1
|
Heland S, Fields N, Ellery SJ, Fahey M, Palmer KR. The role of nutrients in human neurodevelopment and their potential to prevent neurodevelopmental adversity. Front Nutr 2022; 9:992120. [PMID: 36483929 PMCID: PMC9722743 DOI: 10.3389/fnut.2022.992120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/02/2022] [Indexed: 06/21/2024] Open
Abstract
Nutritional deficits or excesses affect a huge proportion of pregnant women worldwide. Maternal nutrition has a significant influence on the fetal environment and can dramatically impact fetal brain development. This paper reviews current nutritional supplements that can be used to optimise fetal neurodevelopment and prevent neurodevelopmental morbidities, including folate, iodine, vitamin B12, iron, and vitamin D. Interestingly, while correcting nutritional deficits can prevent neurodevelopmental adversity, overcorrecting them can in some cases be detrimental, so care needs to be taken when recommending supplementation in pregnancy. The potential benefits of using nutrition to prevent neurodiversity is shown by promising nutraceuticals, sulforaphane and creatine, both currently under investigation. They have the potential to promote improved neurodevelopmental outcomes through mitigation of pathological processes, including hypoxia, inflammation, and oxidative stress. Neurodevelopment is a complex process and whilst the role of micronutrients and macronutrients on the developing fetal brain is not completely understood, this review highlights the key findings thus far.
Collapse
Affiliation(s)
- Sarah Heland
- Monash Women’s and Newborn, Monash Health, Clayton, VIC, Australia
| | - Neville Fields
- Monash Women’s and Newborn, Monash Health, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Stacey Joan Ellery
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Michael Fahey
- Paediatric Neurology Unit, Monash Children’s Hospital, Clayton, VIC, Australia
- Department of Paediatrics, Monash University, Clayton, VIC, Australia
| | - Kirsten Rebecca Palmer
- Monash Women’s and Newborn, Monash Health, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
2
|
Creatine Metabolism in Female Reproduction, Pregnancy and Newborn Health. Nutrients 2021; 13:nu13020490. [PMID: 33540766 PMCID: PMC7912953 DOI: 10.3390/nu13020490] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 12/12/2022] Open
Abstract
Creatine metabolism is an important component of cellular energy homeostasis. Via the creatine kinase circuit, creatine derived from our diet or synthesized endogenously provides spatial and temporal maintenance of intracellular adenosine triphosphate (ATP) production; this is particularly important for cells with high or fluctuating energy demands. The use of this circuit by tissues within the female reproductive system, as well as the placenta and the developing fetus during pregnancy is apparent throughout the literature, with some studies linking perturbations in creatine metabolism to reduced fertility and poor pregnancy outcomes. Maternal dietary creatine supplementation during pregnancy as a safeguard against hypoxia-induced perinatal injury, particularly that of the brain, has also been widely studied in pre-clinical in vitro and small animal models. However, there is still no consensus on whether creatine is essential for successful reproduction. This review consolidates the available literature on creatine metabolism in female reproduction, pregnancy and the early neonatal period. Creatine metabolism is discussed in relation to cellular bioenergetics and de novo synthesis, as well as the potential to use dietary creatine in a reproductive setting. We highlight the apparent knowledge gaps and the research “road forward” to understand, and then utilize, creatine to improve reproductive health and perinatal outcomes.
Collapse
|
3
|
Berry MJ, Schlegel M, Kowalski GM, Bruce CR, Callahan DL, Davies-Tuck ML, Dickinson H, Goodson A, Slocombe A, Snow RJ, Walker DW, Ellery SJ. UNICORN Babies: Understanding Circulating and Cerebral Creatine Levels of the Preterm Infant. An Observational Study Protocol. Front Physiol 2019; 10:142. [PMID: 30899224 PMCID: PMC6417365 DOI: 10.3389/fphys.2019.00142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/07/2019] [Indexed: 12/29/2022] Open
Abstract
Creatine is an essential metabolite for brain function, with a fundamental role in cellular (ATP) energy homeostasis. It is hypothesized that preterm infants will become creatine deplete in the early postnatal period, due to premature delivery from a maternal source of creatine and a limited supply of creatine in newborn nutrition. This potential alteration to brain metabolism may contribute to, or compound, poor neurological outcomes in this high-risk population. Understanding Creatine for Neurological Health in Babies (UNICORN) is an observational study of circulating and cerebral creatine levels in preterm infants. We will recruit preterm infants at gestational ages 23+0-26+6, 27+0-29+6, 30+0-32+6, 33+0-36+6, and a term reference group at 39+0-40+6 weeks of gestation, with 20 infants in each gestational age group. At birth, a maternal capillary blood sample, as well as a venous cord blood sample, will be collected. For preterm infants, serial infant plasma (heel prick), urine, and nutrition samples [total parenteral nutrition (TPN), breast milk, or formula] will be collected between birth and term "due date." Key fetomaternal information, including demographics, smoking status, and maternal diet, will also be collected. At term corrected postnatal age (CPA), each infant will undergo an MRI/1H-MRS scan to evaluate brain structure and measure cerebral creatine content. A general movements assessment (GMA) will also be conducted. At 3 months of CPA, infants will undergo a second GMA as well as further neurodevelopmental evaluation using the Developmental Assessment of Young Children - Second Edition (DAYC-2) assessment tool. The primary outcome measures for this study are cerebral creatine content at CPA and plasma and urine creatine and guanidinoacetate (creatine precursor) concentrations in the early postnatal period. We will also determine associations between (1) creatine levels at term CPA and neurodevelopmental outcomes (MRI, GMA, and DAY-C); (2) dietary creatine intake and circulating and cerebral creatine content; and (3) creatine levels and maternal characteristics. Novel approaches are needed to try and improve preterm-associated brain injury. Inclusion of creatine in preterm nutrition may better support ex utero brain development through improved cerebral cellular energy availability during a period of significant brain growth and development. Ethics Ref: HDEC 18/CEN/7 New Zealand. ACTRN: ACTRN12618000871246.
Collapse
Affiliation(s)
- Mary J Berry
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand.,Capital and Coast District Health Board, Wellington, New Zealand
| | - Melissa Schlegel
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand.,Capital and Coast District Health Board, Wellington, New Zealand
| | - Greg M Kowalski
- School of Exercise Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| | - Clinton R Bruce
- School of Exercise Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| | - Damien L Callahan
- Centre for Cellular and Molecular Biology, School of Life and Environmental Science, Deakin University, Melbourne, VIC, Australia
| | - Miranda L Davies-Tuck
- The Ritchie Centre, Hudson Institute of Medical Research, and Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Hayley Dickinson
- The Ritchie Centre, Hudson Institute of Medical Research, and Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Angus Goodson
- Capital and Coast District Health Board, Wellington, New Zealand
| | - Angie Slocombe
- Capital and Coast District Health Board, Wellington, New Zealand
| | - Rod J Snow
- School of Exercise Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| | - David W Walker
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Stacey J Ellery
- The Ritchie Centre, Hudson Institute of Medical Research, and Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
4
|
Udobi KC, Kokenge AN, Hautman ER, Ullio G, Coene J, Williams MT, Vorhees CV, Mabondzo A, Skelton MR. Cognitive deficits and increases in creatine precursors in a brain-specific knockout of the creatine transporter gene Slc6a8. GENES BRAIN AND BEHAVIOR 2018; 17:e12461. [PMID: 29384270 DOI: 10.1111/gbb.12461] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/16/2018] [Accepted: 01/27/2018] [Indexed: 12/30/2022]
Abstract
Creatine transporter (CrT; SLC6A8) deficiency (CTD) is an X-linked disorder characterized by severe cognitive deficits, impairments in language and an absence of brain creatine (Cr). In a previous study, we generated floxed Slc6a8 (Slc6a8 flox ) mice to create ubiquitous Slc6a8 knockout (Slc6a8-/y ) mice. Slc6a8-/y mice lacked whole body Cr and exhibited cognitive deficits. While Slc6a8-/y mice have a similar biochemical phenotype to CTD patients, they also showed a reduction in size and reductions in swim speed that may have contributed to the observed deficits. To address this, we created brain-specific Slc6a8 knockout (bKO) mice by crossing Slc6a8flox mice with Nestin-cre mice. bKO mice had reduced cerebral Cr levels while maintaining normal Cr levels in peripheral tissue. Interestingly, brain concentrations of the Cr synthesis precursor guanidinoacetic acid were increased in bKO mice. bKO mice had longer latencies and path lengths in the Morris water maze, without reductions in swim speed. In accordance with data from Slc6a8 -/y mice, bKO mice showed deficits in novel object recognition as well as contextual and cued fear conditioning. bKO mice were also hyperactive, in contrast with data from the Slc6a8 -/y mice. The results show that the loss of cerebral Cr is responsible for the learning and memory deficits seen in ubiquitous Slc6a8-/y mice.
Collapse
Affiliation(s)
- K C Udobi
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, Ohio
| | - A N Kokenge
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, Ohio
| | - E R Hautman
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, Ohio
| | - G Ullio
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, Université Paris Saclay, Gif-sur-Yvette Cedex, France
| | - J Coene
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, Université Paris Saclay, Gif-sur-Yvette Cedex, France
| | - M T Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, Ohio
| | - C V Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, Ohio
| | - A Mabondzo
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, Université Paris Saclay, Gif-sur-Yvette Cedex, France
| | - M R Skelton
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, Ohio
| |
Collapse
|
5
|
Marques EP, Wyse ATS. Guanidinoacetate Methyltransferase Deficiency. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2016. [DOI: 10.1177/2326409816669371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Eduardo P. Marques
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Angela T. S. Wyse
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
6
|
Ellery SJ, Dickinson H, McKenzie M, Walker DW. Dietary interventions designed to protect the perinatal brain from hypoxic-ischemic encephalopathy--Creatine prophylaxis and the need for multi-organ protection. Neurochem Int 2015; 95:15-23. [PMID: 26576837 DOI: 10.1016/j.neuint.2015.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/03/2015] [Accepted: 11/08/2015] [Indexed: 12/12/2022]
Abstract
Birth asphyxia or hypoxia arises from impaired placental gas exchange during labor and remains one of the leading causes of neonatal morbidity and mortality worldwide. It is a condition that can strike in pregnancies that have been uneventful until these final moments, and leads to fundamental loss of cellular energy reserves in the newborn. The cascade of metabolic changes that occurs in the brain at birth as a result of hypoxia can lead to significant damage that evolves over several hours and days, the severity of which can be ameliorated with therapeutic cerebral hypothermia. However, this treatment is only applied to a subset of newborns that meet strict inclusion criteria and is usually administered only in facilities with a high level of medical surveillance. Hence, a number of neuropharmacological interventions have been suggested as adjunct therapies to improve the efficacy of hypothermia, which alone improves survival of the post-hypoxic infant but does not altogether prevent adverse neurological outcomes. In this review we discuss the prospect of using creatine as a dietary supplement during pregnancy and nutritional intervention that can significantly decrease the risk of brain damage in the event of severe oxygen deprivation at birth. Because brain damage can also arise secondarily to compromise of other fetal organs (e.g., heart, diaphragm, kidney), and that compromise of mitochondrial function under hypoxic conditions may be a common mechanism leading to damage of these tissues, we present data suggesting that dietary creatine supplementation during pregnancy may be an effective prophylaxis that can protect the fetus from the multi-organ consequences of severe hypoxia at birth.
Collapse
Affiliation(s)
- Stacey J Ellery
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Melbourne, Australia; Department of Obstetrics & Gynaecology, Monash University, Monash Medical Centre, Clayton, Melbourne, Australia.
| | - Hayley Dickinson
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Melbourne, Australia; Department of Obstetrics & Gynaecology, Monash University, Monash Medical Centre, Clayton, Melbourne, Australia
| | - Matthew McKenzie
- Centre for Genetic Diseases, Hudson Institute of Medical Research, Clayton, Melbourne, Australia
| | - David W Walker
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Melbourne, Australia; Department of Obstetrics & Gynaecology, Monash University, Monash Medical Centre, Clayton, Melbourne, Australia
| |
Collapse
|
7
|
Joncquel-Chevalier Curt M, Cheillan D, Briand G, Salomons GS, Mention-Mulliez K, Dobbelaere D, Cuisset JM, Lion-François L, Des Portes V, Chabli A, Valayannopoulos V, Benoist JF, Pinard JM, Simard G, Douay O, Deiva K, Tardieu M, Afenjar A, Héron D, Rivier F, Chabrol B, Prieur F, Cartault F, Pitelet G, Goldenberg A, Bekri S, Gerard M, Delorme R, Porchet N, Vianey-Saban C, Vamecq J. Creatine and guanidinoacetate reference values in a French population. Mol Genet Metab 2013; 110:263-7. [PMID: 24090707 DOI: 10.1016/j.ymgme.2013.09.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/07/2013] [Accepted: 09/07/2013] [Indexed: 01/19/2023]
Abstract
Creatine and guanidinoacetate are biomarkers of creatine metabolism. Their assays in body fluids may be used for detecting patients with primary creatine deficiency disorders (PCDD), a class of inherited diseases. Their laboratory values in blood and urine may vary with age, requiring that reference normal values are given within the age range. Despite the long known role of creatine for muscle physiology, muscle signs are not necessarily the major complaint expressed by PCDD patients. These disorders drastically affect brain function inducing, in patients, intellectual disability, autistic behavior and other neurological signs (delays in speech and language, epilepsy, ataxia, dystonia and choreoathetosis), being a common feature the drop in brain creatine content. For this reason, screening of PCDD patients has been repeatedly carried out in populations with neurological signs. This report is aimed at providing reference laboratory values and related age ranges found for a large scale population of patients with neurological signs (more than 6 thousand patients) previously serving as a background population for screening French patients with PCDD. These reference laboratory values and age ranges compare rather favorably with literature values for healthy populations. Some differences are also observed, and female participants are discriminated from male participants as regards to urine but not blood values including creatine on creatinine ratio and guanidinoacetate on creatinine ratio values. Such gender differences were previously observed in healthy populations; they might be explained by literature differential effects of testosterone and estrogen in adolescents and adults, and by estrogen effects in prepubertal age on SLC6A8 function. Finally, though they were acquired on a population with neurological signs, the present data might reasonably serve as reference laboratory values in any future medical study exploring abnormalities of creatine metabolism and transport.
Collapse
Affiliation(s)
- Marie Joncquel-Chevalier Curt
- Département de Biochimie et Biologie Moléculaire, Laboratoire d'Hormonologie, Metabolisme-Nutrition & Oncologie (HMNO) - Centre de Biologie et Pathologie (CBP) Pierre-Marie Degand, CHRU Lille, 59037 Lille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
The lack of creatine in the central nervous system causes a severe but treatable neurological disease. Three inherited defects, AGAT, GAMT, and CrT deficiency, compromising synthesis and transport of creatine have been discovered recently. Together these so-called creatine deficiency syndromes (CDS) might represent the most frequent metabolic disorders with a primarily neurological phenotype. Patients with CDS present with global developmental delays, mental retardation, speech impairment especially affecting active language, seizures, extrapyramidal movement disorder, and autism spectrum disorder. The two defects in the creatine synthesis, AGAT and GAMT, are autosomal recessive disorders. They can be diagnosed by analysis of the creatine, guanidinoacetate, and creatinine in body fluids. Treatment is available and, especially when introduced in infancy, has a good outcome. The defect of creatine transport, CrT, is an X-linked condition and perhaps the most frequent reasons for X-linked mental retardation. Diagnosis is made by an increased ratio of creatine to creatinine in urine, but successful treatment still needs to be explored. CDS are under-diagnosed because easy to miss in standard diagnostic workup. Because CDS represent a frequent cause of cognitive and neurological impairment that is treatable they warrant consideration in the workup for genetic mental retardation syndromes, for intractable seizure disorders, and for neurological diseases with a predominant lack of active speech.
Collapse
Affiliation(s)
- Andreas Schulze
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, Research Institute, Hospital for Sick Children and University of Toronto, Toronto, Canada.
| |
Collapse
|
9
|
Alcaide P, Merinero B, Ruiz-Sala P, Richard E, Navarrete R, Arias A, Ribes A, Artuch R, Campistol J, Ugarte M, Rodríguez-Pombo P. Defining the pathogenicity of creatine deficiency syndrome. Hum Mutat 2011; 32:282-91. [PMID: 21140503 DOI: 10.1002/humu.21421] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 11/12/2010] [Indexed: 01/09/2023]
Abstract
This work examined nine patients with creatine deficiency syndrome (CDS): six with a creatine transport (CRTR) defect and three with a GAMT defect. Eleven nucleotide variations were detected: six in SLC6A8 and five in GAMT. These changes were analyzed at the mRNA level and specific alleles (most of which bore premature stop codons) were selected as nulls because they provoked nonsense-mediated decay activation. The impact of these CDS mutations on metabolic stress (ROS production, p38MAPK activation, aberrant proliferation and apoptosis) was analyzed in patient fibroblast cultures. Oxidative stress contributed toward the severe form of CDS, with increases seen in the intracellular ROS content and the percentage of apoptotic cells. An altered cell cycle was also seen in a number of CRTR and GAMT fibroblast cell lines (mostly those carrying null alleles). p38MAPK activation only correlated with oxidative stress in the CRTR cells. Based on intracellular creatine levels, the contribution of energy depletion toward metabolic stress was demonstrable only in selected CRTR cells. Together, these findings suggest that the apoptotic response to genotoxic damage in the present CDS cells may have been triggered by different cell signaling pathways. They also suggest that reducing oxidative stress could be helpful in treating CDS. Hum Mutat 32:1-10, 2011. © 2011 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Patricia Alcaide
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular "Severo Ochoa" CSIC-UAM, Departamento de Biología Molecular, Universidad Autónoma de Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Béard E, Braissant O. Synthesis and transport of creatine in the CNS: importance for cerebral functions. J Neurochem 2010; 115:297-313. [DOI: 10.1111/j.1471-4159.2010.06935.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Alcaide P, Rodriguez-Pombo P, Ruiz-Sala P, Ferrer I, Castro P, Ruiz Martin Y, Merinero B, Ugarte M. A new case of creatine transporter deficiency associated with mild clinical phenotype and a novel mutation in the SLC6A8 gene. Dev Med Child Neurol 2010; 52:215-7. [PMID: 20002129 DOI: 10.1111/j.1469-8749.2009.03480.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Stockler S, Schutz PW, Salomons GS. Cerebral creatine deficiency syndromes: clinical aspects, treatment and pathophysiology. Subcell Biochem 2007; 46:149-166. [PMID: 18652076 DOI: 10.1007/978-1-4020-6486-9_8] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Cerebral creatine deficiency syndromes (CCDSs) are a group of inborn errors of creatine metabolism comprising two autosomal recessive disorders that affect the biosynthesis of creatine--i.e. arginine:glycine amidinotransferase deficiency (AGAT; MIM 602360) and guanidinoacetate methyltransferase deficiency (GAMT; MIM 601240)--and an X-linked defect that affects the creatine transporter, SLC6A8 deficiency (SLC6A8; MIM 300036). The biochemical hallmarks of these disorders include cerebral creatine deficiency as detected in vivo by 1H magnetic resonance spectroscopy (MRS) of the brain, and specific disturbances in metabolites of creatine metabolism in body fluids. In urine and plasma, abnormal guanidinoacetic acid (GAA) levels are found in AGAT deficiency (reduced GAA) and in GAMT deficiency (increased GAA). In urine of males with SLC6A8 deficiency, an increased creatine/creatinine ratio is detected. The common clinical presentation in CCDS includes mental retardation, expressive speech and language delay, autistic like behaviour and epilepsy. Treatment of the creatine biosynthesis defects has yielded clinical improvement, while for creatine transporter deficiency, successful treatment strategies still need to be discovered. CCDSs may be responsible for a considerable fraction of children and adults affected with mental retardation of unknown etiology. Thus, screening for this group of disorders should be included in the differential diagnosis of this population. In this review, also the importance of CCDSs for the unravelling of the (patho)physiology of cerebral creatine metabolism is discussed.
Collapse
MESH Headings
- Adult
- Amidinotransferases/deficiency
- Animals
- Brain Diseases, Metabolic, Inborn/diagnosis
- Brain Diseases, Metabolic, Inborn/enzymology
- Brain Diseases, Metabolic, Inborn/pathology
- Brain Diseases, Metabolic, Inborn/physiopathology
- Brain Diseases, Metabolic, Inborn/therapy
- Cerebellar Diseases/diagnosis
- Cerebellar Diseases/enzymology
- Cerebellar Diseases/pathology
- Cerebellar Diseases/physiopathology
- Cerebellar Diseases/therapy
- Child
- Child, Preschool
- Creatine/deficiency
- Creatine/metabolism
- Creatinine/metabolism
- Diagnosis, Differential
- Female
- Genetic Diseases, X-Linked/diagnosis
- Genetic Diseases, X-Linked/enzymology
- Genetic Diseases, X-Linked/pathology
- Genetic Diseases, X-Linked/physiopathology
- Genetic Diseases, X-Linked/therapy
- Glycine/analogs & derivatives
- Glycine/metabolism
- Guanidinoacetate N-Methyltransferase/deficiency
- Humans
- Male
- Nerve Tissue Proteins/deficiency
- Plasma Membrane Neurotransmitter Transport Proteins/deficiency
- Syndrome
Collapse
Affiliation(s)
- Sylvia Stockler
- Department of Pediatrics, University of British Columbia, Division of Biochemical Diseases, British Columbia Children's Hospital, Vancouver, B.C., V6H 3V4, Canada
| | | | | |
Collapse
|