1
|
Tang L, Wang X, Wu J, Li SM, Zhang Z, Wu S, Su T, Lin Z, Chen X, Liao X, Bai T, Qiu Y, Reinach PS, Li W, Chen Y, Liu Z. Sleep Deprivation Induces Dry Eye Through Inhibition of PPARα Expression in Corneal Epithelium. ACTA ACUST UNITED AC 2018; 59:5494-5508. [DOI: 10.1167/iovs.18-24504] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Liying Tang
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Medical College, Xiamen University, Xiamen, Fujian, China
| | - Xue Wang
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Medical College, Xiamen University, Xiamen, Fujian, China
| | - Jieli Wu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Medical College, Xiamen University, Xiamen, Fujian, China
| | - San Ming Li
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Medical College, Xiamen University, Xiamen, Fujian, China
| | - Zhaoqiang Zhang
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Medical College, Xiamen University, Xiamen, Fujian, China
| | - Sangang Wu
- Department of Radiation Oncology, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Ting Su
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Medical College, Xiamen University, Xiamen, Fujian, China
| | - Zhirong Lin
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Medical College, Xiamen University, Xiamen, Fujian, China
- Xiamen University Affiliated Xiamen Eye Center, Xiamen, Fujian, China
| | - Xueting Chen
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Medical College, Xiamen University, Xiamen, Fujian, China
| | - Xulin Liao
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Medical College, Xiamen University, Xiamen, Fujian, China
| | - Ting Bai
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Medical College, Xiamen University, Xiamen, Fujian, China
| | - Yan Qiu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Medical College, Xiamen University, Xiamen, Fujian, China
| | | | - Wei Li
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Medical College, Xiamen University, Xiamen, Fujian, China
- Xiamen University Affiliated Xiamen Eye Center, Xiamen, Fujian, China
- The Affiliated Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Yongxiong Chen
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Medical College, Xiamen University, Xiamen, Fujian, China
| | - Zuguo Liu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Medical College, Xiamen University, Xiamen, Fujian, China
- Xiamen University Affiliated Xiamen Eye Center, Xiamen, Fujian, China
- The Affiliated Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
2
|
Abstract
The metabolic syndrome (MetS) is comprised of a cluster of closely related risk factors, including visceral adiposity, insulin resistance, hypertension, high triglyceride, and low high-density lipoprotein cholesterol; all of which increase the risk for the development of type 2 diabetes and cardiovascular disease. A chronic state of inflammation appears to be a central mechanism underlying the pathophysiology of insulin resistance and MetS. In this review, we summarize recent research which has provided insight into the mechanisms by which inflammation underlies the pathophysiology of the individual components of MetS including visceral adiposity, hyperglycemia and insulin resistance, dyslipidemia, and hypertension. On the basis of these mechanisms, we summarize therapeutic modalities to target inflammation in the MetS and its individual components. Current therapeutic modalities can modulate the individual components of MetS and have a direct anti-inflammatory effect. Lifestyle modifications including exercise, weight loss, and diets high in fruits, vegetables, fiber, whole grains, and low-fat dairy and low in saturated fat and glucose are recommended as a first line therapy. The Mediterranean and dietary approaches to stop hypertension diets are especially beneficial and have been shown to prevent development of MetS. Moreover, the Mediterranean diet has been associated with reductions in total and cardiovascular mortality. Omega-3 fatty acids and peroxisome proliferator-activated receptor α agonists lower high levels of triglyceride; their role in targeting inflammation is reviewed. Angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and aldosterone blockers comprise pharmacologic therapies for hypertension but also target other aspects of MetS including inflammation. Statin drugs target many of the underlying inflammatory pathways involved in MetS.
Collapse
Affiliation(s)
- Francine K Welty
- Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass.
| | - Abdulhamied Alfaddagh
- Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass
| | - Tarec K Elajami
- Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass
| |
Collapse
|
3
|
Peroxisome Proliferator-Activated Receptors and the Heart: Lessons from the Past and Future Directions. PPAR Res 2015; 2015:271983. [PMID: 26587015 PMCID: PMC4637490 DOI: 10.1155/2015/271983] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/05/2015] [Indexed: 12/17/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear family of ligand activated transcriptional factors and comprise three different isoforms, PPAR-α, PPAR-β/δ, and PPAR-γ. The main role of PPARs is to regulate the expression of genes involved in lipid and glucose metabolism. Several studies have demonstrated that PPAR agonists improve dyslipidemia and glucose control in animals, supporting their potential as a promising therapeutic option to treat diabetes and dyslipidemia. However, substantial differences exist in the therapeutic or adverse effects of specific drug candidates, and clinical studies have yielded inconsistent data on their cardioprotective effects. This review summarizes the current knowledge regarding the molecular function of PPARs and the mechanisms of the PPAR regulation by posttranslational modification in the heart. We also describe the results and lessons learned from important clinical trials on PPAR agonists and discuss the potential future directions for this class of drugs.
Collapse
|
4
|
Usuda D, Kanda T. Peroxisome proliferator-activated receptors for hypertension. World J Cardiol 2014; 6:744-754. [PMID: 25228953 PMCID: PMC4163703 DOI: 10.4330/wjc.v6.i8.744] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/21/2014] [Accepted: 06/27/2014] [Indexed: 02/06/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors belonging to the nuclear receptor superfamily, which is composed of four members encoded by distinct genes (α, β, γ, and δ). The genes undergo transactivation or transrepression under specific mechanisms that lead to the induction or repression of target gene expression. As is the case with other nuclear receptors, all four PPAR isoforms contain five or six structural regions in four functional domains; namely, A/B, C, D, and E/F. PPARs have many functions, particularly functions involving control of vascular tone, inflammation, and energy homeostasis, and are, therefore, important targets for hypertension, obesity, obesity-induced inflammation, and metabolic syndrome in general. Hence, PPARs also represent drug targets, and PPARα and PPARγ agonists are used clinically in the treatment of dyslipidemia and type 2 diabetes mellitus, respectively. Because of their pleiotropic effects, they have been identified as active in a number of diseases and are targets for the development of a broad range of therapies for a variety of diseases. It is likely that the range of PPARγ agonist therapeutic actions will result in novel approaches to lifestyle and other diseases. The combination of PPARs with reagents or with other cardiovascular drugs, such as diuretics and angiotensin II receptor blockers, should be studied. This article provides a review of PPAR isoform characteristics, a discussion of progress in our understanding of the biological actions of PPARs, and a summary of PPAR agonist development for patient management. We also include a summary of the experimental and clinical evidence obtained from animal studies and clinical trials conducted to evaluate the usefulness and effectiveness of PPAR agonists in the treatment of lifestyle-related diseases.
Collapse
|
5
|
Nicholas LM, Rattanatray L, Morrison JL, Kleemann DO, Walker SK, Zhang S, MacLaughlin S, McMillen IC. Maternal obesity or weight loss around conception impacts hepatic fatty acid metabolism in the offspring. Obesity (Silver Spring) 2014; 22:1685-93. [PMID: 24719305 DOI: 10.1002/oby.20752] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 03/20/2014] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To determine the impact of maternal obesity or weight loss during the periconceptional period on programming of lipid metabolism in the liver of the offspring. METHODS An embryo transfer model was used to investigate the effects of exposure to either maternal obesity and/or weight loss before and for 1-week post-conception on the abundance of key molecules regulating hepatic fatty acid oxidation and lipid synthesis in the 4-month-old lamb. RESULTS Periconceptional maternal obesity resulted in decreased hepatic PPARα, PGC1α and GCN5 abundance and increased hepatic SIRT1 and AMPKα1, AMPKα2 and SREBP1 abundance in the offspring. Maternal weight loss in obese ewes did not ablate all of these effects of maternal obesity on hepatic metabolism in the lamb. Weight loss in normal weight ewes also resulted in decreased hepatic PGC1α and GCN5 and increased AMPKα2 abundance in the offspring. CONCLUSIONS Exposure of the oocyte/embryo to either maternal obesity or weight loss during the periconceptional period has long term consequences for hepatic lipid metabolism. These findings highlight the sensitivity of the early embryo to maternal nutrition and the need for dietary interventions which maximize metabolic benefits and minimize metabolic costs for the next generation.
Collapse
Affiliation(s)
- Lisa M Nicholas
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, South Australia, Australia, 5000
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Palmitoylethanolamide in CNS health and disease. Pharmacol Res 2014; 86:32-41. [PMID: 24844438 DOI: 10.1016/j.phrs.2014.05.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 01/08/2023]
Abstract
The existence of acylethanolamides (AEs) in the mammalian brain has been known for decades. Among AEs, palmitoylethanolamide (PEA) is abundant in the central nervous system (CNS) and conspicuously produced by neurons and glial cells. Antihyperalgesic and neuroprotective properties of PEA have been mainly related to the reduction of neuronal firing and to control of inflammation. Growing evidence suggest that PEA may be neuroprotective during CNS neurodegenerative diseases. Advances in the understanding of the physiology and pharmacology of PEA have potentiated its interest as useful biological tool for disease management. Several rapid non-genomic and delayed genomic mechanisms of action have been identified for PEA as peroxisome proliferator-activated receptor (PPAR)-α dependent. First, an early molecular control, through Ca(+2)-activated intermediate- and/or big-conductance K(+) channels opening, drives to rapid neuronal hyperpolarization. This is reinforced by the increase of the inward Cl(-) currents due to the modulation of the gamma aminobutyric acid A receptor and by the desensitization of the transient receptor potential channel type V1. Moreover, the gene transcription-mediated mechanism sustains the long-term anti-inflammatory effects, by reducing pro-inflammatory enzyme expression and increasing neurosteroid synthesis. Overall, the integration of these different modes of action allows PEA to exert an immediate and prolonged efficacious control in neuron signaling either on inflammatory process or neuronal excitability, maintaining cellular homeostasis. In this review, we will discuss the effect of PEA on metabolism, behavior, inflammation and pain perception, related to the control of central functions and the emerging evidence demonstrating its therapeutic efficacy in several neurodegenerative diseases.
Collapse
|
7
|
Azhar S. Peroxisome proliferator-activated receptors, metabolic syndrome and cardiovascular disease. Future Cardiol 2010; 6:657-91. [PMID: 20932114 PMCID: PMC3246744 DOI: 10.2217/fca.10.86] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Metabolic syndrome (MetS) is a constellation of risk factors including insulin resistance, central obesity, dyslipidemia and hypertension that markedly increase the risk of Type 2 diabetes (T2DM) and cardiovascular disease (CVD). The peroxisome proliferators-activated receptor (PPAR) isotypes, PPARα, PPARδ/ß and PPARγ are ligand-activated nuclear transcription factors, which modulate the expression of an array of genes that play a central role in regulating glucose, lipid and cholesterol metabolism, where imbalance can lead to obesity, T2DM and CVD. They are also drug targets, and currently, PPARα (fibrates) and PPARγ (thiazolodinediones) agonists are in clinical use for treating dyslipidemia and T2DM, respectively. These metabolic characteristics of the PPARs, coupled with their involvement in metabolic diseases, mean extensive efforts are underway worldwide to develop new and efficacious PPAR-based therapies for the treatment of additional maladies associated with the MetS. This article presents an overview of the functional characteristics of three PPAR isotypes, discusses recent advances in our understanding of the diverse biological actions of PPARs, particularly in the vascular system, and summarizes the developmental status of new single, dual, pan (multiple) and partial PPAR agonists for the clinical management of key components of MetS, T2DM and CVD. It also summarizes the clinical outcomes from various clinical trials aimed at evaluating the atheroprotective actions of currently used fibrates and thiazolodinediones.
Collapse
Affiliation(s)
- Salman Azhar
- Geriatric Research, Education & Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
8
|
Matiello R, Fukui RT, Silva ME, Rocha DM, Wajchenberg BL, Azhar S, Santos RF. Differential regulation of PGC-1alpha expression in rat liver and skeletal muscle in response to voluntary running. Nutr Metab (Lond) 2010; 7:36. [PMID: 20433743 PMCID: PMC2874794 DOI: 10.1186/1743-7075-7-36] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 04/30/2010] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The beneficial actions of exercise training on lipid, glucose and energy metabolism and insulin sensitivity appear to be in part mediated by PGC-1alpha. Previous studies have shown that spontaneously exercised rats show at rest enhanced responsiveness to exogenous insulin, lower plasma insulin levels and increased skeletal muscle insulin sensitivity. This study was initiated to examine the functional interaction between exercise-induced modulation of skeletal muscle and liver PGC-1alpha protein expression, whole body insulin sensitivity, and circulating FFA levels as a measure of whole body fatty acid (lipid) metabolism. METHODS Two groups of male Wistar rats (2 Mo of age, 188.82 +/- 2.77 g BW) were used in this study. One group consisted of control rats placed in standard laboratory cages. Exercising rats were housed individually in cages equipped with running wheels and allowed to run at their own pace for 5 weeks. At the end of exercise training, insulin sensitivity was evaluated by comparing steady-state plasma glucose (SSPG) concentrations at constant plasma insulin levels attained during the continuous infusion of glucose and insulin to each experimental group. Subsequently, soleus and plantaris muscle and liver samples were collected and quantified for PGC-1alpha protein expression by Western blotting. Collected blood samples were analyzed for glucose, insulin and FFA concentrations. RESULTS Rats housed in the exercise wheel cages demonstrated almost linear increases in running activity with advancing time reaching to maximum value around 4 weeks. On an average, the rats ran a mean (Mean +/- SE) of 4.102 +/- 0.747 km/day and consumed significantly more food as compared to sedentary controls (P < 0.001) in order to meet their increased caloric requirement. Mean plasma insulin (P < 0.001) and FFA (P < 0.006) concentrations were lower in the exercise-trained rats as compared to sedentary controls. Mean steady state plasma insulin (SSPI) and glucose (SSPG) concentrations were not significantly different in sedentary control rats as compared to exercise-trained animals. Plantaris PGC-1alpha protein expression increased significantly from a 1.11 +/- 0.12 in the sedentary rats to 1.74 +/- 0.09 in exercising rats (P < 0.001). However, exercise had no effect on PGC-1alpha protein content in either soleus muscle or liver tissue. These results indicate that exercise training selectively up regulates the PGC-1alpha protein expression in high-oxidative fast skeletal muscle type such as plantaris muscle. CONCLUSION These data suggest that PGC-1alpha most likely plays a restricted role in exercise-mediated improvements in insulin resistance (sensitivity) and lowering of circulating FFA levels.
Collapse
Affiliation(s)
- Renata Matiello
- Laboratory of Medical Investigation, LIM-18, Division of Endocrinology and Metabolism, Hospital of Clinics, School of Medicine, University of Sao Paulo, Av Dr Arnaldo, 455, 3rd floor, room 3324, Sao Paulo, 01246-903, Brazil.
| | | | | | | | | | | | | |
Collapse
|
9
|
Argentine MD, Braden TM, Czarnik J, Conder EW, Dunlap SE, Fennell JW, LaPack MA, Rothhaar RR, Scherer RB, Schmid CR, Vicenzi JT, Wei JG, Werner JA, Roginski RT. The Role of New Technologies in Defining a Manufacturing Process for PPARα Agonist LY518674. Org Process Res Dev 2009. [DOI: 10.1021/op8002486] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mark D. Argentine
- Chemical Product Research and Development, Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, U.S.A
| | - Timothy M. Braden
- Chemical Product Research and Development, Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, U.S.A
| | - Jeffrey Czarnik
- Chemical Product Research and Development, Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, U.S.A
| | - Edward W. Conder
- Chemical Product Research and Development, Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, U.S.A
| | - Steven E. Dunlap
- Chemical Product Research and Development, Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, U.S.A
| | - Jared W. Fennell
- Chemical Product Research and Development, Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, U.S.A
| | - Mark A. LaPack
- Chemical Product Research and Development, Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, U.S.A
| | - Roger R. Rothhaar
- Chemical Product Research and Development, Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, U.S.A
| | - R. Brian Scherer
- Chemical Product Research and Development, Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, U.S.A
| | - Christopher R. Schmid
- Chemical Product Research and Development, Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, U.S.A
| | - Jeffrey T. Vicenzi
- Chemical Product Research and Development, Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, U.S.A
| | - Jeffrey G. Wei
- Chemical Product Research and Development, Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, U.S.A
| | - John A. Werner
- Chemical Product Research and Development, Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, U.S.A
| | - Robert T. Roginski
- Eigenvector Research, Inc., 3905 West Eaglerock Drive, Wenatchee, Washington 98801, U.S.A
| |
Collapse
|