical outcomes are associations between a confounded EPO dose and those outcomes.
Collapse
Affiliation(s)
- Yossi Chait
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA, USA
| | - Sahir Kalim
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joseph Horowitz
- Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA, USA
| | - Christopher V Hollot
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, USA
| | - Elizabeth D Ankers
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael J Germain
- Baystate Medical Center, Springfield, and Tufts University School of Medicine, MA, USA
| | - Ravi I Thadhani
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
de Seigneux S, Lundby AKM, Berchtold L, Berg AH, Saudan P, Lundby C. Increased Synthesis of Liver Erythropoietin with CKD. J Am Soc Nephrol 2016; 27:2265-9. [PMID: 26757994 DOI: 10.1681/asn.2015050508] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 12/01/2015] [Indexed: 12/13/2022] Open
Abstract
Anemia of CKD seems to be related to impaired production of renal erythropoietin (Epo). The glycosylation pattern of Epo depends on the synthesizing cell and thus, can indicate its origin. We hypothesized that synthesis of Epo from nonkidney cells increases to compensate for insufficient renal Epo production during CKD. We determined plasma Epo levels and Epo glycosylation patterns in 33 patients with CKD before undergoing dialysis and nine patients with CKD undergoing dialysis. We compared these values with values obtained in healthy volunteers and other controls. Although patients with CKD before undergoing dialysis had median (interquartile range) Epo levels higher than those of healthy controls (13.8 IU/L; interquartile range, 10.0-20.7 IU/L versus 8.4 IU/L; interquartile range, 7.6-9.0 IU/L; P<0.01), these patients were moderately anemic (mean±SD; hemoglobin =118±17 g/L). Detected as the percentage of migrated isoforms (PMI), Epo glycosylation in patients with CKD before undergoing dialysis (PMI=36.1±11.7%) differed from that in healthy controls (PMI=9.2±3.8%; P<0.01) but not from that in umbilical cord plasma (PMI=53.9±10.6%; P>0.05), which contains mainly liver-derived Epo. Furthermore, glycosylation modification correlated with eGFR loss. These results suggest that patients with CKD maintain persistent Epo synthesis despite declining renal function, and this maintenance may result in part from increased liver Epo synthesis.
Collapse
Affiliation(s)
- Sophie de Seigneux
- Service of Nephrology, Department of Internal Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland; National Center of Competence in Research Kidney.CH,
| | - Anne-Kristine Meinild Lundby
- Center for Integrative Human Physiology, Institute of Physiology, University of Zürich, Zurich, Switzerland; and
| | - Lena Berchtold
- Service of Nephrology, Department of Internal Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland
| | - Anders H Berg
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Patrick Saudan
- Service of Nephrology, Department of Internal Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland
| | - Carsten Lundby
- National Center of Competence in Research Kidney.CH, Center for Integrative Human Physiology, Institute of Physiology, University of Zürich, Zurich, Switzerland; and
| |
Collapse
|
27
|
Abstract
Aging is a progressive process determined by genetic and acquired factors. Among the latter are the chemical reactions referred to as nonenzymatic posttranslational modifications (NEPTMs), such as glycoxidation, which are responsible for protein molecular aging. Carbamylation is a more recently described NEPTM that is caused by the nonenzymatic binding of isocyanate derived from urea dissociation or myeloperoxidase-mediated catabolism of thiocyanate to free amino groups of proteins. This modification is considered an adverse reaction, because it induces alterations of protein and cell properties. It has been shown that carbamylated proteins increase in plasma and tissues during chronic kidney disease and are associated with deleterious clinical outcomes, but nothing is known to date about tissue protein carbamylation during aging. To address this issue, we evaluated homocitrulline rate, the most characteristic carbamylation-derived product (CDP), over time in skin of mammalian species with different life expectancies. Our results show that carbamylation occurs throughout the whole lifespan and leads to tissue accumulation of carbamylated proteins. Because of their remarkably long half-life, matrix proteins, like type I collagen and elastin, are preferential targets. Interestingly, the accumulation rate of CDPs is inversely correlated with longevity, suggesting the occurrence of still unidentified protective mechanisms. In addition, homocitrulline accumulates more intensely than carboxymethyl-lysine, one of the major advanced glycation end products, suggesting the prominent role of carbamylation over glycoxidation reactions in age-related tissue alterations. Thus, protein carbamylation may be considered a hallmark of aging in mammalian species that may significantly contribute in the structural and functional tissue damages encountered during aging.
Collapse
|
28
|
Rivara MB, Ikizler TA, Ellis CD, Mehrotra R, Himmelfarb J. Association of plasma F2-isoprostanes and isofurans concentrations with erythropoiesis-stimulating agent resistance in maintenance hemodialysis patients. BMC Nephrol 2015; 16:79. [PMID: 26045064 PMCID: PMC4455324 DOI: 10.1186/s12882-015-0074-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 05/21/2015] [Indexed: 12/21/2022] Open
Abstract
Background In patients undergoing maintenance hemodialysis (HD), hyporesponsiveness to erythropoiesis stimulating agents (ESAs) is associated with adverse clinical outcomes. Systemic inflammation is highly prevalent in HD patients and is associated with ESA hyporesponsiveness. Oxidative stress is also highly prevalent in HD patients, but no previous study has determined its association with ESA response. This study assessed the association of plasma markers of oxidative stress and inflammation with ESA resistance in patients undergoing maintenance HD. Methods We analyzed data from 165 patients enrolled in the Provision of Antioxidant Therapy in Hemodialysis study, a randomized controlled trial evaluating antioxidant therapy in prevalent HD patients. Linear and mixed-effects regression were used to assess the association of baseline and time-averaged high sensitivity F2-isoprostanes, isofurans, C-reactive protein (hsCRP), and interleukin-6 (IL-6) with ESA resistance index (ERI), defined as the weekly weight-adjusted ESA dose divided by blood hemoglobin level. Unadjusted models as well as models adjusted for potential confounders were examined. Predicted changes in ERI per month over study follow-up among baseline biomarker quartiles were also assessed. Results Patients with time-averaged isofurans in the highest quartile had higher adjusted mean ERI compared with patients in the lowest quartile (β = 14.9 ng/ml; 95 % CI 7.70, 22.2; reference group <0.26 ng/ml). The highest quartiles of hsCRP and IL-6 were also associated with higher adjusted mean ERI (β = 10.8 mg/l; 95 % CI 3.52, 18.1 for hsCRP; β = 10.2 pg/ml; 95 % CI 2.98, 17.5 for IL-6). No significant association of F2-isoprostanes concentrations with ERI was observed. Analyses restricted to baseline exposures and ERI showed similar results. Baseline hsCRP, IL-6, and isofurans concentrations in the highest quartiles were associated with greater predicted change in ERI over study follow-up compared to the lowest quartiles (P = 0.008, P = 0.004, and P = 0.04, respectively). There was no association between baseline F2-isoprostanes quartile and change in ERI. Conclusions In conclusion, higher concentrations of isofurans, hsCRP and IL-6, but not F2-isoprostanes, were associated with greater resistance to ESAs in prevalent HD patients. Further research is needed to test whether interventions that successfully decrease oxidative stress and inflammation in patients undergoing maintenance HD improve ESA responsiveness. Electronic supplementary material The online version of this article (doi:10.1186/s12882-015-0074-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthew B Rivara
- Division of Nephrology, Department of Medicine, University of Washington, Box 359606, 325 9th Ave., Seattle, WA, 98104, USA. .,Kidney Research Institute, Seattle, WA, USA.
| | - T Alp Ikizler
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA. .,Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Charles D Ellis
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA. .,Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Rajnish Mehrotra
- Division of Nephrology, Department of Medicine, University of Washington, Box 359606, 325 9th Ave., Seattle, WA, 98104, USA. .,Kidney Research Institute, Seattle, WA, USA.
| | - Jonathan Himmelfarb
- Division of Nephrology, Department of Medicine, University of Washington, Box 359606, 325 9th Ave., Seattle, WA, 98104, USA. .,Kidney Research Institute, Seattle, WA, USA.
| |
Collapse
|
29
|
Gillery P, Jaisson S, Gorisse L, Pietrement C. [Role of protein carbamylation in chronic kidney disease complications]. Nephrol Ther 2015; 11:129-34. [PMID: 25794932 DOI: 10.1016/j.nephro.2014.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 12/01/2022]
Abstract
Carbamylation corresponds to the non-enzymatic binding of isocyanic acid, mainly derived from urea decomposition, on amino groups of proteins, and participates in their molecular aging. This process is increased during chronic kidney disease (CKD) because of hyperuremia, and in other pathologies like atherosclerosis, where isocyanic may be formed from thiocyanate by myeloperoxidase in atheroma plates. Carbamylation triggers structural and functional modifications of proteins, thus impairing their biological roles and their interactions with cells. Much experimental evidence in vitro has shown the potential deleterious effects of carbamylated proteins on cell and tissue functions. Carbamylation-derived products (CDPs), and especially their major component homocitrulline, accumulate in organism in long half-life proteins, and may participate in the development of different complications of CKD, especially cardiovascular diseases, renal fibrosis, or nutritional and metabolic troubles. Recent clinical studies have confirmed the link between serum protein carbamylation and morbi-mortality in patients suffering from CKD or undergoing hemodialysis. Some CDPs could be used as biomarkers in these pathologies.
Collapse
Affiliation(s)
- Philippe Gillery
- Laboratoire de biologie et de recherche pédiatriques, hôpital Maison Blanche, CHU de Reims, 45, rue Cognacq-Jay, 51092 Reims cedex, France; Laboratoire de biochimie médicale et biologie moléculaire, UMR CNRS/URCA n(o) 7369, faculté de médecine, université de Reims Champagne-Ardenne, 51, rue Cognacq-Jay, 51095 Reims cedex, France.
| | - Stéphane Jaisson
- Laboratoire de biologie et de recherche pédiatriques, hôpital Maison Blanche, CHU de Reims, 45, rue Cognacq-Jay, 51092 Reims cedex, France; Laboratoire de biochimie médicale et biologie moléculaire, UMR CNRS/URCA n(o) 7369, faculté de médecine, université de Reims Champagne-Ardenne, 51, rue Cognacq-Jay, 51095 Reims cedex, France
| | - Laëtitia Gorisse
- Laboratoire de biochimie médicale et biologie moléculaire, UMR CNRS/URCA n(o) 7369, faculté de médecine, université de Reims Champagne-Ardenne, 51, rue Cognacq-Jay, 51095 Reims cedex, France
| | - Christine Pietrement
- Laboratoire de biochimie médicale et biologie moléculaire, UMR CNRS/URCA n(o) 7369, faculté de médecine, université de Reims Champagne-Ardenne, 51, rue Cognacq-Jay, 51095 Reims cedex, France; Service de néphrologie-rhumatologie pédiatriques, American Memorial Hospital, CHU de Reims, 47, rue Cognacq-Jay, 51092 Reims cedex, France
| |
Collapse
|
30
|
Kalim S, Ortiz G, Trottier CA, Deferio JJ, Karumanchi SA, Thadhani RI, Berg AH. The Effects of Parenteral Amino Acid Therapy on Protein Carbamylation in Maintenance Hemodialysis Patients. J Ren Nutr 2015; 25:388-92. [PMID: 25753604 DOI: 10.1053/j.jrn.2015.01.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/12/2015] [Accepted: 01/17/2015] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE Protein carbamylation is a urea-driven post-translational protein modification associated with mortality in dialysis patients. Free amino acids (AAs) are competitive inhibitors of protein carbamylation and animal studies suggest increasing AA concentrations reduces carbamylation burden. We hypothesized that AA therapy in maintenance hemodialysis patients would reduce carbamylation, carrying the potential to improve clinical outcomes. DESIGN Prospective pilot clinical trial (NCT1612429). SETTING The study was conducted from March 2013 to March 2014 in outpatient dialysis facilities in the Boston metropolitan area. SUBJECTS AND INTERVENTION We enrolled 23 consecutively consenting hemodialysis subjects, infusing the first 12 individuals with 250 cc of AAs 3 times per week postdialysis over 8 weeks. The remaining 11 subjects served as controls. MAIN OUTCOME MEASURE Change in carbamylated albumin (C-Alb), a measure of total body carbamylation burden, between baseline and 8 weeks was the primary outcome. RESULTS The treated and control groups had similar clinical characteristics and similar baseline C-Alb levels (mean ± SE 9.5 ± 2.4 and 9.3 ± 1.3 mmol/mol, respectively; P = .61). The treated arm showed a significant reduction in C-Alb compared with controls at 4 weeks (8.4% reduction in the treated arm vs. 4.3% increase in controls; P = .03) and the effect was greater by 8 weeks (15% reduction in the treated vs. 1% decrease in controls; P = .01). CONCLUSION In this pilot study, AA therapy appeared safe and effective at reducing C-Alb levels in hemodialysis patients compared with no treatment. The impact of reduced protein carbamylation on clinical outcomes should be further investigated.
Collapse
Affiliation(s)
- Sahir Kalim
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Guillermo Ortiz
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Caitlin A Trottier
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Joseph J Deferio
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - S Ananth Karumanchi
- Division of Nephrology and Center for Vascular Biology Research, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Ravi I Thadhani
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Anders H Berg
- Division of Clinical Chemistry, Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
31
|
Shah SV, Shukla AM, Bose C, Basnakian AG, Rajapurkar M. Recent advances in understanding the pathogenesis of atherosclerosis in CKD patients. J Ren Nutr 2015; 25:205-8. [PMID: 25556310 DOI: 10.1053/j.jrn.2014.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 10/29/2014] [Indexed: 11/11/2022] Open
Abstract
A need exists for developing new therapies to improve cardiovascular outcomes in end-stage kidney disease. Three new areas that address novel pathophysiological mechanisms and/or therapeutic approaches toward cardiovascular events in chronic kidney disease patients include the use of an anti-inflammatory agent, the role of catalytic iron, and protein carbamylation. In preliminary studies, hydroxychloroquine, which has multiple anti-inflammatory properties, preserved vascular compliance for the aorta and major vessels, as well as reduced the extent of severity of atherosclerosis in ApoE-/- mice. The ability of iron to rapidly and reversibly cycle between 2 oxidation states makes iron potentially hazardous by enabling it to participate in the generation of powerful oxidant species. We have shown that high catalytic iron in the general population is associated with a 4-fold increase in prevalent cardiovascular disease (CVD), even after accounting for traditional risk factors. In addition, the highest levels of catalytic iron are present in dialysis patients and, more specifically, patients with prevalent CVD have several-fold higher catalytic iron levels compared with controls without CVD. These data suggest the utility of iron chelators for preventing and treating CVD in patients with chronic kidney disease and should be further investigated. Carbamylation of proteins results from nonenzymatic chemical modification by isocyanic acid derived from urea and an alternative route, the myeloperoxidase-catalyzed oxidation of thiocyanate. We have shown carbamylated low-density lipoprotein to have all the major biological effects relevant to atherosclerosis including endothelial cell injury, increased expression of cell adhesion molecules, and vascular smooth muscle cell proliferation. In 2 separate clinical studies, plasma levels of carbamylated protein independently predicted an increased risk of CVD and death.
Collapse
Affiliation(s)
- Sudhir V Shah
- Renal Medicine Section, Medical Service, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Division of Nephrology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas.
| | - Ashutosh M Shukla
- Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida and Division of Nephrology, Hypertension and Renal Transplantation, University of Florida, Gainesville, Florida
| | - Chhanda Bose
- Renal Medicine Section, Medical Service, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Division of Nephrology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Alexei G Basnakian
- Renal Medicine Section, Medical Service, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Division of Nephrology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Mohan Rajapurkar
- Nephrology Department, Muljibhai Patel Urological Hospital in Nadiad, Gujarat, India
| |
Collapse
|
32
|
Kalim S, Karumanchi SA, Thadhani RI, Berg AH. Protein carbamylation in kidney disease: pathogenesis and clinical implications. Am J Kidney Dis 2014; 64:793-803. [PMID: 25037561 PMCID: PMC4209336 DOI: 10.1053/j.ajkd.2014.04.034] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/30/2014] [Indexed: 12/29/2022]
Abstract
Carbamylation describes a nonenzymatic posttranslational protein modification mediated by cyanate, a dissociation product of urea. When kidney function declines and urea accumulates, the burden of carbamylation naturally increases. Free amino acids may protect proteins from carbamylation, and protein carbamylation has been shown to increase in uremic patients with amino acid deficiencies. Carbamylation reactions are capable of altering the structure and functional properties of certain proteins and have been implicated directly in the underlying mechanisms of various disease conditions. A broad range of studies has demonstrated how the irreversible binding of urea-derived cyanate to proteins in the human body causes inappropriate cellular responses leading to adverse outcomes such as accelerated atherosclerosis and inflammation. Given carbamylation's relationship to urea and the evidence that it contributes to disease pathogenesis, measurements of carbamylated proteins may serve as useful quantitative biomarkers of time-averaged urea concentrations while also offering risk assessment in patients with kidney disease. Moreover, the link between carbamylated proteins and disease pathophysiology creates an enticing therapeutic target for reducing the rate of carbamylation. This article reviews the biochemistry of the carbamylation reaction, its role in specific diseases, and the potential diagnostic and therapeutic implications of these findings based on recent advances.
Collapse
Affiliation(s)
- Sahir Kalim
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - S Ananth Karumanchi
- Harvard Medical School, Boston, MA; Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, MA; Howard Hughes Medical Institute, Boston, MA
| | - Ravi I Thadhani
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Anders H Berg
- Harvard Medical School, Boston, MA; Department of Pathology, Division of Clinical Chemistry, Beth Israel Deaconess Medical Center, Boston, MA.
| |
Collapse
|
33
|
Kok MB, Tegelaers FP, van Dam B, van Rijn JL, van Pelt J. Carbamylation of albumin is a cause for discrepancies between albumin assays. Clin Chim Acta 2014; 434:6-10. [DOI: 10.1016/j.cca.2014.03.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/31/2014] [Accepted: 03/31/2014] [Indexed: 12/14/2022]
|
34
|
Kimani S, Moterroso V, Lasarev M, Kipruto S, Bukachi F, Maitai C, David L, Tshala-Katumbay D. Carbamoylation correlates of cyanate neuropathy and cyanide poisoning: relevance to the biomarkers of cassava cyanogenesis and motor system toxicity. SPRINGERPLUS 2013; 2:647. [PMID: 24349951 PMCID: PMC3862856 DOI: 10.1186/2193-1801-2-647] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 11/25/2013] [Indexed: 12/01/2022]
Abstract
We sought to elucidate the protein carbamoylation patterns associated with cyanate neuropathy relative to cyanide poisoning. We hypothesized that under a diet deficient in sulfur amino acids (SAA), the carbamoylation pattern associated with cyanide poisoning is similar to that of cyanate neuropathy. Male rats (6–8 weeks old) were fed a diet with all amino acids (AAA) or 75%-deficiency in SAA and treated with 2.5 mg/kg/body weight (bw) NaCN, or 50 mg/kg/bw NaOCN, or 1 μl/g/bw saline, for up to 6 weeks. Albumin and spinal cord proteins were analyzed using liquid chromatography mass spectrometry (LC-MS/MS). Only NaOCN induced motor deficits with significant levels of carbamoylation. At Day 14, we found a diet-treatment interaction effect on albumin carbamoylation (p = 0.07). At Day 28, no effect was attributed to diet (p = 0.71). Mean number of NaCN-carbamoylated sites on albumin was 47.4% higher relative to vehicle (95% CI:16.7-86.4%). Only NaOCN carbamoylated spinal cord proteins, prominently, under SAA-restricted diet. Proteins targets included myelin basic and proteolipid proteins, neurofilament light and glial fibrillary acidic proteins, and 2', 3' cyclic-nucleotide 3'-phosphodiesterase. Under SAA deficiency, chronic but not acute cyanide toxicity may share biomarkers and pathogenetic similarities with cyanate neuropathy. Prevention of carbamoylation may protect against the neuropathic effects of cyanate.
Collapse
Affiliation(s)
- Samuel Kimani
- Department of Pharmacology and Pharmacognosy, University of Nairobi, Nairobi, 19676 Kenya ; School of Nursing Sciences, University of Nairobi, Nairobi, 19676 Kenya
| | - Victor Moterroso
- Department of Comparative Medicine, Oregon Health & Science University (OHSU), Portland, OR 97239 USA
| | - Mike Lasarev
- Center for Research on Occupational & Environmental Toxicology, OHSU, Portland, OR 97239 USA
| | - Sinei Kipruto
- Department of Pharmacology and Pharmacognosy, University of Nairobi, Nairobi, 19676 Kenya
| | - Fred Bukachi
- Department of Medical Physiology, University of Nairobi, Nairobi, 30197 Kenya
| | - Charles Maitai
- Department of Pharmacology and Pharmacognosy, University of Nairobi, Nairobi, 19676 Kenya
| | - Larry David
- Biochemistry and Molecular Biology & Proteomics Shared Resource, OHSU, Portland, OR 97239 USA
| | - Desire Tshala-Katumbay
- Center for Research on Occupational & Environmental Toxicology, OHSU, Portland, OR 97239 USA ; Department of Neurology, OHSU, Portland, OR 97239 USA ; Center for Research on Occupational and Environmental Toxicology & Department of Neurology, Oregon Health & Science University, 3181 Sam Jackson Park Road, Mail code L606, Portland, OR 97239 USA
| |
Collapse
|