1
|
Nagata K, Tagami K, Okuzawa T, Hayakawa M, Nomura A, Nishimura T, Ikeda K, Kitada K, Kobuchi S, Fujisawa Y, Nishiyama A, Murohara T. Comparison of the effects of renal denervation at early or advanced stages of hypertension on cardiac, renal, and adipose tissue pathology in Dahl salt-sensitive rats. Hypertens Res 2024; 47:2731-2744. [PMID: 38355818 PMCID: PMC11456506 DOI: 10.1038/s41440-024-01605-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 12/05/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
Renal denervation (RDN) has emerged as a novel therapy for drug-resistant hypertension. We here examined the effects of RDN at early versus advanced stages of hypertension on blood pressure and organ pathology in rats with salt-sensitive hypertension. Dahl salt-sensitive (DahlS) rats fed an 8% NaCl diet from 6 weeks of age were subjected to RDN (surgical ablation and application of 10% phenol in ethanol) or sham surgery at 7 (early stage) or 9 (advanced stage) weeks and were studied at 12 weeks. RDN at early or advanced stages resulted in a moderate lowering of blood pressure. Although RDN at neither stage affected left ventricular (LV) and cardiomyocyte hypertrophy, it ameliorated LV diastolic dysfunction, fibrosis, and inflammation at both stages. Intervention at both stages also attenuated renal injury as well as downregulated the expression of angiotensinogen and angiotensin-converting enzyme (ACE) genes and angiotensin II type 1 receptor protein in the kidney. Furthermore, RDN at both stages inhibited proinflammatory gene expression in adipose tissue. The early intervention reduced both visceral fat mass and adipocyte size in association with downregulation of angiotensinogen and ACE gene expression. In contrast, the late intervention increased fat mass without affecting adipocyte size as well as attenuated angiotensinogen and ACE gene expression. Our results thus indicate that RDN at early or late stages after salt loading moderately alleviated hypertension and substantially ameliorated cardiac and renal injury and adipose tissue inflammation in DahlS rats. They also suggest that cross talk among the kidney, cardiovascular system, and adipose tissue may contribute to salt-sensitive hypertension. Supposed mechanism for the beneficial effects of RDN on hypertension and target organ damage in DahlS rats. RDN at early or late stages after salt loading moderately alleviated hypertension and substantially ameliorated renal injury in DahlS rats. Cross talk among the kidney, cardiovascular system, and adipose tissue possibly mediated by circulating RAS may contribute to salt-sensitive hypertension. LV; left ventricular, NE; norepinephrine, RAS; renin-angiotensin system, RDN; renal denervation.
Collapse
Affiliation(s)
- Kohzo Nagata
- Pathophysiology Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Kaito Tagami
- Pathophysiology Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Touko Okuzawa
- Pathophysiology Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Misaki Hayakawa
- Pathophysiology Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akane Nomura
- Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan
| | - Tomo Nishimura
- Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan
| | - Katsuhide Ikeda
- Pathophysiology Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kento Kitada
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Shuhei Kobuchi
- Division of Pharmacology, School of Pharmacy, Department of Pharmacy, Hyogo Medical University, Kobe, Japan
| | - Yoshihide Fujisawa
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
2
|
Kharazmi F, Hosseini-Dastgerdi H, Pourshanazari AA, Nematbakhsh M. The denervation or activation of renal sympathetic nerve and renal blood flow. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2023; 28:76. [PMID: 38152073 PMCID: PMC10751519 DOI: 10.4103/jrms.jrms_216_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/09/2023] [Accepted: 07/17/2023] [Indexed: 12/29/2023]
Abstract
The denervation or activation of the sympathetic nerve in the kidney can affect renal hemodynamics. The sympathetic nervous system regulates the physiological functions of the kidneys. Stimulation of sympathetic efferent nerves affects various parameters related to renal hemodynamics, including sodium excretion, renin secretion, and renal blood flow (RBF). Hence, renal sympathetic fibers may also play an essential role in regulating systemic vascular resistance and controlling blood pressure. In the absence of renal nerves, the hemodynamics response to stimuli is negligible or absent. The effect of renal sympathetic denervation on RBF is dependent on several factors such as interspecies differences, the basic level of nerve activity in the vessels or local density of adrenergic receptor in the vascular bed. The role of renal denervation has been investigated therapeutically in hypertension and related disorders. Hence, the dynamic impact of renal nerves on RBF enables using RBF dynamic criteria as a marker for renal denervation therapy.
Collapse
Affiliation(s)
- Fatemeh Kharazmi
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hajaralsadat Hosseini-Dastgerdi
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mehdi Nematbakhsh
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Filippone EJ, Naccarelli GV, Foy AJ. Controversies in Hypertension IV: Renal Denervation. Am J Med 2023; 136:857-868. [PMID: 37230403 DOI: 10.1016/j.amjmed.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023]
Abstract
Renal denervation is not a cure for hypertension. Although more recent sham-controlled trials were positive, a significant minority of patients in each trial were unresponsive. The optimal patient or patients need to be defined. Combined systolic/diastolic hypertension appears more responsive than isolated systolic hypertension. It remains uncertain whether patients with comorbidities associated with higher adrenergic tone should be targeted, including obesity, diabetes, sleep apnea, and chronic kidney disease. No biomarker can adequately predict response. A key to a successful response is the adequacy of denervation, which currently cannot be assessed in real time. It is uncertain what is the optimal denervation methodology: radiofrequency, ultrasound, or ethanol injection. Radiofrequency requires targeting the distal main renal artery plus major branches and accessory arteries. Although denervation appears to be safe, conclusive data on quality of life, improved target organ damage, and reduced cardiovascular events/mortality are required before denervation can be generally recommended.
Collapse
Affiliation(s)
- Edward J Filippone
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pa.
| | - Gerald V Naccarelli
- Department of Medicine, Penn State University Heart and Vascular Institute; Penn State M.S Hershey Medical Center and College of Medicine, Hershey, Pa
| | - Andrew J Foy
- Department of Medicine, Penn State University Heart and Vascular Institute; Penn State M.S Hershey Medical Center and College of Medicine, Hershey, Pa
| |
Collapse
|
4
|
Nistor M, Schmidt M, Klingner C, Klingner C, Schwab M, Bischoff SJ, Matziolis G, Rodríguez-González GL, Schiffner R. Renal Glucose Release after Unilateral Renal Denervation during a Hypoglycemic Clamp in Pigs with an Altered Hypothalamic Pituitary Adrenal Axis after Late-Gestational Dexamethasone Injection. Int J Mol Sci 2023; 24:12738. [PMID: 37628918 PMCID: PMC10454812 DOI: 10.3390/ijms241612738] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Previously, we demonstrated in pigs that renal denervation halves glucose release during hypoglycaemia and that a prenatal dexamethasone injection caused increased ACTH and cortisol concentrations as markers of a heightened hypothalamic pituitary adrenal axis (HPAA) during hypoglycaemia. In this study, we investigated the influence of an altered HPAA on renal glucose release during hypoglycaemia. Pigs whose mothers had received two late-gestational dexamethasone injections were subjected to a 75 min hyperinsulinaemic-hypoglycaemic clamp (<3 mmol/L) after unilateral surgical denervation. Para-aminohippurate (PAH) clearance, inulin, sodium excretion and arterio-venous blood glucose difference were measured every fifteen minutes. The statistical analysis was performed with a Wilcoxon signed-rank test. PAH, inulin, the calculated glomerular filtration rate and plasma flow did not change through renal denervation. Urinary sodium excretion increased significantly (p = 0.019). Side-dependent renal net glucose release (SGN) decreased by 25 ± 23% (p = 0.004). At 25 percent, the SGN decrease was only half of that observed in non-HPAA-altered animals in our prior investigation. The current findings may suggest that specimens with an elevated HPAA undergo long-term adaptations to maintain glucose homeostasis. Nonetheless, the decrease in SGN warrants further investigations and potentially caution in performing renal denervation in certain patient groups, such as diabetics at risk of hypoglycaemia.
Collapse
Affiliation(s)
- Marius Nistor
- Orthopaedic Department, Jena University Hospital, Campus Eisenberg, 07607 Eisenberg, Germany; (M.N.)
| | - Martin Schmidt
- Institute for Biochemistry II, Jena University Hospital, 07743 Jena, Germany
| | - Carsten Klingner
- Department of Neurology, Jena University Hospital, 07747 Jena, Germany (M.S.)
| | - Caroline Klingner
- Department of Neurology, Jena University Hospital, 07747 Jena, Germany (M.S.)
| | - Matthias Schwab
- Department of Neurology, Jena University Hospital, 07747 Jena, Germany (M.S.)
| | | | - Georg Matziolis
- Orthopaedic Department, Jena University Hospital, Campus Eisenberg, 07607 Eisenberg, Germany; (M.N.)
| | | | - René Schiffner
- Orthopaedic Department, Jena University Hospital, Campus Eisenberg, 07607 Eisenberg, Germany; (M.N.)
- Emergency Department, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Emergency Department, Helios University Clinic Wuppertal, 42283 Wuppertal, Germany
| |
Collapse
|
5
|
Ahmed M, Nudy M, Bussa R, Filippone EJ, Foy AJ. A systematic review and meta-analysis of all sham and placebo controlled trials for resistant hypertension. Eur J Intern Med 2023; 113:83-90. [PMID: 37150718 DOI: 10.1016/j.ejim.2023.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/12/2023] [Accepted: 04/26/2023] [Indexed: 05/09/2023]
Abstract
INTRODUCTION There is a lack of consensus regarding the best add on therapy for treatment of resistant hypertension (RH). This is likely secondary to a paucity of data on the comparative effectiveness of proposed therapies for RH. METHODS Placebo-controlled and sham-controlled randomized clinical trials testing therapies for the treatment of RH were included in this meta-analysis. Therapies with two or more studies were included as subgroups in this meta-analysis. The primary outcomes being tested were 24-hr systolic blood pressure (SBP) and office SBP. RESULTS Eight studies were identified that tested mineralocorticoid receptor antagonist (MRA) including 1,414 participants. The raw mean difference (RMD) between MRA and placebo control was statistically significant for 24-hour SBP (-10.56 mmHg; 95% confidence interval (CI) -12.82 to -8.30), 24-hour diastolic (DBP) (-5.48 mmHg; 95% CI -8.48 to -2.58), office SBP (-11.97 mmHg; 95% CI -16.41 to -7.54), and office DBP (-4.14 mmHg; 95% CI -5.62 to -2.65). Six studies were identified that tested renal denervation (RD) including 989 participants. The RMD between RD and sham control was not statistically significant for 24-hour SBP (-1.84 mmHg; 95% CI -3.92 to 0.24), 24-hour DBP (-0.66 mmHg; 95% CI -1.85 to 0.54), office SBP (-1.57 mmHg; 95% CI -6.04 to 2.89), and office DBP (-1.49 mmHg; 95% CI -3.52 to 0.55). Four studies were identified that tested endothelin receptor antagonists (ERA) including 1,193 participants. The raw mean difference (RMD) between ERA and placebo control was statistically significant for 24-hr systolic (SBP) (-7.02 mmHg; 95% CI -9.15 to -4.90, 24-hr diastolic (DBP) (-6.22 mmHg; 95% CI -7.61 to -4.82), office SBP (-5.84 mmHg; 95% CI -10.08 to -1.60), and office DBP (-3.73 mmHg; 95% CI -5.87 to -1.59). DISCUSSION MRA lowers BP in patients with RH more than RD, which seems to have little to no effect in RH. ERAs lead to a statistically significant reduction in BP but the confidence in efficacy is limited due to the low number of studies and differences in trial population. Individual factors and their impact on treatment response in RH should be investigated in future research.
Collapse
Affiliation(s)
- Mohammad Ahmed
- Penn State Hershey Medical Center, Department of Internal Medicine, United States
| | - Matthew Nudy
- Penn State Hershey Medical Center, Heart and Vascular Institute, Division of Cardiology, United States
| | - Rahul Bussa
- Penn State Hershey Medical Center, Department of Internal Medicine, United States
| | - Edward J Filippone
- Thomas Jefferson University Hospitals, Division of Nephrology, United States
| | - Andrew J Foy
- Penn State Hershey Medical Center, Heart and Vascular Institute, Division of Cardiology, United States.
| |
Collapse
|
6
|
Wang C, Wang P, Qi G. A new use of transcutaneous electrical nerve stimulation: Role of bioelectric technology in resistant hypertension (Review). Biomed Rep 2023; 18:38. [PMID: 37168651 PMCID: PMC10165504 DOI: 10.3892/br.2023.1621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/21/2023] [Indexed: 05/13/2023] Open
Abstract
Hypertension is an important risk factor for cardiovascular and cerebrovascular disease-associated death. Hypertension and its complications are the main problems that have an impact on public health at present. A portion of adults with hypertension fail to meet the recommended blood pressure (BP) treatment goals, despite strict clinical management. Those individuals requiring at least three types of antihypertensive drugs to achieve their BP goal may be classified as patients with resistant hypertension (RH). Bioelectric technology is an emerging method that functions with the help of the human body's own bioelectric system. It is widely used in auxiliary examination, pain relief and organ function rehabilitation. Bioelectrical technology, as an effective treatment for RH, has developed rapidly in recent years and mainly includes renal sympathetic denervation, carotid baroreflex activation therapy, Traditional Chinese Medicine electroacupuncture and transcutaneous electrical nerve stimulation (TENS). The present review describes the pathogenesis of hypertension and provides an understanding of bioelectrical technology as a treatment. In particular, the development of the application of TENS in RH is introduced. The aim is to provide a basis for the clinical treatment of RH and a new idea for further clinical trials in this field.
Collapse
Affiliation(s)
- Chenghua Wang
- The Third Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050030, P.R. China
| | - Pu Wang
- The Third Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050030, P.R. China
| | - Guoqing Qi
- The Third Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050030, P.R. China
- Correspondence to: Dr Guoqing Qi, The Third Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, Hebei 050030, P.R. China
| |
Collapse
|
7
|
Maas SL, Donners MMPC, van der Vorst EPC. ADAM10 and ADAM17, Major Regulators of Chronic Kidney Disease Induced Atherosclerosis? Int J Mol Sci 2023; 24:ijms24087309. [PMID: 37108478 PMCID: PMC10139114 DOI: 10.3390/ijms24087309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Chronic kidney disease (CKD) is a major health problem, affecting millions of people worldwide, in particular hypertensive and diabetic patients. CKD patients suffer from significantly increased cardiovascular disease (CVD) morbidity and mortality, mainly due to accelerated atherosclerosis development. Indeed, CKD not only affects the kidneys, in which injury and maladaptive repair processes lead to local inflammation and fibrosis, but also causes systemic inflammation and altered mineral bone metabolism leading to vascular dysfunction, calcification, and thus, accelerated atherosclerosis. Although CKD and CVD individually have been extensively studied, relatively little research has studied the link between both diseases. This narrative review focuses on the role of a disintegrin and metalloproteases (ADAM) 10 and ADAM17 in CKD and CVD and will for the first time shed light on their role in CKD-induced CVD. By cleaving cell surface molecules, these enzymes regulate not only cellular sensitivity to their micro-environment (in case of receptor cleavage), but also release soluble ectodomains that can exert agonistic or antagonistic functions, both locally and systemically. Although the cell-specific roles of ADAM10 and ADAM17 in CVD, and to a lesser extent in CKD, have been explored, their impact on CKD-induced CVD is likely, yet remains to be elucidated.
Collapse
Affiliation(s)
- Sanne L Maas
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
| | - Marjo M P C Donners
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
| | - Emiel P C van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), 80336 Munich, Germany
| |
Collapse
|
8
|
Kim YG, Moon JY, Oh B, Chin HJ, Kim DK, Park JH, Shin SJ, Choi BS, Lim CS, Lee SH. Pressure-Natriuresis Response Is Diminished in Old Age. Front Cardiovasc Med 2022; 9:840840. [PMID: 35252404 PMCID: PMC8889037 DOI: 10.3389/fcvm.2022.840840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Age-related alterations in renal sodium handling affect blood pressure (BP). We aimed to clarify whether the pressure-natriuresis response changes with age, leading to BP elevation. METHODS A total of 4,859 participants with normal renal function from the Korean Genome and Epidemiology Study (KoGES) and 235 patients with non-diabetic chronic kidney disease (CKD) from the ESPECIAL trial were included and divided into the younger and older groups. In ESPECIAL, participants took olmesartan from weeks 0 to 16 and were educated about a low-salt diet (LSD) from weeks 8 to 16. RESULTS In both studies, older participants showed lower estimated glomerular filtration rate (eGFR) and urine concentration index and higher albuminuria. In KoGES, BP was higher and urine sodium was lower in older participants. In ESPECIAL, diastolic BP at 0 week was lower in older participants. Olmesartan reduced BP in both groups, whereas LSD decreased systolic BP only in older participants. Urine sodium increased in younger participants but decreased in older participants after olmesartan use. In KoGES, urine sodium was correlated with BP in both groups after adjusting for age, sex, and eGFR; however, the correlation coefficient was lower in older participants. In ESPECIAL, only younger participants showed a significant positive association between systolic BP and urine sodium in multiple regression analysis. CONCLUSIONS The pressure-natriuresis response was diminished in older participants with or without CKD.
Collapse
Affiliation(s)
- Yang Gyun Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Ju-Young Moon
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Bermseok Oh
- Department of Biomedical Engineering, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Ho Jun Chin
- Division of Nephrology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Dong Ki Kim
- Division of Nephrology, Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Jung Hwan Park
- Division of Nephrology, Department of Internal Medicine, Konkuk University School of Medicine, Seoul, South Korea
| | - Sung Joon Shin
- Division of Nephrology, Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang, South Korea
| | - Bum Soon Choi
- Division of Nephrology, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Chun Soo Lim
- Division of Nephrology, Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, South Korea
| | - Sang Ho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
| |
Collapse
|
9
|
Mahfoud F, Böhm M, Schmieder R, Narkiewicz K, Ewen S, Ruilope L, Schlaich M, Williams B, Fahy M, Mancia G. Effects of renal denervation on kidney function and long-term outcomes: 3-year follow-up from the Global SYMPLICITY Registry. Eur Heart J 2020; 40:3474-3482. [PMID: 30907413 PMCID: PMC6837160 DOI: 10.1093/eurheartj/ehz118] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/01/2018] [Accepted: 02/20/2019] [Indexed: 12/12/2022] Open
Abstract
Aims Several studies and registries have demonstrated sustained reductions in blood pressure (BP) after renal denervation (RDN). The long-term safety and efficacy after RDN in real-world patients with uncontrolled hypertension, however, remains unknown. The objective of this study was to assess the long-term safety and efficacy of RDN, including its effects on renal function. Methods and results The Global SYMPLICITY Registry is a prospective, open-label registry conducted at 196 active sites worldwide in hypertensive patients receiving RDN treatment. Among 2237 patients enrolled and treated with the SYMPLICITY Flex catheter, 1742 were eligible for follow-up at 3 years. Baseline office and 24-h ambulatory systolic BP (SBP) were 166 ± 25 and 154 ± 18 mmHg, respectively. SBP reduction after RDN was sustained over 3 years, including decreases in both office (−16.5 ± 28.6 mmHg, P < 0.001) and 24-h ambulatory SBP (−8.0 ± 20.0 mmHg; P < 0.001). Twenty-one percent of patients had a baseline estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2. Between baseline and 3 years, renal function declined by 7.1 mL/min/1.73 m2 in patients without chronic kidney disease (CKD; eGFR ≥60 mL/min/1.73 m2; baseline eGFR 87 ± 17 mL/min/1.73 m2) and by 3.7 mL/min/1.73 m2 in patients with CKD (eGFR <60 mL/min/1.73 m2; baseline eGFR 47 ± 11 mL/min/1.73 m2). No long-term safety concerns were observed following the RDN procedure. Conclusion Long-term data from the Global SYMPLICITY Registry representing the largest available cohort of hypertensive patients receiving RDN in a real-world clinical setting demonstrate both the safety and efficacy of the procedure with significant and sustained office and ambulatory BP reductions out to 3 years. ![]()
Collapse
Affiliation(s)
- Felix Mahfoud
- Department of Internal Medicine, Saarland University Hospital, Geb. 41, Kirrberger Strasse 1, 66421 Homburg/Saar, Germany
| | - Michael Böhm
- Department of Internal Medicine, Saarland University Hospital, Geb. 41, Kirrberger Strasse 1, 66421 Homburg/Saar, Germany
| | - Roland Schmieder
- Department of Nephrology and Hypertension, University Hospital Erlangen, Maximilianspl. 2, 91054 Erlangen, Germany
| | - Krzysztof Narkiewicz
- Department of Hypertension and Diabetology, Medical University of Gdansk, Marii Skłodowska-Curie 3a, 80-210 Gdansk, Poland
| | - Sebastian Ewen
- Department of Internal Medicine, Saarland University Hospital, Geb. 41, Kirrberger Strasse 1, 66421 Homburg/Saar, Germany
| | - Luis Ruilope
- Department of Cardiovascular Risk, Hypertension Unit and Cardiorenal Translational Research Laboratory, Institute of Research i + 12, Hospital Universitario 12 de Octubre and CIBERCV, School of Doctoral Studies and Research, Universidad Europea de Madrid, Av. Cordoba, s/n, 28041 Madrid, Spain
| | - Markus Schlaich
- Department of Medicine, Dobney Hypertension Centre, School of Medicine-Royal Perth Hospital Unit, The University of Western Australia, 197 Wellington St, Perth, WA 6000, Australia
| | - Bryan Williams
- Department of Medicine, Institute of Cardiovascular Sciences, University College London, National Institute for Health Research, University College London Hospitals, Biomedical Research Centre, Gower St, Bloomsbury, London WC1E 6BT, UK
| | - Martin Fahy
- Coronary and Structural Heart Division, Medtronic PLC, 3576 Unocal Place, Santa Rosa, CA 95403, USA
| | - Giuseppe Mancia
- Professor Emeritus, University of Milano-Bicocca, P.za dei Daini, 4 - 20126 Milano, Italy
| |
Collapse
|
10
|
Abstract
Despite availability of effective drugs for hypertension therapy, significant numbers of hypertensive patients fail to achieve recommended blood pressure levels on ≥3 antihypertensive drugs of different classes. These individuals have a high prevalence of adverse cardiovascular events and are defined as having resistant hypertension (RHT) although nonadherence to prescribed antihypertensive medications is common in patients with apparent RHT. Furthermore, apparent and true RHT often display increased sympathetic activity. Based on these findings, technology was developed to treat RHT by suppressing sympathetic activity with electrical stimulation of the carotid baroreflex and catheter-based renal denervation (RDN). Over the last 15 years, experimental and clinical studies have provided better understanding of the physiological mechanisms that account for blood pressure lowering with baroreflex activation and RDN and, in so doing, have provided insight into which patients in this heterogeneous hypertensive population are most likely to respond favorably to these device-based therapies. Experimental studies have also played a role in modifying device technology after early clinical trials failed to meet key endpoints for safety and efficacy. At the same time, these studies have exposed potential differences between baroreflex activation and RDN and common challenges that will likely impact antihypertensive treatment and clinical outcomes in patients with RHT. In this review, we emphasize physiological studies that provide mechanistic insights into blood pressure lowering with baroreflex activation and RDN in the context of progression of clinical studies, which are now at a critical point in determining their fate in RHT management.
Collapse
Affiliation(s)
- Thomas E Lohmeier
- From the Department of Physiology and Biophysics (T.E.L., J.E.H.), University of Mississippi Medical Center, Jackson
| | - John E Hall
- From the Department of Physiology and Biophysics (T.E.L., J.E.H.), University of Mississippi Medical Center, Jackson.,Mississippi Center for Obesity Research (J.E.H.), University of Mississippi Medical Center, Jackson
| |
Collapse
|
11
|
Odudu A, Nery F, Harteveld AA, Evans RG, Pendse D, Buchanan CE, Francis ST, Fernández-Seara MA. Arterial spin labelling MRI to measure renal perfusion: a systematic review and statement paper. Nephrol Dial Transplant 2018; 33:ii15-ii21. [PMID: 30137581 PMCID: PMC6106644 DOI: 10.1093/ndt/gfy180] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/15/2018] [Indexed: 01/03/2023] Open
Abstract
Renal perfusion provides the driving pressure for glomerular filtration and delivers the oxygen and nutrients to fuel solute reabsorption. Renal ischaemia is a major mechanism in acute kidney injury and may promote the progression of chronic kidney disease. Thus, quantifying renal tissue perfusion is critically important for both clinicians and physiologists. Current reference techniques for assessing renal tissue perfusion have significant limitations. Arterial spin labelling (ASL) is a magnetic resonance imaging (MRI) technique that uses magnetic labelling of water in arterial blood as an endogenous tracer to generate maps of absolute regional perfusion without requiring exogenous contrast. The technique holds enormous potential for clinical use but remains restricted to research settings. This statement paper from the PARENCHIMA network briefly outlines the ASL technique and reviews renal perfusion data in 53 studies published in English through January 2018. Renal perfusion by ASL has been validated against reference methods and has good reproducibility. Renal perfusion by ASL reduces with age and excretory function. Technical advancements mean that a renal ASL study can acquire a whole kidney perfusion measurement in less than 5-10 min. The short acquisition time permits combination with other MRI techniques that might inform drug mechanisms and renal physiology. The flexibility of renal ASL has yielded several variants of the technique, but there are limited data comparing these approaches. We make recommendations for acquiring and reporting renal ASL data and outline the knowledge gaps that future research should address.
Collapse
Affiliation(s)
- Aghogho Odudu
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Fabio Nery
- Developmental Imaging & Biophysics Section, University College London, Great Ormond Street Institute of Child Health, London, UK
| | - Anita A Harteveld
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roger G Evans
- Department of Physiology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Douglas Pendse
- Centre for Medical Imaging, University College London, London, UK
| | - Charlotte E Buchanan
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Susan T Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
12
|
Vuignier Y, Grouzmann E, Muller O, Vakilzadeh N, Faouzi M, Maillard MP, Qanadli SD, Burnier M, Wuerzner G. Blood Pressure and Renal Responses to Orthostatic Stress Before and After Radiofrequency Renal Denervation in Patients with Resistant Hypertension. Front Cardiovasc Med 2018; 5:42. [PMID: 29876358 PMCID: PMC5975430 DOI: 10.3389/fcvm.2018.00042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/20/2018] [Indexed: 11/17/2022] Open
Abstract
Background/Aims In patients with resistant hypertension, renal denervation (RDN) studies have mainly focused their outcomes on blood pressure (BP). The aim of this study was to evaluate the long-term effect of RDN on neurohormonal profiles, renal hemodynamics and sodium excretion in a resting state and during stress induced by lower body negative pressure (LBNP). Materials and methods This was a single center prospective observational study. Norepinephrine, plasma renin activity (PRA), glomerular filtration rate (GFR), renal plasma flow (RPF) and sodium excretion were measured in unstimulated conditions (rest) and after one hour of LBNP at three different time points: before (M0), one (M1) and twelve months (M12) after RDN. Results Thirteen patients with resistant hypertension were included. In the resting state, no differences were observed in norepinephrine, PRA, sodium excretion and mean BP levels after RDN. GFR (78 ± 32 ml/min at M0 vs 66 ± 26 ml/min at M12 (p = 0.012) and filtration fraction (22.6 ±5.4% at M0 vs 15.1 ±5.3% at M12 (p = 0.002)) both decreased after RDN. During LBNP, the magnitude of the mean BP increase was reduced from +6.8 ± 6.6 mm Hg at M0 to +2.3 ± 1.3 mm Hg at M12 (p = 0.005). The LBNP-induced increase in norepinephrine and decrease in GFR and sodium excretion observed before RDN were blunted after the procedure. Conclusion A decrease in GFR and filtration fraction was observed one year after RDN. In addition, our results suggest that RDN blunts not only the norepinephrine but also the mean BP, the GFR and the sodium excretion responses to an orthostatic stress one year after the intervention. Registry number NCT01734096
Collapse
Affiliation(s)
- Yann Vuignier
- Service of Nephrology and Hypertension, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Eric Grouzmann
- Laboratoire des Catécholamines et Peptides, Service de Biomédecine, Lausanne University Hospital, Lausanne, Switzerland
| | - Olivier Muller
- Department of Cardiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Nima Vakilzadeh
- Service of Nephrology and Hypertension, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Mohamed Faouzi
- Institute of Social and Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Marc P Maillard
- Service of Nephrology and Hypertension, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Salah D Qanadli
- Cardio-Thoracic and Vascular Unit, Department of Radiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Michel Burnier
- Service of Nephrology and Hypertension, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Grégoire Wuerzner
- Service of Nephrology and Hypertension, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
13
|
Frame AA, Wainford RD. Mechanisms of altered renal sodium handling in age-related hypertension. Am J Physiol Renal Physiol 2018; 315:F1-F6. [PMID: 29442548 DOI: 10.1152/ajprenal.00594.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The prevalence of hypertension rises with age to approximately two out of three adults over the age of 60 in the United States. Although the mechanisms underlying age-related hypertension are incompletely understood, sodium homeostasis is critical to the long-term regulation of blood pressure and there is strong evidence that aging is associated with alterations in renal sodium handling. This minireview focuses on recent advancements in our understanding of the vascular, neurohumoral, and renal mechanisms that influence sodium homeostasis and promote age-related hypertension.
Collapse
Affiliation(s)
- Alissa A Frame
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine and The Whitaker Cardiovascular Institute , Boston, Massachusetts
| | - Richard D Wainford
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine and The Whitaker Cardiovascular Institute , Boston, Massachusetts
| |
Collapse
|
14
|
Non-Invasive Renal Perfusion Imaging Using Arterial Spin Labeling MRI: Challenges and Opportunities. Diagnostics (Basel) 2018; 8:diagnostics8010002. [PMID: 29303965 PMCID: PMC5871985 DOI: 10.3390/diagnostics8010002] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/25/2017] [Accepted: 01/02/2018] [Indexed: 12/28/2022] Open
Abstract
Tissue perfusion allows for delivery of oxygen and nutrients to tissues, and in the kidneys is also a key determinant of glomerular filtration. Quantification of regional renal perfusion provides a potential window into renal (patho) physiology. However, non-invasive, practical, and robust methods to measure renal perfusion remain elusive, particularly in the clinic. Arterial spin labeling (ASL), a magnetic resonance imaging (MRI) technique, is arguably the only available method with potential to meet all these needs. Recent developments suggest its viability for clinical application. This review addresses several of these developments and discusses remaining challenges with the emphasis on renal imaging in human subjects.
Collapse
|
15
|
Courand PY, Pereira H, Del Giudice C, Gosse P, Monge M, Bobrie G, Delsart P, Mounier-Vehier C, Lantelme P, Denolle T, Dourmap C, Halimi JM, Girerd X, Rossignol P, Zannad F, Ormezzano O, Vaisse B, Herpin D, Ribstein J, Bouhanick B, Mourad JJ, Ferrari E, Chatellier G, Sapoval M, Azarine A, Azizi M. Abdominal Aortic Calcifications Influences the Systemic and Renal Hemodynamic Response to Renal Denervation in the DENERHTN (Renal Denervation for Hypertension) Trial. J Am Heart Assoc 2017; 6:e007062. [PMID: 29018027 PMCID: PMC5721886 DOI: 10.1161/jaha.117.007062] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/15/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND The DENERHTN (Renal Denervation for Hypertension) trial confirmed the efficacy of renal denervation (RDN) in lowering daytime ambulatory systolic blood pressure when added to standardized stepped-care antihypertensive treatment (SSAHT) for resistant hypertension at 6 months. METHODS AND RESULTS This post hoc exploratory analysis assessed the impact of abdominal aortic calcifications (AAC) on the hemodynamic and renal response to RDN at 6 months. In total, 106 patients with resistant hypertension were randomly assigned to RDN plus SSAHT or to the same SSAHT alone (control group). Total AAC volume was measured, with semiautomatic software and blind to randomization, from the aortic hiatus to the iliac bifurcation using the prerandomization noncontrast abdominal computed tomography scans of 90 patients. Measurements were expressed as tertiles. The baseline-adjusted difference in the change in daytime ambulatory systolic blood pressure from baseline to 6 months between the RDN and control groups was -10.1 mm Hg (P=0.0462) in the lowest tertile and -2.5 mm Hg (P=0.4987) in the 2 highest tertiles of AAC volume. Estimated glomerular filtration rate remained stable at 6 months for the patients in the lowest tertile of AAC volume who underwent RDN (+2.5 mL/min per 1.73 m2) but decreased in the control group (-8.0 mL/min per 1.73 m2, P=0.0148). In the 2 highest tertiles of AAC volume, estimated glomerular filtration rate decreased similarly in the RDN and control groups (P=0.2640). CONCLUSIONS RDN plus SSAHT resulted in a larger decrease in daytime ambulatory systolic blood pressure than SSAHT alone in patients with a lower AAC burden than in those with a higher AAC burden. This larger decrease in daytime ambulatory systolic blood pressure was not associated with a decrease in estimated glomerular filtration rate. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT01570777.
Collapse
Affiliation(s)
- Pierre-Yves Courand
- Hôpital Croix-Rousse, Cardiology Department, European Society of Hypertension Excellence Centre, Hospices Civils de Lyon, France
- CREATIS UMR5220 INSERM U1044 INSA-Lyon Université de Lyon Université Claude Bernard Lyon 1, Lyon, France
| | - Helena Pereira
- Clinical Research Unit, Assistance Publique-Hôpitaux de Paris Hôpital Européen Georges Pompidou, Paris, France
- INSERM CIC1418 Assistance Publique-Hôpitaux de Paris Hôpital Européen Georges Pompidou, Paris, France
| | - Costantino Del Giudice
- Vascular and Oncological Interventional Radiology Department, Assistance Publique-Hôpitaux de Paris Hôpital Européen Georges Pompidou, Paris, France
| | - Philippe Gosse
- Cardiology/Hypertension Department, Centre Hospitalier Universitaire de Bordeaux Hôpital Saint André, Bordeaux, France
| | | | - Guillaume Bobrie
- Hypertension Unit, Assistance Publique-Hôpitaux de Paris Hôpital Européen Georges Pompidou, Paris, France
| | - Pascal Delsart
- Hôpital Cardiologique, Médecine Vasculaire et HTA, Centre Hospitalier Régional Universitaire de Lille, France
| | - Claire Mounier-Vehier
- Hôpital Cardiologique, Médecine Vasculaire et HTA, Centre Hospitalier Régional Universitaire de Lille, France
| | - Pierre Lantelme
- Hôpital Croix-Rousse, Cardiology Department, European Society of Hypertension Excellence Centre, Hospices Civils de Lyon, France
- CREATIS UMR5220 INSERM U1044 INSA-Lyon Université de Lyon Université Claude Bernard Lyon 1, Lyon, France
| | - Thierry Denolle
- Hôpital Arthur Gardiner, Centre d'excellence en HTA Rennes-Dinard, Dinard, France
- Service de Cardiologie et Maladies Vasculaires, Centre Hospitalier Universitaire de Rennes, France
| | - Caroline Dourmap
- Hôpital Arthur Gardiner, Centre d'excellence en HTA Rennes-Dinard, Dinard, France
- Service de Cardiologie et Maladies Vasculaires, Centre Hospitalier Universitaire de Rennes, France
| | | | | | - Patrick Rossignol
- Inserm Centre d'Investigations Cliniques-1433 Inserm U1116 CHRU Nancy F-CRIN INI-CRCT Université de Lorraine, Nancy, France
| | - Faiez Zannad
- Inserm Centre d'Investigations Cliniques-1433 Inserm U1116 CHRU Nancy F-CRIN INI-CRCT Université de Lorraine, Nancy, France
| | | | | | - Daniel Herpin
- Cardiology Department, CHU de Poitiers, Poitiers, France
| | - Jean Ribstein
- Hôpital Lapeyronie, Montpellier, France
- Hôpital Arnaud de Villeneuve, Montpellier, France
| | | | | | | | - Gilles Chatellier
- Clinical Research Unit, Assistance Publique-Hôpitaux de Paris Hôpital Européen Georges Pompidou, Paris, France
- INSERM CIC1418 Assistance Publique-Hôpitaux de Paris Hôpital Européen Georges Pompidou, Paris, France
| | - Marc Sapoval
- Vascular and Oncological Interventional Radiology Department, Assistance Publique-Hôpitaux de Paris Hôpital Européen Georges Pompidou, Paris, France
- Paris-Descartes University, Paris, France
| | - Arshid Azarine
- Vascular and Oncological Interventional Radiology Department, Assistance Publique-Hôpitaux de Paris Hôpital Européen Georges Pompidou, Paris, France
| | - Michel Azizi
- INSERM CIC1418 Assistance Publique-Hôpitaux de Paris Hôpital Européen Georges Pompidou, Paris, France
- Hypertension Unit, Assistance Publique-Hôpitaux de Paris Hôpital Européen Georges Pompidou, Paris, France
- Paris-Descartes University, Paris, France
| |
Collapse
|
16
|
Delacroix S, Chokka RG, Nelson AJ, Wong DT, Sidharta S, Pederson SM, Rajwani A, Nimmo J, Teo KS, Worthley SG. Renal sympathetic denervation increases renal blood volume per cardiac cycle: a serial magnetic resonance imaging study in resistant hypertension. Int J Nephrol Renovasc Dis 2017; 10:243-249. [PMID: 28919800 PMCID: PMC5587163 DOI: 10.2147/ijnrd.s131220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Aim Preclinical studies have demonstrated improvements in renal blood flow after renal sympathetic denervation (RSDN); however, such effects are yet to be confirmed in patients with resistant hypertension. Herein, we assessed the effects of RSDN on renal artery blood flow and diameter at multiple time points post-RSDN. Methods and results Patients (n=11) with systolic blood pressures ≥160 mmHg despite taking three or more antihypertensive medications at maximum tolerated dose were recruited into this single-center, prospective, non-blinded study. Magnetic resonance imaging indices included renal blood flow and renal artery diameters at baseline, 1 month and 6 months. In addition to significant decreases in blood pressures (p<0.0001), total volume of blood flow per cardiac cycle increased by 20% from 6.9±2 mL at baseline to 8.4±2 mL (p=0.003) at 1 month and to 8.0±2 mL (p=0.04) 6 months post-procedure, with no changes in the renal blood flow. There was a significant decrease in renal artery diameters from 7±2 mm at baseline to 6±1 mm (p=0.03) at 1 month post-procedure. This decrease was associated with increases in maximum velocity of blood flow from 73±20 cm/s at baseline to 78±19 cm/s at 1 month post-procedure. Notably, both parameters reverted to 7±2 mm and 72±18 cm/s, respectively, 6 months after procedure. Conclusion RSDN improves renal physiology as evidenced by significant improvements in total volume of blood flow per cardiac cycle. Additionally, for the first time, we identified a transient decrease in renal artery diameters immediately after procedure potentially caused by edema and inflammation that reverted to baseline values 6 months post-procedure.
Collapse
Affiliation(s)
- Sinny Delacroix
- Cardiovascular Research Centre, Royal Adelaide Hospital.,Department of Medicine, University of Adelaide, Adelaide, SA
| | - Ramesh G Chokka
- Cardiovascular Research Centre, Royal Adelaide Hospital.,South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, SA
| | - Adam J Nelson
- Cardiovascular Research Centre, Royal Adelaide Hospital.,Department of Medicine, University of Adelaide, Adelaide, SA
| | | | - Samuel Sidharta
- Cardiovascular Research Centre, Royal Adelaide Hospital.,Department of Medicine, University of Adelaide, Adelaide, SA
| | - Stephen M Pederson
- Bioinformatics Hub, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Adil Rajwani
- Cardiovascular Research Centre, Royal Adelaide Hospital.,Department of Medicine, University of Adelaide, Adelaide, SA
| | - Joanne Nimmo
- Cardiovascular Research Centre, Royal Adelaide Hospital.,Department of Medicine, University of Adelaide, Adelaide, SA
| | - Karen S Teo
- Cardiovascular Research Centre, Royal Adelaide Hospital.,Department of Medicine, University of Adelaide, Adelaide, SA
| | - Stephen G Worthley
- Cardiovascular Research Centre, Royal Adelaide Hospital.,Department of Medicine, University of Adelaide, Adelaide, SA
| |
Collapse
|
17
|
Schlaich MP. Renal Sympathetic Denervation: A Viable Option for Treating Resistant Hypertension. Am J Hypertens 2017; 30:847-856. [PMID: 28338871 DOI: 10.1093/ajh/hpx033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 02/12/2017] [Indexed: 01/20/2023] Open
Abstract
Accumulating evidence from mainly uncontrolled clinical studies with various types of ablation catheters have shown that renal denervation (RDN) can be applied safely and is effective in lowering blood pressure (BP) in patients with treatment-resistant hypertension. Sustained BP lowering has been documented up to 3 years. Furthermore, RDN has been associated with regression of target organ damage, such as left ventricular hypertrophy, arterial stiffness, and others. Several studies indicate potential benefit in other common clinical conditions associated with increased sympathetic tone including chronic kidney disease and heart failure. However, the recently published Symplicity HTN-3 study, the largest and most rigorously designed sham-controlled clinical trial, while confirming the safety of the procedure, failed to demonstrate a BP lowering effect beyond that of a sham procedure in patients with resistant hypertension. Efforts to unravel the reasons for the discrepant results from Symplicity HTN-3 have focused on a range of potential confounders including anatomical and procedural aspects. Indeed, data from post-hoc analyses indicate that sufficient RDN may not have been achieved in the majority of patients in Symplicity HTN-3. Furthermore, recent evidence from human postmortem and functional animal studies revealed new insights into the anatomical distribution of renal nerves and their accessibility by intravascular approaches. Initial results from recent clinical trials integrating these important findings indeed seem to confirm that RDN remains a viable option for the treatment of hypertension. Thorough further investigations will be key to determine the true potential of RDN in clinical conditions characterized by increased sympathetic drive.
Collapse
Affiliation(s)
- Markus P Schlaich
- Dobney Hypertension Centre, School of Medicine and Pharmacology-Royal Perth Hospital Unit, University of Western Australia
- Cardiology Department, Royal Perth Hospital, Perth, Western Australia, Australia
- Neurovascular Hypertension and Kidney Disease Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| |
Collapse
|
18
|
Peters CD, Mathiassen ON, Vase H, Bech Nørgaard J, Christensen KL, Schroeder AP, Rickers HJVH, Opstrup UK, Poulsen PL, Langfeldt S, Andersen G, Hansen KW, Bøtker HE, Engholm M, Bertelsen JB, Pedersen EB, Kaltoft A, Buus NH. The effect of renal denervation on arterial stiffness, central blood pressure and heart rate variability in treatment resistant essential hypertension: a substudy of a randomized sham-controlled double-blinded trial (the ReSET trial). Blood Press 2017; 26:366-380. [PMID: 28830251 DOI: 10.1080/08037051.2017.1368368] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVES To investigate, whether renal denervation (RDN) improves arterial stiffness, central blood pressure (C-BP) and heart rate variability (HRV) in patients with treatment resistant hypertension. METHODS ReSET was a randomized, sham-controlled, double-blinded trial (NCT01459900). RDN was performed by a single experienced operator using the Medtronic unipolar Symplicity FlexTM catheter. C-BP, carotid-femoral pulse wave velocity (PWV), and HRV were obtained at baseline and after six months with the SphygmoCor®-device. RESULTS Fifty-three patients (77% of the ReSET-cohort) were included in this substudy. The groups were similar at baseline (SHAM/RDN): n = 27/n = 26; 78/65% males; age 59 ± 9/54 ± 8 years (mean ± SD); systolic brachial BP 158 ± 18/154 ± 17 mmHg; systolic 24-hour ambulatory BP 153 ± 14/151 ± 13 mmHg. Changes in PWV (0.1 ± 1.9 (SHAM) vs. -0.6 ± 1.3 (RDN) m/s), systolic C-BP (-2 ± 17 (SHAM) vs. -8 ± 16 (RDN) mmHg), diastolic C-BP (-2 ± 9 (SHAM) vs. -5 ± 9 (RDN) mmHg), and augmentation index (0.7 ± 7.0 (SHAM) vs. 1.0 ± 7.4 (RDN) %) were not significantly different after six months. Changes in HRV-parameters were also not significantly different. Baseline HRV or PWV did not predict BP-response after RDN. CONCLUSIONS In a sham-controlled setting, there were no significant effects of RDN on arterial stiffness, C-BP and HRV. Thus, the idea of BP-independent effects of RDN on large arteries and cardiac autonomic activity is not supported.
Collapse
Affiliation(s)
| | | | - Henrik Vase
- b Department of Cardiology , Aarhus University Hospital , Aarhus , Denmark
| | - Jesper Bech Nørgaard
- c University Clinic in Nephrology and Hypertension, Holstebro Hospital , Holstebro , Denmark
| | | | | | | | | | | | - Sten Langfeldt
- g Department of Radiology , Aarhus University Hospital , Skejby , Denmark
| | - Gratien Andersen
- g Department of Radiology , Aarhus University Hospital , Skejby , Denmark
| | | | - Hans Erik Bøtker
- a Department of Renal Medicine , Aarhus University Hospital , Aarhus , Denmark
| | - Morten Engholm
- b Department of Cardiology , Aarhus University Hospital , Aarhus , Denmark
| | | | | | - Anne Kaltoft
- b Department of Cardiology , Aarhus University Hospital , Aarhus , Denmark
| | - Niels Henrik Buus
- i Department of Nephrology , Aalborg University Hospital , Aalborg , Denmark
| |
Collapse
|
19
|
Sanders MF, Reitsma JB, Morpey M, Gremmels H, Bots ML, Pisano A, Bolignano D, Zoccali C, Blankestijn PJ. Renal safety of catheter-based renal denervation: systematic review and meta-analysis. Nephrol Dial Transplant 2017; 32:1440-1447. [DOI: 10.1093/ndt/gfx088] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/05/2017] [Indexed: 12/29/2022] Open
|
20
|
Patel HC, Hayward C, Keegan J, Gatehouse PD, Rajani R, Khattar RS, Mohiaddin RH, Rosen SD, Lyon AR, di Mario C. Effects of renal denervation on vascular remodelling in patients with heart failure and preserved ejection fraction: A randomised control trial. JRSM Cardiovasc Dis 2017; 6:2048004017690988. [PMID: 28228942 PMCID: PMC5308435 DOI: 10.1177/2048004017690988] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/02/2017] [Accepted: 01/03/2017] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To assess the effect of renal denervation (RDT) on micro- and macro-vascular function in patients with heart failure with preserved ejection fraction (HFpEF). DESIGN A prospective, randomised, open-controlled trial with blinded end-point analysis. SETTING A single-centre London teaching hospital. PARTICIPANTS Twenty-five patients with HFpEF who were recruited into the RDT-PEF trial. MAIN OUTCOME MEASURES Macro-vascular: 24-h ambulatory pulse pressure, aorta distensibilty (from cardiac magnetic resonance imaging (CMR), aorta pulse wave velocity (CMR), augmentation index (peripheral tonometry) and renal artery blood flow indices (renal MR). Micro-vascular: endothelial function (peripheral tonometry) and urine microalbuminuria. RESULTS At baseline, 15 patients were normotensive, 9 were hypertensive and 1 was hypotensive. RDT did not lower any of the blood pressure indices. Though there was evidence of abnormal vascular function at rest, RDT did not affect these at 3 or 12 months follow-up. CONCLUSIONS RDT did not improve markers of macro- and micro-vascular function.
Collapse
Affiliation(s)
- Hitesh C Patel
- Cardiovascular Biomedical Research Unit, Royal Brompton Hospital and Imperial College, London, UK
| | - Carl Hayward
- Cardiovascular Biomedical Research Unit, Royal Brompton Hospital and Imperial College, London, UK
| | - Jennifer Keegan
- Department of Cardiac MRI, Royal Brompton Hospital, London, UK
| | | | - Ronak Rajani
- Department of Cardiology, St Thomas' Hospital, London, UK
| | - Rajdeep S Khattar
- Department of Non-Invasive Cardiology, Royal Brompton Hospital, London, UK
| | - Raad H Mohiaddin
- Cardiovascular Biomedical Research Unit, Royal Brompton Hospital and Imperial College, London, UK
| | - Stuart D Rosen
- Cardiovascular Biomedical Research Unit, Royal Brompton Hospital and Imperial College, London, UK; Department of Cardiology, Ealing Hospital, Southall, UK
| | - Alexander R Lyon
- Cardiovascular Biomedical Research Unit, Royal Brompton Hospital and Imperial College, London, UK
| | - Carlo di Mario
- Cardiovascular Biomedical Research Unit, Royal Brompton Hospital and Imperial College, London, UK
| |
Collapse
|
21
|
Fengler K, Rommel KP, Okon T, Schuler G, Lurz P. Renal sympathetic denervation in therapy resistant hypertension - pathophysiological aspects and predictors for treatment success. World J Cardiol 2016; 8:436-46. [PMID: 27621771 PMCID: PMC4997524 DOI: 10.4330/wjc.v8.i8.436] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/21/2016] [Accepted: 07/14/2016] [Indexed: 02/06/2023] Open
Abstract
Many forms of human hypertension are associated with an increased systemic sympathetic activity. Especially the renal sympathetic nervous system has been found to play a prominent role in this context. Therefore, catheter-interventional renal sympathetic denervation (RDN) has been established as a treatment for patients suffering from therapy resistant hypertension in the past decade. The initial enthusiasm for this treatment was markedly dampened by the results of the Symplicity-HTN-3 trial, although the transferability of the results into clinical practice to date appears to be questionable. In contrast to the extensive use of RDN in treating hypertensive patients within or without clinical trial settings over the past years, its effects on the complex pathophysiological mechanisms underlying therapy resistant hypertension are only partly understood and are part of ongoing research. Effects of RDN have been described on many levels in human trials: From altered systemic sympathetic activity across cardiac and metabolic alterations down to changes in renal function. Most of these changes could sustainably change long-term morbidity and mortality of the treated patients, even if blood pressure remains unchanged. Furthermore, a number of promising predictors for a successful treatment with RDN have been identified recently and further trials are ongoing. This will certainly help to improve the preselection of potential candidates for RDN and thereby optimize treatment outcomes. This review summarizes important pathophysiologic effects of renal denervation and illustrates the currently known predictors for therapy success.
Collapse
Affiliation(s)
- Karl Fengler
- Karl Fengler, Karl Philipp Rommel, Thomas Okon, Gerhard Schuler, Philipp Lurz, Department of Internal Medicine/Cardiology, University of Leipzig - Heart Center, 04289 Leipzig, Germany
| | - Karl Philipp Rommel
- Karl Fengler, Karl Philipp Rommel, Thomas Okon, Gerhard Schuler, Philipp Lurz, Department of Internal Medicine/Cardiology, University of Leipzig - Heart Center, 04289 Leipzig, Germany
| | - Thomas Okon
- Karl Fengler, Karl Philipp Rommel, Thomas Okon, Gerhard Schuler, Philipp Lurz, Department of Internal Medicine/Cardiology, University of Leipzig - Heart Center, 04289 Leipzig, Germany
| | - Gerhard Schuler
- Karl Fengler, Karl Philipp Rommel, Thomas Okon, Gerhard Schuler, Philipp Lurz, Department of Internal Medicine/Cardiology, University of Leipzig - Heart Center, 04289 Leipzig, Germany
| | - Philipp Lurz
- Karl Fengler, Karl Philipp Rommel, Thomas Okon, Gerhard Schuler, Philipp Lurz, Department of Internal Medicine/Cardiology, University of Leipzig - Heart Center, 04289 Leipzig, Germany
| |
Collapse
|
22
|
|
23
|
Gillis KA, McComb C, Patel RK, Stevens KK, Schneider MP, Radjenovic A, Morris STW, Roditi GH, Delles C, Mark PB. Non-Contrast Renal Magnetic Resonance Imaging to Assess Perfusion and Corticomedullary Differentiation in Health and Chronic Kidney Disease. Nephron Clin Pract 2016; 133:183-92. [PMID: 27362585 DOI: 10.1159/000447601] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 06/10/2016] [Indexed: 11/19/2022] Open
Abstract
AIMS Arterial spin labelling (ASL) MRI measures perfusion without administration of contrast agent. While ASL has been validated in animals and healthy volunteers (HVs), application to chronic kidney disease (CKD) has been limited. We investigated the utility of ASL MRI in patients with CKD. METHODS We studied renal perfusion in 24 HVs and 17 patients with CKD (age 22-77 years, 40% male) using ASL MRI at 3.0T. Kidney function was determined using estimated glomerular filtration rate (eGFR). T1 relaxation time was measured using modified look-locker inversion and xFB02;ow-sensitive alternating inversion recovery true-fast imaging and steady precession was performed to measure cortical and whole kidney perfusion. RESULTS T1 was higher in CKD within cortex and whole kidney, and there was association between T1 time and eGFR. No association was seen between kidney size and volume and either T1, or ASL perfusion. Perfusion was lower in CKD in cortex (136 ± 37 vs. 279 ± 69 ml/min/100 g; p < 0.001) and whole kidney (146 ± 24 vs. 221 ± 38 ml/min/100 g; p < 0.001). There was significant, negative, association between T1 longitudinal relaxation time and ASL perfusion in both the cortex (r = -0.75, p < 0.001) and whole kidney (r = -0.50, p < 0.001). There was correlation between eGFR and both cortical (r = 0.73, p < 0.01) and whole kidney (r = 0.69, p < 0.01) perfusion. CONCLUSIONS Significant differences in renal structure and function were demonstrated using ASL MRI. T1 may be representative of structural changes associated with CKD; however, further investigation is required into the pathological correlates of reduced ASL perfusion and increased T1 time in CKD.
Collapse
Affiliation(s)
- Keith A Gillis
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ren T, Wen CL, Chen LH, Xie SS, Cheng Y, Fu YX, Oesingmann N, de Oliveira A, Zuo PL, Yin JZ, Xia S, Shen W. Evaluation of renal allografts function early after transplantation using intravoxel incoherent motion and arterial spin labeling MRI. Magn Reson Imaging 2016; 34:908-14. [PMID: 27114341 DOI: 10.1016/j.mri.2016.04.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 03/25/2016] [Accepted: 04/17/2016] [Indexed: 12/30/2022]
Abstract
PURPOSE To evaluate renal allografts function early after transplantation using intravoxel incoherent motion (IVIM) and arterial spin labeling (ASL) MRI. METHODS This prospective study was approved by the local ethics committee, and written informed consent was obtained from all participants. A total of 82 participants with 62 renal allograft recipients (2-4weeks after kidney transplantation) and 20 volunteers were enrolled to be scanned using IVIM and ASL MRI on a 3.0T MR scanner. Recipients were divided into two groups with either normal or impaired function according to the estimated glomerular filtration rate (eGFR) with a threshold of 60ml/min/1.73m(2). The apparent diffusion coefficient (ADC) of pure diffusion (ADCslow), the ADC of pseudodiffusion (ADCfast), perfusion fraction (PF), and renal blood flow (RBF) of cortex were compared among three groups. The correlation of ADCslow, ADCfast, PF and RBF with eGFR was evaluated. The receiver operating characteristic (ROC) curve and binary logistic regression analyses were performed to assess the diagnostic efficiency of using IVIM and ASL parameters to discriminate allografts with impaired function from normal function. P<0.05 was considered statistically significant. RESULTS In allografts with normal function, no significant difference of mean cortical ADCslow, ADCfast, and PF was found compared with healthy controls (P>0.05). Cortical RBF in allografts with normal function was statistically lower than that of healthy controls (P<0.001). Mean cortical ADCslow, ADCfast, PF and RBF were lower for allografts with impaired function than that with normal function (P<0.05). Mean cortical ADCslow, ADCfast, PF and RBF showed a positive correlation with eGFR (all P<0.01) for recipients. The combination of IVIM and ASL MRI showed a higher area under the ROC curve (AUC) (0.865) than that of ASL MRI alone (P=0.02). CONCLUSION Combined IVIM and ASL MRI can better evaluate the diffusion and perfusion properties for allografts early after kidney transplantation.
Collapse
Affiliation(s)
- Tao Ren
- Department of Radiology, Tianjin Medical University First Center Hospital, 300192, Tianjin, China.
| | - Cheng-Long Wen
- Department of Radiology, Tianjin Medical University First Center Hospital, 300192, Tianjin, China.
| | - Li-Hua Chen
- Department of Radiology, Tianjin Medical University First Center Hospital, 300192, Tianjin, China.
| | - Shuang-Shuang Xie
- Department of Radiology, Tianjin Medical University First Center Hospital, 300192, Tianjin, China.
| | - Yue Cheng
- Department of Radiology, Tianjin Medical University First Center Hospital, 300192, Tianjin, China.
| | - Ying-Xin Fu
- Department of Transplantation Surgery, Tianjin First Center Hospital, 300192, Tianjin, China.
| | | | | | - Pan-Li Zuo
- Siemens Healthcare, MR Collaborations NE Asia, 100010,Beijing, China.
| | - Jian-Zhong Yin
- Department of Radiology, Tianjin Medical University First Center Hospital, 300192, Tianjin, China.
| | - Shuang Xia
- Department of Radiology, Tianjin Medical University First Center Hospital, 300192, Tianjin, China.
| | - Wen Shen
- Department of Radiology, Tianjin Medical University First Center Hospital, 300192, Tianjin, China.
| |
Collapse
|
25
|
Hammon M, Janka R, Siegl C, Seuss H, Grosso R, Martirosian P, Schmieder RE, Uder M, Kistner I. Reproducibility of Kidney Perfusion Measurements With Arterial Spin Labeling at 1.5 Tesla MRI Combined With Semiautomatic Segmentation for Differential Cortical and Medullary Assessment. Medicine (Baltimore) 2016; 95:e3083. [PMID: 26986143 PMCID: PMC4839924 DOI: 10.1097/md.0000000000003083] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Magnetic resonance imaging with arterial spin labeling (ASL) is a noninvasive approach to measure organ perfusion. The purpose of this study was to evaluate the reproducibility of ASL kidney perfusion measurements with semiautomatic segmentation, which allows separate quantification of cortical and medullary perfusion. The right kidneys of 14 healthy volunteers were examined 6 times on 2 occasions (3 times at each occasion). There was a 10-minute pause between each examination and a 14-day interval between the 2 occasions. Cortical, medullary, and whole kidney parenchymal perfusion was determined with customized semiautomatic segmentation software. Coefficient of variances (CVs) and intraclass correlations (ICCs) were calculated. Mean whole, cortical, and medullary kidney perfusion was 307.26 ± 25.65, 337.10 ± 34.83, and 279.61 ± 26.73 mL/min/100 g, respectively. On session 1, mean perfusion for the whole kidney, cortex, and medulla was 307.08 ± 26.91, 336.79 ± 36.54, and 279.60 ± 27.81 mL/min/100 g, respectively, and on session 2, 307.45 ± 24.65, 337.41 ± 33.48, and 279.61 ± 25.94 mL/min/100 g, respectively (P > 0.05; R² = 0.60/0.59/0.54). For whole, cortical, and medullary kidney perfusion, the total ICC/CV were 0.97/3.43 ± 0.86%, 0.97/4.19 ± 1.33%, and 0.96/4.12 ± 1.36%, respectively. Measurements did not differ significantly and showed a very good correlation (P > 0.05; R² = 0.75/0.76/0.65). ASL kidney measurements combined with operator-independent semiautomatic segmentation revealed high correlation and low variance of cortical, medullary, and whole kidney perfusion.
Collapse
Affiliation(s)
- Matthias Hammon
- From the Department of Radiology (MH, RJ, HS, MU), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Maximiliansplatz, Erlangen, Germany; Department of Computer Graphics (CS, RG), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße, Erlangen, Germany; Experimental Radiology, Department of Diagnostic and Interventional Radiology (PM), University Hospital Tübingen, Otfried-Müller-Straße, Tübingen, Germany; and Department of Nephrology and Hypertension (RES, IK), University Hospital Erlangen, Ulmenweg, Erlangen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Rodionova K, Fiedler C, Guenther F, Grouzmann E, Neuhuber W, Fischer MJM, Ott C, Linz P, Freisinger W, Heinlein S, Schmidt ST, Schmieder RE, Amann K, Scrogin K, Veelken R, Ditting T. Complex reinnervation pattern after unilateral renal denervation in rats. Am J Physiol Regul Integr Comp Physiol 2016; 310:R806-18. [PMID: 26911463 DOI: 10.1152/ajpregu.00227.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 02/10/2016] [Indexed: 12/14/2022]
Abstract
Renal denervation (DNX) is a treatment for resistant arterial hypertension. Efferent sympathetic nerves regrow, but reinnervation by renal afferent nerves has only recently been shown in the renal pelvis of rats after unilateral DNX. We examined intrarenal perivascular afferent and sympathetic efferent nerves after unilateral surgical DNX. Tyrosine hydroxylase (TH), CGRP, and smooth muscle actin were identified in kidney sections from 12 Sprague-Dawley rats, to distinguish afferents, efferents, and vasculature. DNX kidneys and nondenervated kidneys were examined 1, 4, and 12 wk after DNX. Tissue levels of CGRP and norepinephrine (NE) were measured with ELISA and mass spectrometry, respectively. DNX decreased TH and CGRP labeling by 90% and 95%, respectively (P < 0.05) within 1 wk. After 12 wk TH and CGRP labeling returned to baseline with a shift toward afferent innervation (P < 0.05). Nondenervated kidneys showed a doubling of both labels within 12 wk (P < 0.05). CGRP content decreased by 72% [3.2 ± 0.3 vs. 0.9 ± 0.2 ng/gkidney; P < 0.05] and NA by 78% [1.1 ± 0.1 vs. 0.2 ± 0.1 pmol/mgkidney; P < 0.05] 1 wk after DNX. After 12 wk, CGRP, but not NE, content in DNX kidneys was fully recovered, with no changes in the nondenervated kidneys. The use of phenol in the DNX procedure did not influence this result. We found morphological reinnervation and transmitter recovery of afferents within 12 wk after DNX. Despite morphological evidence of sympathetic regrowth, NE content did not fully recover. These results suggest a long-term net surplus of afferent influence on the DNX kidney may be contributing to the blood pressure lowering effect of DNX.
Collapse
Affiliation(s)
- Kristina Rodionova
- Department of Internal Medicine 4, Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nuremburg, Erlangen, Germany
| | - Christian Fiedler
- Department of Internal Medicine 4, Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nuremburg, Erlangen, Germany
| | - Franziska Guenther
- Department of Physiology 1, Friedrich-Alexander University Erlangen-Nuremburg, Erlangen, Germany
| | - Eric Grouzmann
- Service de Biomédicine, Laboratoire des Catéchoalamines et Peptides, Centre Hospitalier Universitaire Vaudois CHUV, Lausanne, Switzerland; and
| | - Winfried Neuhuber
- Department of Anatomy I, Friedrich-Alexander University Erlangen-Nuremburg, Erlangen, Germany
| | - Michael J M Fischer
- Department of Physiology 1, Friedrich-Alexander University Erlangen-Nuremburg, Erlangen, Germany
| | - Christian Ott
- Department of Internal Medicine 4, Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nuremburg, Erlangen, Germany
| | - Peter Linz
- Department of Internal Medicine 4, Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nuremburg, Erlangen, Germany
| | - Wolfgang Freisinger
- Department of Internal Medicine 4, Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nuremburg, Erlangen, Germany
| | - Sonja Heinlein
- Department of Internal Medicine 4, Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nuremburg, Erlangen, Germany
| | - Stephanie T Schmidt
- Department of Internal Medicine 4, Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nuremburg, Erlangen, Germany
| | - Roland E Schmieder
- Department of Internal Medicine 4, Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nuremburg, Erlangen, Germany
| | - Kerstin Amann
- Department of Pathology, Friedrich-Alexander University Erlangen-Nuremburg, Erlangen, Germany
| | - Karie Scrogin
- Department of Pharmacology and Experimental Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois
| | - Roland Veelken
- Department of Internal Medicine 4, Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nuremburg, Erlangen, Germany
| | - Tilmann Ditting
- Department of Internal Medicine 4, Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nuremburg, Erlangen, Germany;
| |
Collapse
|
27
|
Patel HC, Hayward C, Vassiliou V, Patel K, Howard JP, Di Mario C. Renal denervation for the management of resistant hypertension. Integr Blood Press Control 2015; 8:57-69. [PMID: 26672761 PMCID: PMC4675644 DOI: 10.2147/ibpc.s65632] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Renal sympathetic denervation (RSD) as a therapy for patients with resistant hypertension has attracted great interest. The majority of studies in this field have demonstrated impressive reductions in blood pressure (BP). However, these trials were not randomized or sham-controlled and hence, the findings may have been overinflated due to trial biases. SYMPLICITY HTN-3 was the first randomized controlled trial to use a blinded sham-control and ambulatory BP monitoring. A surprise to many was that this study was neutral. Possible reasons for this neutrality include the fact that RSD may not be effective at lowering BP in man, RSD was not performed adequately due to limited operator experience, patients’ adherence with their anti-hypertensive drugs may have changed during the trial period, and perhaps the intervention only works in certain subgroups that are yet to be identified. Future studies seeking to demonstrate efficacy of RSD should be designed as randomized blinded sham-controlled trials. The efficacy of RSD is in doubt, but many feel that its safety has been established through the thousands of patients in whom the procedure has been performed. Over 90% of these data, however, are for the Symplicity™ system and rarely extend beyond 12 months of follow-up. Long-term safety cannot be assumed with RSD and nor should it be assumed that if one catheter system is safe then all are. We hope that in the near future, with the benefit of well-designed clinical trials, the role of renal denervation in the management of hypertension will be established.
Collapse
Affiliation(s)
- Hitesh C Patel
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, UK
| | - Carl Hayward
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, UK
| | - Vassilis Vassiliou
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, UK
| | - Ketna Patel
- Department of Cardiology, Royal Free Hospital, London, UK
| | - James P Howard
- National Heart and Lung Institute, Imperial College, London, UK
| | - Carlo Di Mario
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, UK
| |
Collapse
|
28
|
Bischoff SJ, Schmidt M, Lehmann T, Schwab M, Matziolis G, Saemann A, Schiffner R. Renal glucose release during hypoglycemia is partly controlled by sympathetic nerves - a study in pigs with unilateral surgically denervated kidneys. Physiol Rep 2015; 3:3/11/e12603. [PMID: 26564063 PMCID: PMC4673633 DOI: 10.14814/phy2.12603] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Catecholamines are known to increase renal glucose release during hypoglycemia. The specific extent of the contribution of different sources of catecholamines, endocrine delivery via circulation or release from autonomous sympathetic renal nerves, though, is unknown. We tested the hypothesis that sympathetic renal innervation plays a major role in the regulation of renal gluconeogenesis. For this purpose, instrumented adolescent pigs had one kidney surgically denervated while the other kidney served as a control. A hypoglycemic clamp with arterial blood glucose below 2 mmol/L was maintained for 75 min. Arteriovenous blood glucose difference, inulin clearance, p-aminohippurate clearance, and sodium excretion were measured in intervals of 15 min separately for both kidneys. Blood glucose was lowered to 0.84 ± 0.33 mmol/L for 75 min. The side-dependent renal net glucose release (SGN) decreased significantly after the unilateral ablation of renal nerves. In the linear mixed model, renal denervation had a significant inhibitory effect on renal net glucose release (P = 0.036). The SGN of the ablated kidney decreased by 0.02 mmol/min and was equivalent to 43.3 ± 23.2% of the control (nonablated) kidney in the pigs. This allows the conclusion that renal glucose release is partly controlled by sympathetic nerves. This may be relevant in humans as well, and could explain the increased risk of severe hypoglycemia of patients with diabetes mellitus and autonomous neuropathy. The effects of denervation on renal glucose metabolism should be critically taken into account when considering renal denervation as a therapy in diabetic patients.
Collapse
Affiliation(s)
- Sabine J Bischoff
- Institute for Laboratory Animals and Welfare, Jena University Hospital, Jena, Germany
| | - Martin Schmidt
- Institute for Biochemistry II, Jena University Hospital, Jena, Germany
| | - Thomas Lehmann
- Institute of Medical Statistics, Computer Sciences and Documentation Science, Jena University Hospital, Jena, Germany
| | - Matthias Schwab
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Georg Matziolis
- Orthopaedic Department, Jena University Hospital, Jena, Germany
| | - Alexander Saemann
- Department of Internal Medicine II, Helios Hospital, Erfurt, Germany
| | - René Schiffner
- Department of Neurology, Jena University Hospital, Jena, Germany Orthopaedic Department, Jena University Hospital, Jena, Germany
| |
Collapse
|
29
|
|
30
|
The effect of renal denervation on kidney oxygenation as determined by BOLD MRI in patients with hypertension. Eur Radiol 2015; 25:1984-92. [PMID: 25595641 DOI: 10.1007/s00330-014-3583-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 11/10/2014] [Accepted: 12/22/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVES Renal denervation (RDN) is a promising therapy for resistant hypertension. RDN is assumed to decrease sympathetic activity. Consequently, RDN can potentially increase renal oxygenation. Blood oxygen level-dependent MRI (BOLD-MRI) provides a non-invasive tool to determine renal oxygenation in humans. The aim of the current study was to investigate the effect of RDN on renal oxygenation as determined by BOLD-MRI. METHODS Patients with resistant hypertension or the inability to follow a stable drug regimen due to unacceptable side effects were included. BOLD-MRI was performed before and 12 months after RDN. Twenty-seven patients were imaged on 3 T and 19 on 1.5 T clinical MRI systems. RESULTS Fifty-four patients were included, 46 patients (23 men, mean age 57 years) completed the study. Mean 24-h BP changed from 163(±20)/98(±14) mmHg to 154(±22)/92(±13) mmHg (p = 0.001 and p < 0.001). eGFR did not change after RDN [77(±18) vs. 79(±20) mL/min/1.73 m(2); p = 0.13]. RDN did not affect renal oxygenation [1.5 T: cortical R2*: 12.5(±0.9) vs. 12.5(±0.9), p = 0.94; medullary R2*: 19.6(±1.7) vs. 19.3(1.4), p = 0.40; 3 T: cortical R2*: 18.1(±0.8) vs. 17.8(±1.2), p = 0.47; medullary R2*: 27.4(±1.9) vs. 26.7(±1.8), p = 0.19]. CONCLUSION The current study shows that RDN does not lead to changes in renal oxygenation 1 year after RDN as determined by BOLD-MRI. KEY POINTS • Renal denervation significantly decreased ambulatory blood pressure. • Renal denervation did not change renal oxygenation as determined by BOLD-MRI. • Absence of a change in renal oxygenation might be explained by autoregulation.
Collapse
|
31
|
Verloop WL, Vink EE, Spiering W, Blankestijn PJ, Doevendans PA, Bots ML, Vonken EJ, Voskuil M, Leiner T. Effects of renal denervation on end organ damage in hypertensive patients. Eur J Prev Cardiol 2014; 22:558-67. [PMID: 25326543 DOI: 10.1177/2047487314556003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/27/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND Renal denervation (RDN) is believed to reduce sympathetic nerve activity and is a potential treatment for resistant hypertension. The present study investigated the effects of RDN on end organ damage (EOD). DESIGN The present study was a prospective cohort study (registered as NCT01427049). METHODS Uncontrolled hypertensive patients underwent a work-up prior to and one year after RDN. Cardiac magnetic resonance (CMR) imaging was used to determine left ventricular (LV)-mass; pulse wave analysis and pulse wave velocity (PWV) were used for evaluation of central blood pressure (BP) and arterial stiffness and 24-hour urine was collected for assessment of urinary albumin excretion. The 24-hour ambulatory BP measurement (ABPM) was used to evaluate the effect of RDN on BP. RESULTS Fifty-four patients gave informed consent for study participation. Mean age was 58 ± 10 years, 50% were male. One year after RDN, mean ABPM decreased by 7 ± 18/5 ± 11 mm Hg (p = 0.01/p < 0.01). In the patients followed-up in a standardised fashion ABPM decreased by 5 ± 18/4 ± 12 mm Hg (n = 34; p = 0.11/p = 0.09). Mean body surface area indexed LV-mass decreased by 3.3 ± 11.5 g/m(2) (corresponding to a 3 ± 11% reduction; p = 0.09). PWV increased by 2.9 (-2.2 to +6.1) m/s (p = 0.04). Augmentation index corrected for 75 beats per min did not change (median increase 3.0 (-7 to +17) mm Hg; p = 0.89). Urinary albumin excretion did not change during follow-up (mean decrease 10 ± 117 mg/24 hour; p = 0.61). CONCLUSION In the current study, we observed a modest effect from renal denervation. Moreover, RDN did not result in a statistical significant effect on end organ damage 12 months after treatment.
Collapse
Affiliation(s)
- Willemien L Verloop
- Department of Cardiology, University Medical Center, Utrecht, the Netherlands
| | - Eva E Vink
- Department of Nephrology, University Medical Center, Utrecht, the Netherlands
| | - Wilko Spiering
- Department of Vascular Medicine, University Medical Center, Utrecht, the Netherlands
| | - Peter J Blankestijn
- Department of Nephrology, University Medical Center, Utrecht, the Netherlands
| | - Pieter A Doevendans
- Department of Cardiology, University Medical Center, Utrecht, the Netherlands
| | - Michiel L Bots
- The Julius Center for Health Sciences and Primary Care, University Medical Center, Utrecht, the Netherlands
| | - Evert-jan Vonken
- Department of Radiology, University Medical Center, Utrecht, the Netherlands
| | - Michiel Voskuil
- Department of Cardiology, University Medical Center, Utrecht, the Netherlands
| | - Tim Leiner
- Department of Radiology, University Medical Center, Utrecht, the Netherlands
| |
Collapse
|
32
|
|
33
|
Kannan A, Medina RI, Nagajothi N, Balamuthusamy S. Renal sympathetic nervous system and the effects of denervation on renal arteries. World J Cardiol 2014; 6:814-823. [PMID: 25228960 PMCID: PMC4163710 DOI: 10.4330/wjc.v6.i8.814] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/18/2014] [Accepted: 06/11/2014] [Indexed: 02/06/2023] Open
Abstract
Resistant hypertension is associated with chronic activation of the sympathetic nervous system resulting in various comorbidities. The prevalence of resistant hypertension is often under estimated due to various reasons. Activation of sympathetic nervous system at the renal- as well as systemic- level contributes to the increased level of catecholamines and resulting increase in the blood pressure. This increased activity was demonstrated by increased muscle sympathetic nerve activity and renal and total body noradrenaline spillover. Apart from the hypertension, it is hypothesized to be associated with insulin resistance, congestive heart failure and obstructive sleep apnea. Renal denervation is a novel procedure where the sympathetic afferent and efferent activity is reduced by various techniques and has been used successfully to treat drug-resistant hypertension improvement of various metabolic derangements. Renal denervation has the unique advantage of offering the denervation at the renal level, thus mitigating the systemic side effects. Renal denervation can be done by various techniques including radiofrequency ablation, ultrasound guided ablation and chemical ablation. Various trials evaluated the role of renal denervation in the management of resistant hypertension and have found promising results. More studies are underway to evaluate the role of renal denervation in patients presenting with resistant hypertension in different scenarios. Appropriate patient selection might be the key in determining the effectiveness of the procedure.
Collapse
|
34
|
Veelken R, Schmieder RE. Renal denervation—implications for chronic kidney disease. Nat Rev Nephrol 2014; 10:305-13. [DOI: 10.1038/nrneph.2014.59] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
35
|
Reddi AS. Resistant hypertension: is renal denervation the current treatment of choice? Clin Exp Hypertens 2014; 36:525-30. [PMID: 24678737 DOI: 10.3109/10641963.2014.881846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Resistant hypertension is simply defined as failure to control blood pressure <140/90 mmHg in an adherent non-diabetic patient with normal kidney function despite the use of optimal doses of three antihypertensive agents, including a diuretic. Also, control of blood pressure in any adherent patient with more than four antihypertensive agents defines resistant hypertension. In a patient with diabetes or chronic kidney disease, the goal blood pressure is <130/80 mmHg. One of the most important pathophysiological mechanisms of resistant hypertension is overactivity of the sympathetic nervous system (SNS). In selected patients with resistant hypertension, renal denervation has been shown to control blood pressure by suppressing SNS overactivity. SUMMARY This review summarizes the results of the studies of renal denervation for resistant hypertension and suggests the use of this procedure in several other conditions that are associated with SNS overactivity. KEY MESSAGE Renal denervation seems to control blood pressure in patients with resistant hypertension.
Collapse
Affiliation(s)
- Alluru S Reddi
- Department of Medicine, Division of Nephrology and Hypertension, Rutgers, New Jersey Medical School , Newark, NJ , USA
| |
Collapse
|
36
|
Angle JF, Prince EA, Matsumoto AH, Lohmeier TE, Roberts AM, Misra S, Razavi MK, Katholi RE, Sarin SN, Sica DA, Shivkumar K, Ahrar K. Proceedings from the Society of Interventional Radiology Foundation Research Consensus Panel on Renal Sympathetic Denervation. J Vasc Interv Radiol 2014; 25:497-509. [PMID: 24674208 DOI: 10.1016/j.jvir.2013.12.572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 12/27/2013] [Accepted: 12/27/2013] [Indexed: 10/25/2022] Open
Affiliation(s)
- John F Angle
- Department of Radiology, Division of Vascular and Interventional Radiology, University of Virginia Health System, 1215 Lee Street, Charlottesville, VA 22908.
| | - Ethan A Prince
- Department of Radiology, Division of Vascular and Interventional Radiology, Brown University, Providence, Rhode Island
| | - Alan H Matsumoto
- Department of Radiology, Division of Vascular and Interventional Radiology, University of Virginia Health System, 1215 Lee Street, Charlottesville, VA 22908
| | - Thomas E Lohmeier
- Department of Physiology, University of Mississippi, Jackson, Mississippi
| | - Andrew M Roberts
- Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Sanjay Misra
- Department of Radiology, Division of Vascular and Interventional Radiology, Mayo Clinic, Rochester, Minnesota
| | - Mahmood K Razavi
- Vascular & Interventional Specialists of Orange County, Inc., Los Angeles, California
| | - Richard E Katholi
- Department of Cardiology, Prairie Heart Institute at St. John's Hospital, Springfield, Illinois
| | - Shawn N Sarin
- Department of Radiology, Division of Vascular and Interventional Radiology, George Washington University, Washington, D.C
| | - Domenic A Sica
- Department of Internal Medicine, Division of Nephrology, Virginia Commonwealth University, Richmond, Virginia
| | - Kalyanam Shivkumar
- Department of Internal Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, California
| | - Kamran Ahrar
- Department of Radiology, Division of Vascular and Interventional Radiology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
37
|
Ott C, Mahfoud F, Schmid A, Ditting T, Veelken R, Ewen S, Ukena C, Uder M, Böhm M, Schmieder RE. Improvement of albuminuria after renal denervation. Int J Cardiol 2014; 173:311-5. [PMID: 24681017 DOI: 10.1016/j.ijcard.2014.03.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/31/2014] [Accepted: 03/09/2014] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The primary objective of this study was the effect of renal denervation (RDN) on elevated urinary albumin-to-creatinine ratio (UACR) in treatment-resistant hypertensive patients. In addition, patients were stratified according their UACR at baseline into micro- (30-300 mg/g, n=37) and macroalbuminuria (≥ 300 mg/g, <2,200 mg/g, n=22). BACKGROUND Increased albuminuria indicates cardiovascular and renal damage in hypertension. RDN emerged as an innovative interventional approach to reduce blood pressure (BP) and may thus reduce albumin urinary excretion. METHODS Fifty-nine treatment-resistant hypertensive patients with elevated UACR at baseline underwent catheter-based RDN using the Symplicity Flex™ catheter (Medtronic Inc., Santa Rosa, CA). RESULTS In the whole and pre-specified subgroups both office and 24-h ambulatory BP were significantly reduced 6 months after RDN. In parallel, a significant reduction in UACR occurred in all patients (160 (65-496) versus 89 (29-319) mg/g creatinine, p<0.001) and in both subgroups (microalbuminuria: 83 (49-153) versus 58 (17-113) mg/g creatinine, p=0.001; macroalbuminuria: (536 (434-1483) versus 478 (109-1080) mg/g creatinine, p<0.001). In accordance, the prevalence of micro- and macroalbuminuria decreased significantly. Regression analysis revealed a modest positive relationship between the decrease of UACR and the fall of systolic BP (β=0.340, p=0.039) independent of renal function. Renal function remained unchanged after RDN. CONCLUSIONS In summary, following RDN, the magnitude of albuminuria as well as the prevalence of micro- and macroalbuminuria decreased in treatment-resistant hypertensive patients. Since albuminuria is an independent renal and cardiovascular risk factor, our findings suggest a reduction of renal and cardiovascular risk in these patients.
Collapse
Affiliation(s)
- Christian Ott
- Department of Nephrology and Hypertension, University of Erlangen-Nuremberg, Germany
| | - Felix Mahfoud
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Axel Schmid
- Department of Radiology, University of Erlangen-Nuremberg, Germany
| | - Tilmann Ditting
- Department of Nephrology and Hypertension, University of Erlangen-Nuremberg, Germany
| | - Roland Veelken
- Department of Nephrology and Hypertension, University of Erlangen-Nuremberg, Germany
| | - Sebastian Ewen
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Christian Ukena
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Michael Uder
- Department of Radiology, University of Erlangen-Nuremberg, Germany
| | - Michael Böhm
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Roland E Schmieder
- Department of Nephrology and Hypertension, University of Erlangen-Nuremberg, Germany.
| |
Collapse
|
38
|
Krum H, Schlaich MP, Sobotka PA, Böhm M, Mahfoud F, Rocha-Singh K, Katholi R, Esler MD. Percutaneous renal denervation in patients with treatment-resistant hypertension: final 3-year report of the Symplicity HTN-1 study. Lancet 2014; 383:622-9. [PMID: 24210779 DOI: 10.1016/s0140-6736(13)62192-3] [Citation(s) in RCA: 461] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Renal denervation (RDN) with radiofrequency ablation substantially reduces blood pressure in patients with treatment-resistant hypertension. We assessed the long-term antihypertensive effects and safety. METHODS Symplicity HTN-1 is an open-label study that enrolled 153 patients, of whom 111 consented to follow-up for 36 months. Eligible patients had a systolic blood pressure of at least 160 mm Hg and were taking at least three antihypertensive drugs, including a diuretic, at the optimum doses. Changes in office systolic blood pressure and safety were assessed every 6 months and reported every 12 months. This study is registered with ClinicalTrials.gov, numbers NCT00483808, NCT00664638, and NCT00753285. FINDINGS 88 patients had complete data at 36 months. At baseline the mean age was 57 (SD 11) years, 37 (42%) patients were women, 25 (28%) had type 2 diabetes mellitus, the mean estimated glomerular filtration rate was 85 (SD 19) mL/min per 1·73 m(2), and mean blood pressure was 175/98 (SD 16/14) mm Hg. At 36 months significant changes were seen in systolic (-32·0 mm Hg, 95% CI -35·7 to -28·2) and diastolic blood pressure (-14·4 mm Hg, -16·9 to -11·9). Drops of 10 mm Hg or more in systolic blood pressure were seen in 69% of patients at 1 month, 81% at 6 months, 85% at 12 months, 83% at 24 months, and 93% at 36 months. One new renal artery stenosis requiring stenting and three deaths unrelated to RDN occurred during follow-up. INTERPRETATION Changes in blood pressure after RDN persist long term in patients with treatment-resistant hypertension, with good safety. FUNDING Ardian LLC/Medtronic Inc.
Collapse
Affiliation(s)
- Henry Krum
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Alfred Hospital, Melbourne, VIC, Australia.
| | - Markus P Schlaich
- Neurovascular Hypertension and Kidney Disease Laboratory, Baker IDI Heart and Diabetes Institute and Heart Centre, Alfred Hospital, Melbourne, VIC, Australia
| | - Paul A Sobotka
- Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH, USA
| | - Michael Böhm
- Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinium des Saarlandes, Homburg, Germany
| | - Felix Mahfoud
- Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinium des Saarlandes, Homburg, Germany
| | | | - Richard Katholi
- Prairie Heart Institute at St John's Hospital, Springfield, IL, USA
| | - Murray D Esler
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
| |
Collapse
|
39
|
Gillis KA, McComb C, Foster JE, Taylor AHM, Patel RK, Morris STW, Jardine AG, Schneider MP, Roditi GH, Delles C, Mark PB. Inter-study reproducibility of arterial spin labelling magnetic resonance imaging for measurement of renal perfusion in healthy volunteers at 3 Tesla. BMC Nephrol 2014; 15:23. [PMID: 24484613 PMCID: PMC3909760 DOI: 10.1186/1471-2369-15-23] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 01/28/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Measurement of renal perfusion is a crucial part of measuring kidney function. Arterial spin labelling magnetic resonance imaging (ASL MRI) is a non-invasive method of measuring renal perfusion using magnetised blood as endogenous contrast. We studied the reproducibility of ASL MRI in normal volunteers. METHODS ASL MRI was performed in healthy volunteers on 2 occasions using a 3.0 Tesla MRI scanner with flow-sensitive alternating inversion recovery (FAIR) perfusion preparation with a steady state free precession (True-FISP) pulse sequence. Kidney volume was measured from the scanned images. Routine serum and urine biochemistry were measured prior to MRI scanning. RESULTS 12 volunteers were recruited yielding 24 kidneys, with a mean participant age of 44.1 ± 14.6 years, blood pressure of 136/82 mmHg and chronic kidney disease epidemiology formula estimated glomerular filtration rate (CKD EPI eGFR) of 98.3 ± 15.1 ml/min/1.73 m2. Mean kidney volumes measured using the ellipsoid formula and voxel count method were 123.5 ± 25.5 cm3, and 156.7 ± 28.9 cm3 respectively. Mean kidney perfusion was 229 ± 41 ml/min/100 g and mean cortical perfusion was 327 ± 63 ml/min/100 g, with no significant differences between ASL MRIs. Mean absolute kidney perfusion calculated from kidney volume measured during the scan was 373 ± 71 ml/min. Bland Altman plots were constructed of the cortical and whole kidney perfusion measurements made at ASL MRIs 1 and 2. These showed good agreement between measurements, with a random distribution of means plotted against differences observed. The intra class correlation for cortical perfusion was 0.85, whilst the within subject coefficient of variance was 9.2%. The intra class correlation for whole kidney perfusion was 0.86, whilst the within subject coefficient of variance was 7.1%. CONCLUSIONS ASL MRI at 3.0 Tesla provides a repeatable method of measuring renal perfusion in healthy subjects without the need for administration of exogenous compounds. We have established normal values for renal perfusion using ASL MRI in a cohort of healthy volunteers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Patrick B Mark
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, 126 University Place, Glasgow, UK.
| |
Collapse
|
40
|
Katayama T, Sueta D, Kataoka K, Hasegawa Y, Koibuchi N, Toyama K, Uekawa K, Mingjie M, Nakagawa T, Maeda M, Ogawa H, Kim-Mitsuyama S. Long-term renal denervation normalizes disrupted blood pressure circadian rhythm and ameliorates cardiovascular injury in a rat model of metabolic syndrome. J Am Heart Assoc 2013; 2:e000197. [PMID: 23974905 PMCID: PMC3828797 DOI: 10.1161/jaha.113.000197] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background Although renal denervation significantly reduces blood pressure in patients with resistant hypertension, the role of the renal nerve in hypertension with metabolic syndrome is unknown. We investigated the impact of long‐term renal denervation on SHR/NDmcr‐cp(+/+) (SHRcp) rats, a useful rat model of metabolic syndrome, to determine the role of the renal nerve in hypertension with metabolic syndrome. Methods and Results SHRcp rats were divided into (1) a renal denervation (RD) group and (2) a sham operation group (control) to examine the effects of long‐term RD on blood pressure circadian rhythm, renal sodium retention‐related molecules, the renin‐angiotensin‐aldosterone system, metabolic disorders, and organ injury. RD in SHRcp rats not only significantly reduced blood pressure but also normalized blood pressure circadian rhythm from the nondipper to the dipper type, and this improvement was associated with an increase in urinary sodium excretion and the suppression of renal Na+‐Cl− cotransporter upregulation. RD significantly reduced plasma renin activity. RD significantly prevented cardiovascular remodeling and impairment of vascular endothelial function and attenuated cardiovascular oxidative stress. However, RD failed to ameliorate obesity, metabolic disorders, and renal injury and failed to reduce systemic sympathetic activity in SHRcp rats. Conclusions By including the upregulation of the Na+‐Cl− cotransporter, the renal sympathetic nerve is involved in the disruption of blood pressure circadian rhythm as well as hypertension in metabolic syndrome. Thus, RD seems to be a useful therapeutic strategy for hypertension with metabolic syndrome.
Collapse
Affiliation(s)
- Tetsuji Katayama
- Department of Pharmacology and Molecular Therapeutics, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|