1
|
Chang M, Lin H, Fu H, Wang J, Yang Y, Wan Z, Han G. CREB activation affects mesenchymal stem cell migration and differentiation in periodontal tissues due to orthodontic force. Int J Biochem Cell Biol 2020; 129:105862. [PMID: 33045372 DOI: 10.1016/j.biocel.2020.105862] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/31/2022]
Abstract
During the orthodontic tooth movement, cells in periodontal ligament could differentiate into osteoblasts to synthesize alveolar bone as well as affect the proliferation, migration and differentiation of mesenchymal stem cells, which also contribute to bone remodeling. However, the mechanism is still largely elusive. Here, we evaluated the expression of CREB at the tension site of mouse periodontal ligament under orthodontic mechanical strain and in the cyclic tension strain treated human periodontal ligament cells. Then, through gain and loss of function analysis, we revealed that CREB in PDLCs promotes SDF-1 and FGF2 secretion, which enhance the migration and osteoblastic differentiation of BMSCs. We further discovered that CREB transcriptionally activates FGF2 and SDF-1 expressions by binding to the promoter regions.In conclusion, this study confirms that CREB is an upregulated gene in periodontal ligament under orthodontic tension strain stimulation and plays an important role in regulating BMSCs' physiological activity in orthodontic tension strain-induced bone formation.
Collapse
Affiliation(s)
- Maolin Chang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Heng Lin
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Haidi Fu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jie Wang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yang Yang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ziqiu Wan
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guangli Han
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Díaz-Araya G, Vivar R, Humeres C, Boza P, Bolivar S, Muñoz C. Cardiac fibroblasts as sentinel cells in cardiac tissue: Receptors, signaling pathways and cellular functions. Pharmacol Res 2015; 101:30-40. [PMID: 26151416 DOI: 10.1016/j.phrs.2015.07.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 12/24/2022]
Abstract
Cardiac fibroblasts (CF) not only modulate extracellular matrix (ECM) proteins homeostasis, but also respond to chemical and mechanical signals. CF express a variety of receptors through which they modulate the proliferation/cell death, autophagy, adhesion, migration, turnover of ECM, expression of cytokines, chemokines, growth factors and differentiation into cardiac myofibroblasts (CMF). Differentiation of CF to CMF involves changes in the expression levels of various receptors, as well as, changes in cell phenotype and their associated functions. CF and CMF express the β2-adrenergic receptor, and its stimulation activates PKA and EPAC proteins, which differentially modulate the CF and CMF functions mentioned above. CF and CMF also express different levels of Angiotensin II receptors, in particular, AT1R activation increases collagen synthesis and cell proliferation, but its overexpression activates apoptosis. CF and CMF express different levels of B1 and B2 kinin receptors, whose stimulation by their respective agonists activates common signaling transduction pathways that decrease the synthesis and secretion of collagen through nitric oxide and prostacyclin I2 secretion. Besides these classical functions, CF can also participate in the inflammatory response of cardiac repair, through the expression of receptors commonly associated to immune cells such as Toll like receptor 4, NLRP3 and interferon receptor. The activation by their respective agonists modulates the cellular functions already described and the release of cytokines and chemokines. Thus, CF and CMF act as sentinel cells responding to a plethora of stimulus, modifying their own behavior, and that of neighboring cells.
Collapse
Affiliation(s)
- G Díaz-Araya
- Laboratory of Molecular Pharmacology, Chemical Pharmacological and Toxicological Department, Faculty of Chemical and Pharmaceutical Sciences, FONDAP Advanced Center for Chronic diseases ACCDiS, University of Chile, Santiago, Chile.
| | - R Vivar
- Laboratory of Molecular Pharmacology, Chemical Pharmacological and Toxicological Department, Faculty of Chemical and Pharmaceutical Sciences, FONDAP Advanced Center for Chronic diseases ACCDiS, University of Chile, Santiago, Chile
| | - C Humeres
- Laboratory of Molecular Pharmacology, Chemical Pharmacological and Toxicological Department, Faculty of Chemical and Pharmaceutical Sciences, FONDAP Advanced Center for Chronic diseases ACCDiS, University of Chile, Santiago, Chile
| | - P Boza
- Laboratory of Molecular Pharmacology, Chemical Pharmacological and Toxicological Department, Faculty of Chemical and Pharmaceutical Sciences, FONDAP Advanced Center for Chronic diseases ACCDiS, University of Chile, Santiago, Chile
| | - S Bolivar
- Laboratory of Molecular Pharmacology, Chemical Pharmacological and Toxicological Department, Faculty of Chemical and Pharmaceutical Sciences, FONDAP Advanced Center for Chronic diseases ACCDiS, University of Chile, Santiago, Chile
| | - C Muñoz
- Laboratory of Molecular Pharmacology, Chemical Pharmacological and Toxicological Department, Faculty of Chemical and Pharmaceutical Sciences, FONDAP Advanced Center for Chronic diseases ACCDiS, University of Chile, Santiago, Chile
| |
Collapse
|
3
|
Gupta U, Mir SS, Srivastava A, Garg N, Agarwal SK, Pande S, Mittal B. Signal transducers and activators of transcription (STATs) gene polymorphisms related with susceptibility to rheumatic heart disease in north Indian population. Immunol Lett 2014; 161:100-5. [DOI: 10.1016/j.imlet.2014.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/19/2014] [Accepted: 04/23/2014] [Indexed: 10/25/2022]
|
4
|
Abstract
The suppressors of cytokine signaling (SOCS) family of proteins are cytokine-inducible inhibitors of Janus kinase (JAK)-signal transducer and activator of the transcription (STAT) signaling pathways. Among the family, SOCS1 and SOCS3 potently suppress cytokine actions by inhibiting JAK kinase activities. The generation of mice lacking individual SOCS genes has been instrumental in defining the role of individual SOCS proteins in specific cytokine pathways in vivo; SOCS1 is an essential negative regulator of interferon-γ (IFNγ) and SOCS3 is an essential negative regulator of leukemia inhibitory factor (LIF). JAK-STAT3 activating cytokines have exhibited cardioprotective roles in the heart. The cardiac-specific deletion of SOCS3 enhances the activation of cardioprotective signaling pathways, inhibits myocardial apoptosis and fibrosis and results in the inhibition of left ventricular remodeling after myocardial infarction (MI). We propose that myocardial SOCS3 is a key determinant of left ventricular remodeling after MI, and SOCS3 may serve as a novel therapeutic target to prevent left ventricular remodeling after MI. In this review, we discuss the signaling pathways mediated by JAK-STAT and SOCS proteins and their roles in the development of myocardial injury under stress (e.g., pressure overload, viral infection and ischemia).
Collapse
Affiliation(s)
- Hideo Yasukawa
- Division of Cardiovascular Medicine; Department of Internal Medicine; Kurume University School of Medicine; Kurume, Japan ; Cardiovascular Research Institute; Kurume University School of Medicine; Kurume, Japan
| | | | | | | |
Collapse
|
5
|
Bonetto A, Aydogdu T, Jin X, Zhang Z, Zhan R, Puzis L, Koniaris LG, Zimmers TA. JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia. Am J Physiol Endocrinol Metab 2012; 303:E410-21. [PMID: 22669242 PMCID: PMC3423125 DOI: 10.1152/ajpendo.00039.2012] [Citation(s) in RCA: 311] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cachexia, the metabolic dysregulation leading to sustained loss of muscle and adipose tissue, is a devastating complication of cancer and other chronic diseases. Interleukin-6 and related cytokines are associated with muscle wasting in clinical and experimental cachexia, although the mechanisms by which they might induce muscle wasting are unknown. One pathway activated strongly by IL-6 family ligands is the JAK/STAT3 pathway, the function of which has not been evaluated in regulation of skeletal muscle mass. Recently, we showed that skeletal muscle STAT3 phosphorylation, nuclear localization, and target gene expression are activated in C26 cancer cachexia, a model with high IL-6 family ligands. Here, we report that STAT3 activation is a common feature of muscle wasting, activated in muscle by IL-6 in vivo and in vitro and by different types of cancer and sterile sepsis. Moreover, STAT3 activation proved both necessary and sufficient for muscle wasting. In C(2)C(12) myotubes and in mouse muscle, mutant constitutively activated STAT3-induced muscle fiber atrophy and exacerbated wasting in cachexia. Conversely, inhibiting STAT3 pharmacologically with JAK or STAT3 inhibitors or genetically with dominant negative STAT3 and short hairpin STAT3 reduced muscle atrophy downstream of IL-6 or cancer. These results indicate that STAT3 is a primary mediator of muscle wasting in cancer cachexia and other conditions of high IL-6 family signaling. Thus STAT3 could represent a novel therapeutic target for the preservation of skeletal muscle in cachexia.
Collapse
MESH Headings
- Animals
- CHO Cells
- Cachexia/etiology
- Cachexia/genetics
- Cachexia/pathology
- Cachexia/prevention & control
- Cells, Cultured
- Cricetinae
- Cricetulus
- Disease Models, Animal
- Female
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Interleukin-6/physiology
- Janus Kinases/antagonists & inhibitors
- Janus Kinases/genetics
- Janus Kinases/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Nude
- Mice, Transgenic
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Mutant Proteins/administration & dosage
- Mutant Proteins/genetics
- Neoplasms/complications
- Neoplasms/drug therapy
- Neoplasms/genetics
- Neoplasms/metabolism
- Nitriles
- Protein Kinase Inhibitors/administration & dosage
- Protein Kinase Inhibitors/pharmacology
- Pyrazoles/administration & dosage
- Pyrazoles/pharmacology
- Pyrimidines
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/pharmacology
- STAT3 Transcription Factor/antagonists & inhibitors
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Wasting Syndrome/genetics
- Wasting Syndrome/metabolism
- Wasting Syndrome/pathology
- Wasting Syndrome/prevention & control
Collapse
Affiliation(s)
- Andrea Bonetto
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Oba T, Yasukawa H, Hoshijima M, Sasaki KI, Futamata N, Fukui D, Mawatari K, Nagata T, Kyogoku S, Ohshima H, Minami T, Nakamura K, Kang D, Yajima T, Knowlton KU, Imaizumi T. Cardiac-specific deletion of SOCS-3 prevents development of left ventricular remodeling after acute myocardial infarction. J Am Coll Cardiol 2012; 59:838-52. [PMID: 22361405 DOI: 10.1016/j.jacc.2011.10.887] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 10/19/2011] [Accepted: 10/20/2011] [Indexed: 01/08/2023]
Abstract
OBJECTIVES The study investigated the role of myocardial suppressor of cytokine signaling-3 (SOCS3), an intrinsic negative feedback regulator of the janus kinase and signal transducer and activator of transcription (JAK-STAT) signaling pathway, in the development of left ventricular (LV) remodeling after acute myocardial infarction (AMI). BACKGROUND LV remodeling after AMI results in poor cardiac performance leading to heart failure. Although it has been shown that JAK-STAT-activating cytokines prevent LV remodeling after AMI in animals, little is known about the role of SOCS3 in this process. METHODS Cardiac-specific SOCS3 knockout mice (SOCS3-CKO) were generated and subjected to AMI induced by permanent ligation of the left anterior descending coronary artery. RESULTS Although the initial infarct size after coronary occlusion measured by triphenyltetrazolium chloride staining was comparable between SOCS3-CKO and control mice, the infarct size 14 days after AMI was remarkably inhibited in SOCS3-CKO, indicating that progression of LV remodeling after AMI was prevented in SOCS3-CKO hearts. Prompt and marked up-regulations of multiple JAK-STAT-activating cytokines including leukemia inhibitory factor and granulocyte colony-stimulating factor (G-CSF) were observed within the heart following AMI. Cardiac-specific SOCS3 deletion enhanced multiple cardioprotective signaling pathways including STAT3, AKT, and extracellular signal-regulated kinase (ERK)-1/2, while inhibiting myocardial apoptosis and fibrosis as well as augmenting antioxidant expression. CONCLUSIONS Enhanced activation of cardioprotective signaling pathways by inhibiting myocardial SOCS3 expression prevented LV remodeling after AMI. Our data suggest that myocardial SOCS3 may be a key molecule in the development of LV remodeling after AMI.
Collapse
Affiliation(s)
- Toyoharu Oba
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Birukova AA, Tian Y, Meliton A, Leff A, Wu T, Birukov KG. Stimulation of Rho signaling by pathologic mechanical stretch is a "second hit" to Rho-independent lung injury induced by IL-6. Am J Physiol Lung Cell Mol Physiol 2012; 302:L965-75. [PMID: 22345573 DOI: 10.1152/ajplung.00292.2011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Most patients with acute lung injury (ALI) and acute respiratory distress syndrome of septic and nonseptic nature require assisted ventilation with positive pressure, which at suboptimal range may further exacerbate lung dysfunction. Previous studies described enhancement of agonist-induced Rho GTPase signaling and endothelial cell (EC) permeability in EC cultures exposed to pathologically relevant cyclic stretch (CS) magnitudes. This study examined a role of pathologic CS in modulation of pulmonary EC permeability caused by IL-6, a cytokine increased in sepsis and acting in a Rho-independent manner. IL-6 increased EC permeability, which was associated with activation of Jak/signal transducers and activators of transcription, p38 MAP kinase, and NF-κB signaling and was augmented by EC exposure to 18% CS. Rho kinase inhibitor Y-27632 suppressed the synergistic effect of 18% CS on IL-6-induced EC monolayer disruption but did not alter the IL-6 effects on static EC culture. 18% CS also increased IL-6-induced ICAM-1 expression by pulmonary EC and neutrophil adhesion, which was attenuated by Y-27632. Intratracheal IL-6 administration in C57BL/6J mice increased protein content and cell count in bronchoalveolar lavage fluid. These changes were augmented by high tidal volume mechanical ventilation (HTV; 30 ml/kg, 4 h). Intravenous injection of Y-27632 suppressed IL6/HTV-induced lung injury. In conclusion, this study proposes a novel mechanism contributing to two-hit model of ALI: in addition to synergistic effects on Rho-dependent endothelial hyper-permeability triggered by thrombin, TNFα, LPS, or other agonists, ventilator-induced lung injury-relevant CS may also exacerbate Rho-independent mechanisms of EC permeability induced by other inflammatory mediators such as IL-6 via mechanisms involving Rho activity.
Collapse
Affiliation(s)
- Anna A Birukova
- Lung Injury Center, Section of Pulmonary and Critical Medicine, Dept. of Medicine, Univ. of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
8
|
Peng Y, Zhou B, Wang Y, Chen Y, Li H, Song Y, Zhang L, Rao L. Association between polymorphisms in the signal transducer and activator of transcription and dilated cardiomyopathy in the Chinese Han population. Mol Cell Biochem 2011; 360:197-203. [PMID: 21948258 DOI: 10.1007/s11010-011-1057-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Accepted: 09/08/2011] [Indexed: 02/05/2023]
Abstract
The signal transduction pathways mediating the progress of heart failure have been intensively studied. Altered signaling of the signal transducers and activators of transcription (STATs), which play important roles in regulating cell proliferation, differentiation, and apoptosis, has been observed in the heart. We conducted a pilot study to test whether single nucleotide polymorphisms (SNPs) in STATs were associated with dilated cardiomyopathy (DCM). Genotypes of two SNPs of STATs (rs6503691 C/T in exon 1 of STAT5B and rs4796793 C/G in the 5' region of STAT3) in 251 DCM patients and 484 control subjects were determined with the use of PCR-restriction fragment length polymorphism assay and TaqMan assay, respectively. Significantly increased DCM risk was found to be associated with T allele of rs6503691 (P = 0.012, OR = 1.37, 95% CI = 1.07-1.74). We found that increased DCM risk statistically significantly associated with rs6503691 in a dominant model (P = 0.009, OR = 1.50, 95% CI = 1.11-2.04). No association between DCM risk and rs4796793 was observed (P = 0.706, OR = 1.05, 95% CI = 0.83-1.32). The present pilot study provides evidence that both rs6503691 T allele and CT/TT genotypes, but not rs4796793 C/G in the 5' region of STAT3, are associated with a significantly increased risk of DCM, indicating that common genetic polymorphism in STATs is associated with DCM.
Collapse
Affiliation(s)
- Ying Peng
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Kostjukova MN, Tupitsyn NN. Functional properties of extracellular domains of transducer receptor gp130. BIOCHEMISTRY (MOSCOW) 2011; 76:394-406. [PMID: 21585315 DOI: 10.1134/s000629791104002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cytokine receptor molecules have been shown to have extracellular domains of complex structure and a multi-step activation system. Glycoprotein gp130 is a typical transducer of cytokine signal; it functions by forming multicomponent receptor complexes and transferring signals of tens of cytokines from the IL-6 family. Structural organization and basic functioning principles of gp130 are well known, as well as related signal pathways, which function during normal differentiation and are involved in pathogenesis of many tumors. The role of gp130 in IL-6-dependent tumors is best studied. In this review, based on extensive accumulated data, we examine the functional significance of certain parts of gp130 extracellular domains. Potentials of a recently developed method for estimation of receptor activation at the level of epitope structure are discussed.
Collapse
Affiliation(s)
- M N Kostjukova
- Cancer Research Center, Russian Academy of Medical Sciences, Moscow, Russia
| | | |
Collapse
|
10
|
|