1
|
Riva N, Gentile F, Cerri F, Gallia F, Podini P, Dina G, Falzone YM, Fazio R, Lunetta C, Calvo A, Logroscino G, Lauria G, Corbo M, Iannaccone S, Chiò A, Lazzerini A, Nobile-Orazio E, Filippi M, Quattrini A. Phosphorylated TDP-43 aggregates in peripheral motor nerves of patients with amyotrophic lateral sclerosis. Brain 2022; 145:276-284. [PMID: 35076694 PMCID: PMC8967102 DOI: 10.1093/brain/awab285] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/07/2021] [Accepted: 07/18/2021] [Indexed: 12/27/2022] Open
Abstract
Phosphorylated TDP-43 (pTDP-43) aggregates in the cytoplasm of motor neurons and neuroglia in the brain are one of the pathological hallmarks of amyotrophic lateral sclerosis. Although the axons exceed the total volume of motor neuron soma by several orders of magnitude, systematic studies investigating the presence and distribution of pTDP-43 aggregates within motor nerves are still lacking. The aim of this study is to define the TDP-43/pTDP-43 pathology in diagnostic motor nerve biopsies performed on a large cohort of patients presenting with a lower motor neuron syndrome and to assess whether this might be a discriminating tissue biomarker for amyotrophic lateral sclerosis and non-amyotrophic lateral sclerosis cases. We retrospectively evaluated 102 lower motor neuron syndrome patients referred to our centre for a diagnostic motor nerve biopsy. Histopathological criteria of motor neuron disease and motor neuropathy were applied by two independent evaluators, who were blind to clinical data. TDP-43 and pTDP-43 were evaluated by immunohistochemistry, and results compared to final clinical diagnosis. We detected significant differences between amyotrophic lateral sclerosis and non-amyotrophic lateral sclerosis cases in pTDP-43 expression in myelinated fibres: axonal accumulation was detected in 98.2% of patients with amyotrophic lateral sclerosis versus 30.4% of non-amyotrophic lateral sclerosis samples (P < 0.0001), while concomitant positive staining in Schwan cell cytoplasm was found in 70.2% of patients with amyotrophic lateral sclerosis versus 17.4% of patients who did not have amyotrophic lateral sclerosis (P < 0.001). Importantly, we were also able to detect pTDP-43 aggregates in amyotrophic lateral sclerosis cases displaying normal features at standard histopathological analysis. Our findings demonstrated that a specific pTDP-43 signature is present in the peripheral nervous system of patients with amyotrophic lateral sclerosis, and could be exploited as a specific, accessible tissue biomarker. The detection of pTDP-43 aggregates within motor nerves of living patients with amyotrophic lateral sclerosis, occurring before axonal degeneration, suggests that this is an early event that may contribute to amyotrophic lateral sclerosis pathogenesis.
Collapse
Affiliation(s)
- Nilo Riva
- Experimental Neuropathology Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
- Neurology Unit and Neurorehabilitation Unit, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Francesco Gentile
- Experimental Neuropathology Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Federica Cerri
- Experimental Neuropathology Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
- Neurology Unit and Neurorehabilitation Unit, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Francesca Gallia
- Neuromuscular and Neuroimmunology Service, Department of Medical Biotechnology and Translational Medicine, Humanitas Clinical and Research Institute, Milan University, 20089 Rozzano, Milan, Italy
| | - Paola Podini
- Experimental Neuropathology Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Giorgia Dina
- Experimental Neuropathology Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Yuri Matteo Falzone
- Experimental Neuropathology Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
- Neurology Unit and Neurorehabilitation Unit, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Raffaella Fazio
- Neurology Unit and Neurorehabilitation Unit, San Raffaele Scientific Institute, 20132, Milan, Italy
| | | | - Andrea Calvo
- Rita Levi Montalcini Department of Neuroscience, University of Turin, 10126 Turin, Italy
| | | | - Giuseppe Lauria
- 3rd Neurology Unit and Motor Neuron Disease Center, IRCCS Foundation ‘Carlo Besta’ Neurological Institute, 20133, Milan, Italy
- Department of Biomedical and Clinical and Sciences ‘Luigi Sacco’, University of Milan, 20157, Milan, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, 20144, Milan, Italy
| | - Sandro Iannaccone
- Department of Clinical Neurosciences, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Adriano Chiò
- Rita Levi Montalcini Department of Neuroscience, University of Turin, 10126 Turin, Italy
| | - Alberto Lazzerini
- Hand Surgery Department, IRCCS Orthopedic Institute Galeazzi, 20161, Milan, Italy
| | - Eduardo Nobile-Orazio
- Neuromuscular and Neuroimmunology Service, Department of Medical Biotechnology and Translational Medicine, Humanitas Clinical and Research Institute, Milan University, 20089 Rozzano, Milan, Italy
| | - Massimo Filippi
- Neurology Unit and Neurorehabilitation Unit, San Raffaele Scientific Institute, 20132, Milan, Italy
- Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
- Vita-Salute San Raffaele University, 20132, Milan, Italy
| | - Angelo Quattrini
- Experimental Neuropathology Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| |
Collapse
|
2
|
Thompson AG, Oeckl P, Feneberg E, Bowser R, Otto M, Fischer R, Kessler B, Turner MR. Advancing mechanistic understanding and biomarker development in amyotrophic lateral sclerosis. Expert Rev Proteomics 2021; 18:977-994. [PMID: 34758687 DOI: 10.1080/14789450.2021.2004890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Proteomic analysis has contributed significantly to the study of the neurodegenerative disease amyotrophic lateral sclerosis (ALS). It has helped to define the pathological change common to nearly all cases, namely intracellular aggregates of phosphorylated TDP-43, shifting the focus of pathogenesis in ALS toward RNA biology. Proteomics has also uniquely underpinned the delineation of disease mechanisms in model systems and has been central to recent advances in human ALS biomarker development. AREAS COVERED The contribution of proteomics to understanding the cellular pathological changes, disease mechanisms, and biomarker development in ALS are covered. EXPERT OPINION Proteomics has delivered unique insights into the pathogenesis of ALS and advanced the goal of objective measurements of disease activity to improve therapeutic trials. Further developments in sensitivity and quantification are expected, with application to the presymptomatic phase of human disease offering the hope of prevention strategies.
Collapse
Affiliation(s)
| | - Patrick Oeckl
- Department of Neurology, University of Ulm, Ulm, Germany.,German Center for Neurodegenerative Diseases (Dzne e.V.), Ulm, Germany
| | - Emily Feneberg
- Department of Neurology, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Robert Bowser
- Departments of Neurology and Translational Neuroscience, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany.,Department of Neurology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Benedikt Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
D’Amico E, Grosso G, Nieves JW, Zanghì A, Factor-Litvak P, Mitsumoto H. Metabolic Abnormalities, Dietary Risk Factors and Nutritional Management in Amyotrophic Lateral Sclerosis. Nutrients 2021; 13:nu13072273. [PMID: 34209133 PMCID: PMC8308334 DOI: 10.3390/nu13072273] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a devastating progressive neurodegenerative disease that affects motor neurons, leading to a relentless paralysis of skeletal muscles and eventual respiratory failure. Although a small percentage of patients may have a longer survival time (up to 10 years), in most cases, the median survival time is from 20 to 48 months. The pathogenesis and risk factors for ALS are still unclear: among the various aspects taken into consideration, metabolic abnormalities and nutritional factors have been the focus of recent interests. Although there are no consistent findings regarding prior type-2 diabetes, hypercholesterolemia and ALS incidence, abnormalities in lipid and glucose metabolism may be linked to disease progression, leading to a relatively longer survival (probably as a result of counteract malnutrition and cachexia in the advanced stages of the disease). Among potential dietary risk factors, a higher risk of ALS has been associated with an increased intake of glutamate, while the consumption of antioxidant and anti-inflammatory compounds, such as vitamin E, n-3 polyunsaturated fatty acids, and carotenoids, has been related to lower incidence. Poor nutritional status and weight loss in ALS resulting from poor oral intake, progressive muscle atrophy, and the potential hypermetabolic state have been associated with rapid disease progression. It seems important to routinely perform a nutritional assessment of ALS patients at the earliest referral: weight maintenance (if adequate) or gain (if underweight) is suggested from the scientific literature; evidence of improved diet quality (in terms of nutrients and limits for pro-inflammatory dietary factors) and glucose and lipid control is yet to be confirmed, but it is advised. Further research is warranted to better understand the role of nutrition and the underlying metabolic abnormalities in ALS, and their contribution to the pathogenic mechanisms leading to ALS initiation and progression.
Collapse
Affiliation(s)
- Emanuele D’Amico
- Department G.F. Ingrassia, University of Catania, 95123 Catania, Italy; (E.D.); (A.Z.)
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Correspondence: ; Tel.: +39-0954-781-187
| | - Jeri W. Nieves
- Mailman School of Public Health and Institute of Human Nutrition, Columbia University, New York, NY 10032, USA; (J.W.N.); (P.F.-L.)
| | - Aurora Zanghì
- Department G.F. Ingrassia, University of Catania, 95123 Catania, Italy; (E.D.); (A.Z.)
| | - Pam Factor-Litvak
- Mailman School of Public Health and Institute of Human Nutrition, Columbia University, New York, NY 10032, USA; (J.W.N.); (P.F.-L.)
| | - Hiroshi Mitsumoto
- Eleanor and Lou Gehrig ALS Center, The Neurological Institute of New York Columbia University Medical Center, New York, NY 10032, USA;
| |
Collapse
|
4
|
Sharma K, Amin Mohammed Amin M, Gupta N, Zinman L, Zhou X, Irving H, Yücel Y. Retinal Spheroids and Axon Pathology Identified in Amyotrophic Lateral Sclerosis. Invest Ophthalmol Vis Sci 2021; 61:30. [PMID: 33226405 PMCID: PMC7691787 DOI: 10.1167/iovs.61.13.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Purpose To determine whether patients with amyotrophic lateral sclerosis (ALS) show retinal axon pathology. Methods Postmortem eyes from 10 patients with ALS were sectioned and compared with 10 age-matched controls. Retinal sections were evaluated with periodic acid Schiff and phosphorylated (P-NF) and nonphosphorylated (NP-NF) forms of neurofilament with SMI 31 and 32 antibodies. Spheroids identified in the retinal nerve fiber layer were counted and their overall density was calculated in central, peripheral, and peripapillary regions. P-NF intensity was quantified. Morphometric features of ALS cases were compared with age-matched controls using the exact Wilcoxon matched-pairs signed-rank test. Results Distinct periodic acid Schiff–positive round profiles were identified in the retinal nerve fiber layer of patients with ALS and were most commonly observed in the peripapillary and peripheral retina. The density of periodic acid Schiff–positive spheroids was significantly greater in patients with ALS compared with controls (P = 0.027), with increased density in the peripapillary region (P = 0.047). Spheroids positive for P-NF and NP-NF were detected. P-NF–positive spheroid density was significantly increased in patients with ALS (P = 0.004), while the density of NP-NF spheroids did not differ significantly between ALS and control groups (P > 0.05). P-NF immunoreactivity in the retinal nerve fiber layer was significantly greater in patients with ALS than in controls (P = 0.002). Conclusions Retinal spheroids and axon pathology discovered in patients with ALS, similar to hallmark findings in spinal cord motor neurons, point to disrupted axon transport as a shared pathogenesis. Retinal manifestations detected in ALS suggest a novel biomarker detectable by noninvasive retinal imaging to help to diagnose and monitor ALS disease.
Collapse
Affiliation(s)
- Kieran Sharma
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Ontario, Canada.,Department of Ophthalmology & Vision Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine & Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Maryam Amin Mohammed Amin
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Ontario, Canada.,Department of Ophthalmology & Vision Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Physics, Faculty of Science, Ryerson University, Toronto, Ontario, Canada
| | - Neeru Gupta
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Ontario, Canada.,Department of Ophthalmology & Vision Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine & Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Glaucoma & Nerve Protection Unit, St. Michael's Hospital, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Lorne Zinman
- Division of Neurology, Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Xun Zhou
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Ontario, Canada.,Department of Ophthalmology & Vision Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine & Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Hyacinth Irving
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Ontario, Canada
| | - Yeni Yücel
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Ontario, Canada.,Department of Ophthalmology & Vision Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine & Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Physics, Faculty of Science, Ryerson University, Toronto, Ontario, Canada.,Ophthalmic Pathology Laboratory, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Institute of Biomedical Engineering, Science and Technology (iBEST), St. Michael's Hospital, Ryerson University, Toronto, Ontario, Canada.,Department of Mechanical Engineering, Faculty of Engineering and Architectural Science, Ryerson University, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Al Khleifat A, Balendra R, Fang T, Al-Chalabi A. Intuitive Staging Correlates With King's Clinical Stage. Amyotroph Lateral Scler Frontotemporal Degener 2021; 22:336-340. [PMID: 33821690 DOI: 10.1080/21678421.2020.1867181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Background: Clinical stage in amyotrophic lateral sclerosis (ALS) can be assigned using King's staging with a simple protocol based on the number of CNS regions involved and the presence of significant nutritional or respiratory failure. It is important that the assigned clinical stage matches expectations, and generally corresponds with how a health care professional would intuitively stage the patient. We therefore investigated the relationship between King's clinical ALS stage and ALS stage as intuitively assigned by health care professionals. Methods: We wrote 17 case vignettes describing people with ALS at different disease stages from very early limited disease involvement through to severe, multi-domain disease. During two workshops, we asked health care professionals to intuitively stage the vignettes and compared the answers with the actual King's clinical ALS stage. Results: There was a good correlation between King's clinical ALS stage and intuitively assigned stage, with a Spearman's Rank correlation coefficient of 0.64 (p < 0.001). There was no difference in the intuitive stages assigned by practitioners of different types or at different levels of experience. Conclusions: Across a spectrum of ALS scenarios, King's clinical ALS stage corresponds to intuitive ALS stage as assigned by a range of health care professionals.
Collapse
Affiliation(s)
- Ahmad Al Khleifat
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - Rubika Balendra
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, UK
| | - Ton Fang
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK.,Department of Neurology, King's College Hospital, London, UK
| |
Collapse
|
6
|
Shefner JM, Al-Chalabi A, Baker MR, Cui LY, de Carvalho M, Eisen A, Grosskreutz J, Hardiman O, Henderson R, Matamala JM, Mitsumoto H, Paulus W, Simon N, Swash M, Talbot K, Turner MR, Ugawa Y, van den Berg LH, Verdugo R, Vucic S, Kaji R, Burke D, Kiernan MC. A proposal for new diagnostic criteria for ALS. Clin Neurophysiol 2020; 131:1975-1978. [PMID: 32387049 DOI: 10.1016/j.clinph.2020.04.005] [Citation(s) in RCA: 287] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/01/2020] [Accepted: 04/05/2020] [Indexed: 01/17/2023]
Affiliation(s)
- Jeremy M Shefner
- Department of Neurology, Barrow Neurological Institute, Phoenix, USA.
| | - Ammar Al-Chalabi
- Maurice Wohl Clinical Neuroscience Institute, Kings College London, London, UK
| | - Mark R Baker
- Department of Clinical Neurophysiology, Royal Victoria Infirmary and Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Li-Ying Cui
- Department of Neurology, Peking Union Medical College Hospital, Beijing, China
| | - Mamede de Carvalho
- Physiology Institute, Faculty of Medicine-iMM-CHULN, University of Lisbon, Lisbon, Portugal
| | - Andrew Eisen
- Division of Neurology, University of British Columbia, Vancouver, Canada
| | | | - Orla Hardiman
- Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Robert Henderson
- University of Queensland Centre for Clinical Research, Brisbane, Australia
| | - Jose Manuel Matamala
- Department of Neurological Sciences and Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile
| | | | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center, Georg-August University, Göttingen, Germany
| | - Neil Simon
- Northern Clinical School, University of Sydney, Sydney, Australia
| | | | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences University of Oxford, Oxford, UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences University of Oxford, Oxford, UK
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, Fukushima Medical University, Fukushima, Japan
| | | | - Renato Verdugo
- Neurology and Psychiatry, Clinica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Steven Vucic
- Western Clinical School, University of Sydney, Department of Neurology, Westmead Hospital, Australia
| | - Ryuji Kaji
- National Hospital Organization Utano Hospital, Kyoto, Japan
| | - David Burke
- Department of Neurology, Royal Prince Alfred Hospital and the University of Sydney, Sydney, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|
7
|
Goyal NA, Berry JD, Windebank A, Staff NP, Maragakis NJ, van den Berg LH, Genge A, Miller R, Baloh RH, Kern R, Gothelf Y, Lebovits C, Cudkowicz M. Addressing heterogeneity in amyotrophic lateral sclerosis CLINICAL TRIALS. Muscle Nerve 2020; 62:156-166. [PMID: 31899540 PMCID: PMC7496557 DOI: 10.1002/mus.26801] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a debilitating neurodegenerative disorder with complex biology and significant clinical heterogeneity. Many preclinical and early phase ALS clinical trials have yielded promising results that could not be replicated in larger phase 3 confirmatory trials. One reason for the lack of reproducibility may be ALS biological and clinical heterogeneity. Therefore, in this review, we explore sources of ALS heterogeneity that may reduce statistical power to evaluate efficacy in ALS trials. We also review efforts to manage clinical heterogeneity, including use of validated disease outcome measures, predictive biomarkers of disease progression, and individual clinical risk stratification. We propose that personalized prognostic models with use of predictive biomarkers may identify patients with ALS for whom a specific therapeutic strategy may be expected to be more successful. Finally, the rapid application of emerging clinical and biomarker strategies may reduce heterogeneity, increase trial efficiency, and, in turn, accelerate ALS drug development.
Collapse
Affiliation(s)
| | - James D. Berry
- Healey Center at Massachusetts General HospitalBostonMassachusetts
| | | | | | | | | | - Angela Genge
- Montreal Neurological Institute and HospitalMontreal, QuebecCanada
| | - Robert Miller
- California Pacific Medical CenterSan FranciscoCalifornia
| | - Robert H. Baloh
- Robert H. Baloh, Cedars‐Sinai Medical CenterCaliforniaLos Angeles
| | - Ralph Kern
- Brainstorm Cell TherapeuticsNew YorkNew York
| | | | | | - Merit Cudkowicz
- Healey Center at Massachusetts General HospitalBostonMassachusetts
| |
Collapse
|
8
|
Grollemund V, Pradat PF, Querin G, Delbot F, Le Chat G, Pradat-Peyre JF, Bede P. Machine Learning in Amyotrophic Lateral Sclerosis: Achievements, Pitfalls, and Future Directions. Front Neurosci 2019; 13:135. [PMID: 30872992 PMCID: PMC6403867 DOI: 10.3389/fnins.2019.00135] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/06/2019] [Indexed: 12/23/2022] Open
Abstract
Background: Amyotrophic Lateral Sclerosis (ALS) is a relentlessly progressive neurodegenerative condition with limited therapeutic options at present. Survival from symptom onset ranges from 3 to 5 years depending on genetic, demographic, and phenotypic factors. Despite tireless research efforts, the core etiology of the disease remains elusive and drug development efforts are confounded by the lack of accurate monitoring markers. Disease heterogeneity, late-stage recruitment into pharmaceutical trials, and inclusion of phenotypically admixed patient cohorts are some of the key barriers to successful clinical trials. Machine Learning (ML) models and large international data sets offer unprecedented opportunities to appraise candidate diagnostic, monitoring, and prognostic markers. Accurate patient stratification into well-defined prognostic categories is another aspiration of emerging classification and staging systems. Methods: The objective of this paper is the comprehensive, systematic, and critical review of ML initiatives in ALS to date and their potential in research, clinical, and pharmacological applications. The focus of this review is to provide a dual, clinical-mathematical perspective on recent advances and future directions of the field. Another objective of the paper is the frank discussion of the pitfalls and drawbacks of specific models, highlighting the shortcomings of existing studies and to provide methodological recommendations for future study designs. Results: Despite considerable sample size limitations, ML techniques have already been successfully applied to ALS data sets and a number of promising diagnosis models have been proposed. Prognostic models have been tested using core clinical variables, biological, and neuroimaging data. These models also offer patient stratification opportunities for future clinical trials. Despite the enormous potential of ML in ALS research, statistical assumptions are often violated, the choice of specific statistical models is seldom justified, and the constraints of ML models are rarely enunciated. Conclusions: From a mathematical perspective, the main barrier to the development of validated diagnostic, prognostic, and monitoring indicators stem from limited sample sizes. The combination of multiple clinical, biofluid, and imaging biomarkers is likely to increase the accuracy of mathematical modeling and contribute to optimized clinical trial designs.
Collapse
Affiliation(s)
- Vincent Grollemund
- Laboratoire d'Informatique de Paris 6, Sorbonne University, Paris, France
- FRS Consulting, Paris, France
| | - Pierre-François Pradat
- Laboratoire d'Imagerie Biomédicale, INSERM, CNRS, Sorbonne Université, Paris, France
- APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre Référent SLA, Paris, France
- Northern Ireland Center for Stratified Medecine, Biomedical Sciences Research Institute Ulster University, C-TRIC, Altnagelvin Hospital, Londonderry, United Kingdom
| | - Giorgia Querin
- Laboratoire d'Imagerie Biomédicale, INSERM, CNRS, Sorbonne Université, Paris, France
- APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre Référent SLA, Paris, France
| | - François Delbot
- Laboratoire d'Informatique de Paris 6, Sorbonne University, Paris, France
- Département de Mathématiques et Informatique, Paris Nanterre University, Nanterre, France
| | | | - Jean-François Pradat-Peyre
- Laboratoire d'Informatique de Paris 6, Sorbonne University, Paris, France
- Département de Mathématiques et Informatique, Paris Nanterre University, Nanterre, France
- Modal'X, Paris Nanterre University, Nanterre, France
| | - Peter Bede
- Laboratoire d'Imagerie Biomédicale, INSERM, CNRS, Sorbonne Université, Paris, France
- APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre Référent SLA, Paris, France
- Computational Neuroimaging Group, Trinity College, Dublin, Ireland
| |
Collapse
|
9
|
Jeffrey J, D'Cunha H, Suzuki M. Blood Level of Glial Fibrillary Acidic Protein (GFAP) Does not Correlate With Disease Progression in a Rat Model of Familial ALS (SOD1 G93A Transgenic). Front Neurol 2018; 9:954. [PMID: 30487774 PMCID: PMC6246740 DOI: 10.3389/fneur.2018.00954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/24/2018] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by specific loss of motor neurons in the spinal cord and brain stem. Currently, there are limited options for treating ALS and further investigation of the disease etiology and ALS disease progression need to be completed. There is an urgent need to identify biomarkers to detect and study disease progression in ALS. Glial fibrillary acidic protein (GFAP) is an intermediate filament protein that is expressed by a number of cells related to the central nervous system including glial cells and ependymal cells. Recent studies indicated that significant levels of GFAP protein were detected in peripheral tissues, such as skeletal muscle. In this study, we hypothesized that levels of GFAP in blood represent a biomarker of disease progression in ALS. To test this specific hypothesis, we used a rat model of familial ALS (SOD1G93A transgenic), which has been extensively used to understand the complexity of this devastating disease. Disease progression in a cohort of male and female SOD1G93A transgenic rats was monitored by motor function, and blood samples were collected when these animals reached disease end-stage. We measured GFAP protein levels by ELISA and found no correlation between GFAP concentration and disease progression in either serum and plasma samples of SOD1G93A transgenic. Further investigation would be required in order to implicate blood GFAP as a potential biomarker for ALS.
Collapse
Affiliation(s)
- Jeremy Jeffrey
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Hannah D'Cunha
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Masatoshi Suzuki
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States.,The Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|