1
|
Gebert M, Sławski J, Kalinowski L, Collawn JF, Bartoszewski R. The Unfolded Protein Response: A Double-Edged Sword for Brain Health. Antioxidants (Basel) 2023; 12:1648. [PMID: 37627643 PMCID: PMC10451475 DOI: 10.3390/antiox12081648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Efficient brain function requires as much as 20% of the total oxygen intake to support normal neuronal cell function. This level of oxygen usage, however, leads to the generation of free radicals, and thus can lead to oxidative stress and potentially to age-related cognitive decay and even neurodegenerative diseases. The regulation of this system requires a complex monitoring network to maintain proper oxygen homeostasis. Furthermore, the high content of mitochondria in the brain has elevated glucose demands, and thus requires a normal redox balance. Maintaining this is mediated by adaptive stress response pathways that permit cells to survive oxidative stress and to minimize cellular damage. These stress pathways rely on the proper function of the endoplasmic reticulum (ER) and the activation of the unfolded protein response (UPR), a cellular pathway responsible for normal ER function and cell survival. Interestingly, the UPR has two opposing signaling pathways, one that promotes cell survival and one that induces apoptosis. In this narrative review, we discuss the opposing roles of the UPR signaling pathways and how a better understanding of these stress pathways could potentially allow for the development of effective strategies to prevent age-related cognitive decay as well as treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Magdalena Gebert
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-134 Gdansk, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383 Wroclaw, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-134 Gdansk, Poland
- BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, 11/12 Narutowicza Street, 80-233 Gdansk, Poland
| | - James F. Collawn
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Rafal Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383 Wroclaw, Poland
| |
Collapse
|
2
|
Van der Loo LE, Aquarius R, Teernstra O, Klijn K, Menovsky T, van Dijk JMC, Bartels R, Boogaarts HD. Iron chelators for acute stroke. Cochrane Database Syst Rev 2020; 11:CD009280. [PMID: 33236783 PMCID: PMC8095068 DOI: 10.1002/14651858.cd009280.pub3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Stroke is the second leading cause of death and a major cause of morbidity worldwide. Retrospective clinical and animal studies have demonstrated neuroprotective effects of iron chelators in people with haemorrhagic or ischaemic stroke. This is the first update of the original Cochrane Review published in 2012. OBJECTIVES To evaluate the effectiveness and safety of iron-chelating drugs in people with acute stroke. SEARCH METHODS We searched the Cochrane Stroke Group Trials Register (2 September 2019), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2019, Issue 9; 2 September 2019), MEDLINE Ovid (2 September 2019), Embase Ovid (2 September 2019), and Science Citation Index (2 September 2019). We also searched ongoing trials registers. SELECTION CRITERIA We included randomised controlled trials (RCTs) of iron chelators versus no iron chelators or placebo for the treatment of acute stroke, including subarachnoid haemorrhage. DATA COLLECTION AND ANALYSIS Two review authors independently screened the search results. We obtained the full texts of potentially relevant studies and evaluated them for eligibility. We assessed risk of bias using the Cochrane 'Risk of bias' tool, and the certainty of evidence using the GRADE approach. MAIN RESULTS Two RCTs (333 participants) were eligible for inclusion; both compared the iron-chelating agent deferoxamine against placebo. Both studies evaluated participants with spontaneous intracerebral haemorrhage. We assessed one study to have a low risk of bias; the other study had potential sources of bias. The limited and heterogeneous data did not allow for meta-analysis of the outcome parameters. The evidence suggests that administration of deferoxamine may result in little to no difference in deaths (8% in placebo vs 8% in deferoxamine at 180 days; 1 RCT, 291 participants; low-certainty evidence). These RCTs suggest that there may be little to no difference in good functional outcome (modified Rankin Scale score 0 to 2) between groups at 30, 90 and 180 days (placebo vs deferoxamine: 67% vs 57% at 30 days and 36% vs 45% at 180 days; 2 RCTs, 333 participants; low-certainty evidence). One RCT suggests that administration of deferoxamine may not increase the number of serious adverse events or deaths (placebo vs deferoxamine: 33% vs 27% at 180 days; risk ratio 0.81, 95 % confidence interval 0.57 to 1.16; 1 RCT, 291 participants; low-certainty evidence). No data were available on any deaths within the treatment period. Deferoxamine may result in little to no difference in the evolution of National Institute of Health Stroke Scale scores from baseline to 90 days (placebo vs deferoxamine: 13 to 4 vs 13 to 3; P = 0.37; 2 RCTs, 333 participants; low-certainty evidence). Deferoxamine may slightly reduce relative oedema surrounding intracerebral haemorrhage at 15 days (placebo vs deferoxamine: 1.91 vs 10.26; P = 0.042; 2 RCTs, 333 participants; low-certainty evidence). Neither study reported quality of life. AUTHORS' CONCLUSIONS We identified two eligible RCTs for assessment. We could not demonstrate any benefit for the use of iron chelators in spontaneous intracerebral haemorrhage. The added value of iron-chelating therapy in people with ischaemic stroke or subarachnoid haemorrhage remains unknown.
Collapse
Affiliation(s)
- Lars E Van der Loo
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - René Aquarius
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, Netherlands
| | - Onno Teernstra
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Karin Klijn
- Department of Neurology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Tomas Menovsky
- Department of Neurosurgery, Antwerp University Hospital, Antwerp, Belgium
| | - J Marc C van Dijk
- Department of Neurosurgery, University Medical Center Groningen, Gronigen, Netherlands
| | - Ronald Bartels
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, Netherlands
| | | |
Collapse
|
3
|
Elgundi Z, Papanicolaou M, Major G, Cox TR, Melrose J, Whitelock JM, Farrugia BL. Cancer Metastasis: The Role of the Extracellular Matrix and the Heparan Sulfate Proteoglycan Perlecan. Front Oncol 2020; 9:1482. [PMID: 32010611 PMCID: PMC6978720 DOI: 10.3389/fonc.2019.01482] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer metastasis is the dissemination of tumor cells to new sites, resulting in the formation of secondary tumors. This process is complex and is spatially and temporally regulated by intrinsic and extrinsic factors. One important extrinsic factor is the extracellular matrix, the non-cellular component of tissues. Heparan sulfate proteoglycans (HSPGs) are constituents of the extracellular matrix, and through their heparan sulfate chains and protein core, modulate multiple events that occur during the metastatic cascade. This review will provide an overview of the role of the extracellular matrix in the events that occur during cancer metastasis, primarily focusing on perlecan. Perlecan, a basement membrane HSPG is a key component of the vascular extracellular matrix and is commonly associated with events that occur during the metastatic cascade. Its contradictory role in these events will be discussed and we will highlight the recent advances in cancer therapies that target HSPGs and their modifying enzymes.
Collapse
Affiliation(s)
- Zehra Elgundi
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Michael Papanicolaou
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, UNSW Sydney, Darlinghurst, NSW, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Gretel Major
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Thomas R Cox
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, UNSW Sydney, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - James Melrose
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia.,Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, St Leonards, NSW, Australia
| | - John M Whitelock
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Brooke L Farrugia
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia.,Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Watanabe K, Tanaka M, Yuki S, Hirai M, Yamamoto Y. How is edaravone effective against acute ischemic stroke and amyotrophic lateral sclerosis? J Clin Biochem Nutr 2017; 62:20-38. [PMID: 29371752 PMCID: PMC5773834 DOI: 10.3164/jcbn.17-62] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/11/2017] [Indexed: 12/12/2022] Open
Abstract
Edaravone is a low-molecular-weight antioxidant drug targeting peroxyl radicals among many types of reactive oxygen species. Because of its amphiphilicity, it scavenges both lipid- and water-soluble peroxyl radicals by donating an electron to the radical. Thus, it inhibits the oxidation of lipids by scavenging chain-initiating water-soluble peroxyl radicals and chain-carrying lipid peroxyl radicals. In 2001, it was approved in Japan as a drug to treat acute-phase cerebral infarction, and then in 2015 it was approved for amyotrophic lateral sclerosis (ALS). In 2017, the U.S. Food and Drug Administration also approved edaravone for treatment of patients with ALS. Its mechanism of action was inferred to be scavenging of peroxynitrite. In this review, we focus on the radical-scavenging characteristics of edaravone in comparison with some other antioxidants that have been studied in clinical trials, and we summarize its pharmacological action and clinical efficacy in patients with acute cerebral infarction and ALS.
Collapse
Affiliation(s)
- Kazutoshi Watanabe
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Masahiko Tanaka
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-cho, Hachioji 192-0982, Japan
| | - Satoshi Yuki
- Ikuyaku. Integrated Value Development Division, Mitsubishi Tanabe Pharma Corporation, 17-10 Nihonbashi-Koamicho, Chuo-ku, Tokyo 103-8405, Japan
| | - Manabu Hirai
- Ikuyaku. Integrated Value Development Division, Mitsubishi Tanabe Pharma Corporation, 3-2-10 Dosho-machi, Chuo-ku, Osaka 541-8505, Japan
| | - Yorihiro Yamamoto
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-cho, Hachioji 192-0982, Japan
| |
Collapse
|
5
|
Ren Y, Wei B, Song X, An N, Zhou Y, Jin X, Zhang Y. Edaravone's free radical scavenging mechanisms of neuroprotection against cerebral ischemia: review of the literature. Int J Neurosci 2014; 125:555-65. [PMID: 25171224 DOI: 10.3109/00207454.2014.959121] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Free radicals and oxidative stress play key roles in cerebral ischemic pathogenesis and represent pharmacological targets for treatment. Edaravone (Edv), one of antioxidant agents that have been used in acute ischemic stroke in both clinical settings and animal experiments, exerts neuroprotective effect on ischemic injured brains. This review is aimed to elaborate the latest molecular mechanisms of the neuroprotection of Edv on cerebral ischemia and provide reasonable evidence in its clinical application. It is found that Edv has neuroprotective influence on cerebral ischemia, which is closely related to the facets of scavenging reactive oxygen species (ROS), hydroxyl radical (ċOH) and reactive nitrogen species (RNS). And it is a good antioxidant agent that can be safely used in the treatment of cerebral ischemia and chronic neurodegenerative disorders as well as other ischemia/reperfusion (I/R)-related diseases. The combination of Edv with thrombolytic therapy also can be applied in clinical settings and will be greatly beneficial to patients with stroke.
Collapse
Affiliation(s)
- Yanxin Ren
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | | | | | | | | | | | | |
Collapse
|
6
|
Nagel S, Hadley G, Pfleger K, Grond-Ginsbach C, Buchan AM, Wagner S, Papadakis M. Suppression of the inflammatory response by diphenyleneiodonium after transient focal cerebral ischemia. J Neurochem 2012; 123 Suppl 2:98-107. [PMID: 23050647 DOI: 10.1111/j.1471-4159.2012.07948.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diphenyleneiodonium (DPI), a NADPH oxidase inhibitor, reduces production of reactive oxygen species (ROS) and confers neuroprotection to focal cerebral ischemia. Our objective was to investigate whether the neuroprotective action of DPI extends to averting the immune response. DPI-induced gene changes were analyzed by microarray analysis from rat brains subjected to 90 min of middle cerebral artery occlusion, treated with NaCl (ischemia), dimethylsulfoxide (DMSO), or DMSO and DPI (DPI), and reperfused for 48 h. The genomic expression profile was compared between groups using ingenuity pathway analysis at the pathway and network level. DPI selectively up-regulated 23 genes and down-regulated 75 genes more than twofold compared with both DMSO and ischemia. It significantly suppressed inducible nitric oxide synthase signaling and increased the expression of methionine adenosyltransferasesynthetase 2A and adenosylmethionine decarboxylase 1 genes, which are involved in increasing the production of the antioxidant glutathione. The most significantly affected gene network comprised genes implicated in the inflammatory response with an expression change indicating an overall suppression. Both integrin- and interleukin-17A-signaling pathways were also significantly associated and suppressed. In conclusion, the neuroprotective effects of DPI are mediated not only by suppressing ischemia-triggered oxidative stress but also by limiting leukocyte migration and infiltration.
Collapse
Affiliation(s)
- Simon Nagel
- Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
7
|
Neuroprotection for stroke: current status and future perspectives. Int J Mol Sci 2012; 13:11753-11772. [PMID: 23109881 PMCID: PMC3472773 DOI: 10.3390/ijms130911753] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 09/06/2012] [Accepted: 09/07/2012] [Indexed: 12/31/2022] Open
Abstract
Neuroprotection aims to prevent salvageable neurons from dying. Despite showing efficacy in experimental stroke studies, the concept of neuroprotection has failed in clinical trials. Reasons for the translational difficulties include a lack of methodological agreement between preclinical and clinical studies and the heterogeneity of stroke in humans compared to homogeneous strokes in animal models. Even when the international recommendations for preclinical stroke research, the Stroke Academic Industry Roundtable (STAIR) criteria, were followed, we have still seen limited success in the clinic, examples being NXY-059 and haematopoietic growth factors which fulfilled nearly all the STAIR criteria. However, there are a number of neuroprotective treatments under investigation in clinical trials such as hypothermia and ebselen. Moreover, promising neuroprotective treatments based on a deeper understanding of the complex pathophysiology of ischemic stroke such as inhibitors of NADPH oxidases and PSD-95 are currently evaluated in preclinical studies. Further concepts to improve translation include the investigation of neuroprotectants in multicenter preclinical Phase III-type studies, improved animal models, and close alignment between clinical trial and preclinical methodologies. Future successful translation will require both new concepts for preclinical testing and innovative approaches based on mechanistic insights into the ischemic cascade.
Collapse
|
8
|
Sutherland BA, Minnerup J, Balami JS, Arba F, Buchan AM, Kleinschnitz C. Neuroprotection for ischaemic stroke: translation from the bench to the bedside. Int J Stroke 2012; 7:407-18. [PMID: 22394615 DOI: 10.1111/j.1747-4949.2012.00770.x] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neuroprotection seeks to restrict injury to the brain parenchyma following an ischaemic insult by preventing salvageable neurons from dying. The concept of neuroprotection has shown promise in experimental studies, but has failed to translate into clinical success. Many reasons exist for this including the heterogeneity of human stroke and the lack of methodological agreement between preclinical and clinical studies. Even with the proposed Stroke Therapy Academic Industry Roundtable criteria for preclinical development of neuroprotective agents for stroke, we have still seen limited success in the clinic, an example being NXY-059, which fulfilled nearly all the Stroke Therapy Academic Industry Roundtable criteria. There are currently a number of ongoing trials for neuroprotective strategies including hypothermia and albumin, but the outcome of these approaches remains to be seen. Combination therapies with thrombolysis also need to be fully investigated, as restoration of oxygen and glucose will always be the best therapy to protect against cell death from stroke. There are also a number of promising neuroprotectants in preclinical development including haematopoietic growth factors, and inhibitors of the nicotinamide adenine dinucleotide phosphate oxidases, a source of free radical production which is a key step in the pathophysiology of acute ischaemic stroke. For these neuroprotectants to succeed, essential quality standards need to be adhered to; however, these must remain realistic as the evidence that standardization of procedures improves translational success remains absent for stroke.
Collapse
Affiliation(s)
- Brad A Sutherland
- Acute Stroke Programme, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | | |
Collapse
|
9
|
Sayeed I, Stein DG. Progesterone as a neuroprotective factor in traumatic and ischemic brain injury. PROGRESS IN BRAIN RESEARCH 2009; 175:219-37. [DOI: 10.1016/s0079-6123(09)17515-5] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|