1
|
Qiu G, Zhang R, Qian H, Huang R, Xia J, Zang R, Le Z, Shu Q, Xu J, Zheng G, Wang J. Altered expression of miRNA profile in peripheral blood mononuclear cells following the third dose of inactivated COVID-19 vaccine. PeerJ 2025; 13:e18856. [PMID: 39866557 PMCID: PMC11760199 DOI: 10.7717/peerj.18856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 12/20/2024] [Indexed: 01/28/2025] Open
Abstract
COVID-19 vaccination is the most effective strategy for preventing severe disease and death. Inactivated vaccines are the most accessible type of COVID-19 vaccines in developing countries. Several studies, including work from our group, have demonstrated that the third dose (booster vaccination) of inactivated COVID-19 vaccine induces robust humoral and cellular immune responses. The present study aimed to examine miRNA expression profile in participants who received a homologous third dose of the CoronaVac vaccine. Samples of peripheral blood mononuclear cells (PBMCs) were collected from healthcare volunteers both before and 1-2 weeks after the booster dose. miRNA microarray analysis in a discovery cohort of six volunteers identified 67 miRNAs with differential expression. Subsequently, the expression of six miRNAs related to immune responses was examined in a validation cohort of 31 participants via qRT-PCR. Our results validated the differential expression of miR-25-5p, miR-34c-3p, and miR-206 post-booster, with a significant correlation to the receptor binding domain (RBD)-specific antibody. Bioinformatic analysis suggested that miR-25-5p, miR-34c-3p, and miR-206 may target multiple pathways involved in immune regulation and inflammation. Therefore, our study highlights miR-25-5p, miR-34c-3p, and miR-206 in PBMCs as promising biomarkers for assessing the immune response induced by the booster dose of the CoronaVac vaccine.
Collapse
Affiliation(s)
- Guanguan Qiu
- Shaoxing Second Hospital, Shaoxing, Zhejiang, China
| | - Ruoyang Zhang
- Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Huifeng Qian
- Shaoxing Second Hospital, Shaoxing, Zhejiang, China
| | - Ruoqiong Huang
- Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Xia
- Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ruoxi Zang
- Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenkai Le
- Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Shu
- Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jianguo Xu
- Shaoxing Second Hospital, Shaoxing, Zhejiang, China
- Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | | | - Jiangmei Wang
- Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Zali M, Sadat Larijani M, Bavand A, Moradi L, Ashrafian F, Ramezani A. Circulatory microRNAs as potential biomarkers for different aspects of COVID-19. Arch Virol 2024; 170:8. [PMID: 39666114 DOI: 10.1007/s00705-024-06184-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/03/2024] [Indexed: 12/13/2024]
Abstract
The coronavirus disease of 2019 (COVID-19), caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can alter the expression levels of host microRNAs (miRNAs). Increasing evidence suggests that circulating miRNAs can potentially play an important role in the diagnosis and prognosis of respiratory infectious diseases, especially COVID-19, and might serve as sensitive indicators of disease before the emergence of clinical symptoms. Here, we review the potential of circulatory microRNAs as novel biomarkers for different aspects of COVID-19. Recent studies have suggested that they can be useful not only for COVID-19 prognosis but also for prediction of disease severity and mortality among intensive care unit (ICU) and ward patients. Moreover, extracellular vesicle (EV) miRNAs can be associated with antibody titer after COVID-19 vaccination. This review provides an overview of miRNA-based biomarkers.
Collapse
Affiliation(s)
- Mahsan Zali
- Clinical Research Department, Pasteur Institute of Iran, No: 69, Pasteur Ave, Tehran, 1316943551, Iran
| | - Mona Sadat Larijani
- Clinical Research Department, Pasteur Institute of Iran, No: 69, Pasteur Ave, Tehran, 1316943551, Iran
| | - Anahita Bavand
- Clinical Research Department, Pasteur Institute of Iran, No: 69, Pasteur Ave, Tehran, 1316943551, Iran
| | - Ladan Moradi
- Clinical Research Department, Pasteur Institute of Iran, No: 69, Pasteur Ave, Tehran, 1316943551, Iran
| | - Fatemeh Ashrafian
- Clinical Research Department, Pasteur Institute of Iran, No: 69, Pasteur Ave, Tehran, 1316943551, Iran.
| | - Amitis Ramezani
- Clinical Research Department, Pasteur Institute of Iran, No: 69, Pasteur Ave, Tehran, 1316943551, Iran.
| |
Collapse
|
3
|
Smail SW, Hirmiz SM, Ahmed AA, Albarzinji N, Awla HK, Amin K, Janson C. Decoding the intricacies: a comprehensive analysis of microRNAs in the pathogenesis, diagnosis, prognosis and therapeutic strategies for COVID-19. Front Med (Lausanne) 2024; 11:1430974. [PMID: 39434774 PMCID: PMC11492531 DOI: 10.3389/fmed.2024.1430974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
The pandemic of coronavirus disease-19 (COVID-19), provoked by the appearance of a novel coronavirus named severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), required a worldwide healthcare emergency. This has elicited an immediate need for accelerated research into its mechanisms of disease, criteria for diagnosis, methods for forecasting outcomes, and treatment approaches. microRNAs (miRNAs), are diminutive RNA molecules, that are non-coding and participate in gene expression regulation post-transcriptionally, having an important participation in regulating immune processes. miRNAs have granted substantial interest in their impact on viral replication, cell proliferation, and modulation of how the host's immune system responds. This narrative review delves into host miRNAs' multifaceted roles within the COVID-19 context, highlighting their involvement in disease progression, diagnostics, and prognostics aspects, given their stability in biological fluids and varied expression profiles when responding to an infection. Additionally, we discuss complicated interactions between SARS-CoV-2 and host cellular machinery facilitated by host miRNAs revealing how dysregulation of host miRNA expression profiles advances viral replication, immune evasion, and inflammatory responses. Furthermore, it investigates the potential of host miRNAs as therapeutic agents, whether synthetic or naturally occurring, which could be harnessed to either mitigate harmful inflammation or enhance antiviral responses. However, searching more deeply is needed to clarify how host's miRNAs are involved in pathogenesis of COVID-19, its diagnosis processes, prognostic assessments, and treatment approaches for patients.
Collapse
Affiliation(s)
- Shukur Wasman Smail
- College of Pharmacy, Cihan University-Erbil, Kurdistan Region, Erbil, Iraq
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Sarah Mousa Hirmiz
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Akhter Ahmed Ahmed
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Niaz Albarzinji
- Department of Medicine, Hawler Medical University, Erbil, Iraq
| | - Harem Khdir Awla
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Kawa Amin
- College of Medicine, University of Sulaimani, Sulaymaniyah, Iraq
- Department of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Christer Janson
- Department of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Belete MA, Anley DT, Tsega SS, Moges N, Anteneh RM, Zemene MA, Gebeyehu AA, Dessie AM, Kebede N, Chanie ES, Alemayehu E. The potential of circulating microRNAs as novel diagnostic biomarkers of COVID-19: a systematic review and meta-analysis. BMC Infect Dis 2024; 24:1011. [PMID: 39300343 PMCID: PMC11414062 DOI: 10.1186/s12879-024-09915-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
INTRODUCTION The COVID-19 pandemic has caused an unprecedented health threat globally, necessitating innovative and efficient diagnostic approaches for timely identification of infected individuals. Despite few emerging reports, the clinical utility of circulating microRNAs (miRNAs) in early and accurate diagnosis of COVID-19 is not well-evidenced. Hence, this meta-analysis aimed to explore the diagnostic potential of circulating miRNAs for COVID-19. The protocol for this study was officially recorded on PROSPERO under registration number CRD42023494959. METHODS Electronic databases including Embase, PubMed, Scopus, and other sources were exhaustively searched to recover studies published until 16th January, 2024. Pooled specificity, sensitivity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic ratio (DOR), positive predictive value (PPV), negative predictive value (NPV), and area under the curve (AUC) were computed from the metadata using Stata 14.0 software. Risk of bias appraisal of included articles was carried out using Review Manager (Rev-Man) 5.3 package through the modified QUADAS-2 tool. Subgroup, heterogeneity, meta-regression and sensitivity analyses were undertaken. Publication bias and clinical applicability were also evaluated via Deeks' funnel plot and Fagan nomogram (scattergram), respectively. RESULT A total of 43 studies from 13 eligible articles, involving 5175 participants (3281 COVID-19 patients and 1894 healthy controls), were analyzed. Our results depicted that miRNAs exhibit enhanced pooled specificity 0.91 (95% CI: 0.88-0.94), sensitivity 0.94 (95% CI: 0.91-0.96), DOR of 159 (95% CI: 87-288), and AUC values of 0.97 (95% CI: 0.95-0.98) with high pooled PPV 96% (95% CI: 94-97%) and NPV 88% (95% CI: 86-90%) values. Additionally, highest diagnostic capacity was observed in studies involving larger sample size (greater than 100) and those involving the African population, demonstrating consistent diagnostic effectiveness across various specimen types. Notably, a total of 12 distinct miRNAs were identified as suitable for both exclusion and confirmation of COVID-19 cases, denoting their potential clinical applicability. CONCLUSION Our study depicted that miRNAs show significantly high diagnostic accuracy in differentiating COVID-19 patients from healthy counterparts, suggesting their possible use as viable biomarkers. Nonetheless, thorough and wide-ranging longitudinal researches are necessary to confirm the clinical applicability of miRNAs in diagnosing COVID-19.
Collapse
Affiliation(s)
- Melaku Ashagrie Belete
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia.
| | - Denekew Tenaw Anley
- Department of Public Health, College of Health Science, Debre Tabor University, Debre Tabor, Ethiopia
| | - Sintayehu Simie Tsega
- Department of Medical Nursing, School of Nursing, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Natnael Moges
- Department of Pediatrics and Child Health Nursing, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Rahel Mulatie Anteneh
- Department of Public Health, College of Health Science, Debre Tabor University, Debre Tabor, Ethiopia
| | - Melkamu Aderajew Zemene
- Department of Public Health, College of Health Science, Debre Tabor University, Debre Tabor, Ethiopia
| | - Asaye Alamneh Gebeyehu
- Department of Public Health, College of Health Science, Debre Tabor University, Debre Tabor, Ethiopia
| | - Anteneh Mengist Dessie
- Department of Public Health, College of Health Science, Debre Tabor University, Debre Tabor, Ethiopia
| | - Natnael Kebede
- Department of Health Promotion, School of Public Health College of Medicine Health Sciences, Wollo University, Dessie, Ethiopia
| | - Ermias Sisay Chanie
- Department of Pediatrics and Child Health Nursing, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Ermiyas Alemayehu
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| |
Collapse
|
5
|
de Souza Nicoletti A, Berlofa Visacri M, Regina da Silva Correa da Ronda C, Tiemi Siguemoto J, Motta Neri C, Nogueira de Souza R, de Souza Ventura D, Eguti A, Ferreira de Souza Silva L, Wesley Perroud Junior M, Buosi K, Jalalizadeh M, Dionato F, Dal Col L, Giacomelli C, Leme P, Oliveira Reis L, Augusto Dos Santos L, Durán N, José Fávaro W, Luiz da Costa J, Dagli-Hernandez C, Moriel P, de Carvalho Pincinato E. Increased expression of miR-320b in blood plasma of patients in response to SARS-CoV-2 infection. Sci Rep 2024; 14:13702. [PMID: 38871789 PMCID: PMC11176351 DOI: 10.1038/s41598-024-64325-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Recent research has demonstrated how epigenetic mechanisms regulate the host-virus interactions in COVID-19. It has also shown that microRNAs (miRNAs) are one of the three fundamental mechanisms of the epigenetic regulation of gene expression and play an important role in viral infections. A pilot study published by our research group identified, through next-generation sequencing (NGS), that miR-4433b-5p, miR-320b, and miR-16-2-3p are differentially expressed between patients with COVID-19 and controls. Thus, the objectives of this study were to validate the expression of these miRNAs using quantitative real-time polymerase chain reaction (qRT-PCR) and to perform in silico analyses. Patients with COVID-19 (n = 90) and healthy volunteers (n = 40) were recruited. MiRNAs were extracted from plasma samples and validated using qRT-PCR. In addition, in silico analyses were performed using mirPath v.3 software. MiR-320b was the only miRNA upregulated in the case group com-pared to the control group. The in silico analyses indicated the role of miR-320b in the regulation of the KITLG gene and consequently in the inflammatory process. This study confirmed that miR-320b can distinguish patients with COVID-19 from control participants; however, further research is needed to determine whether this miRNA can be used as a target or a biomarker.
Collapse
Affiliation(s)
| | | | | | - Julia Tiemi Siguemoto
- School of Medical Science, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Carolini Motta Neri
- Faculty of Pharmaceutical Science, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | | - Adriana Eguti
- Hospital Estadual de Sumaré Dr. Leandro Francheschini, Sumaré, SP, Brazil
| | | | - Mauricio Wesley Perroud Junior
- School of Medical Science, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
- Hospital Estadual de Sumaré Dr. Leandro Francheschini, Sumaré, SP, Brazil
| | - Keini Buosi
- School of Medical Science, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Mehrsa Jalalizadeh
- School of Medical Science, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Franciele Dionato
- School of Medical Science, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Luciana Dal Col
- School of Medical Science, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Cristiane Giacomelli
- School of Medical Science, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Patrícia Leme
- School of Medical Science, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Leonardo Oliveira Reis
- School of Medical Science, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
- School of Life Sciences, Pontifical Catholic University of Campinas (PUC-Campinas), Campinas, SP, Brazil
| | | | - Nelson Durán
- School of Medical Science, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Wagner José Fávaro
- School of Medical Science, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - José Luiz da Costa
- Faculty of Pharmaceutical Science, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Carolina Dagli-Hernandez
- Faculty of Pharmaceutical Science, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Patricia Moriel
- Faculty of Pharmaceutical Science, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.
| | | |
Collapse
|
6
|
Aboulela A, Taha M, Ghazal A, Baess A, Elsheredy A. Alternations in miR-155 and miR-200 serum levels can serve as biomarkers for COVID-19 in the post-mass vaccination era. Mol Biol Rep 2024; 51:689. [PMID: 38796651 DOI: 10.1007/s11033-024-09630-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/09/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Mass vaccination and natural immunity reduced the severity of COVID-19 cases. SARS-CoV-2 ongoing genome variations imply the use of confirmatory serologic biomarkers besides PCR for reliable diagnosis. MicroRNA molecules are intrinsic components of the innate immune system. The expression of miR155-5p and miR200c-3p was previously correlated with SARS-CoV-2 pathogenesis. This case-control study was conducted during the third peak of the COVID-19 pandemic in Egypt and aimed to calculate the accuracy of miR155-5p and miR200c-3p as biomarkers for COVID-19. METHODS AND RESULTS Thirty out of 400 COVID-19 patients at a main University hospital in Alexandria were included in the study along with 20 age-matched healthy controls. Plasma samples were collected for total and differential CBC. Relative quantitation of miR155-5p and miR200c-3p expression from WBCs was done by RT-qPCR. The expression of miR155-5p and miR200c-3p was positively correlated and was significantly downregulated in COVID-19 patients compared to the healthy control group (p ˂ 0.005). Both miR155-5p and miR200c-3p were of 76% and 74% accuracy as diagnostic biomarkers of COVID-19, respectively. Regarding the differentiation between mild and moderate cases, their accuracy was 80% and 70%, respectively. CONCLUSIONS miR155-5p and miR200c-3p expression can be used to confirm the diagnosis of COVID-19 and discriminate between mild and moderate cases, with a moderate degree of accuracy.
Collapse
Affiliation(s)
- Aliaa Aboulela
- Medical Research Institute, Microbiology Department, Alexandria University, Alexandria, Egypt
| | - Mona Taha
- Medical Research Institute, Microbiology Department, Alexandria University, Alexandria, Egypt
| | - Abeer Ghazal
- Medical Research Institute, Microbiology Department, Alexandria University, Alexandria, Egypt
| | - Ayman Baess
- Faculty of Medicine, Chest Diseases Department, Alexandria University, Alexandria, Egypt
| | - Amel Elsheredy
- Medical Research Institute, Microbiology Department, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
7
|
Regina da Silva Correa da Ronda C, Berlofa Visacri M, Tiemi Siguemoto J, Motta Neri C, Crispim Lopo de Abreu M, de Souza Nicoletti A, Rotta I, Dagli-Hernandez C, Moriel Pincinato P, de Carvalho Pincinato E, Moriel P. Single-nucleotide polymorphisms related to vitamin D metabolism and severity or mortality of COVID-19: A systematic review and meta-analysis. Gene 2024; 906:148236. [PMID: 38316264 DOI: 10.1016/j.gene.2024.148236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/06/2024] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
This systematic review and meta-analysis aimed to verify the association between single-nucleotide polymorphisms (SNPs) in vitamin D-related genes and the severity or mortality of coronavirus disease 19 (COVID-19). We systematically searched PubMed, BVS/Bireme, Scopus, Embase, and Web of Science for relevant studies published until November 24, 2023. Twelve studies were included. Thirty-one SNPs related to four genes were studied (VDR, 13 SNPs; GC, 6 SNPs; DHCR7/NADSYN1, 6 SNPs; CYP2R1, 6 SNPs). Eight SNPs were examined in two or more studies (VDR rs731236, rs2228570, rs1544410, rs7975232, rs739837, rs757343, rs11568820, and rs4516035). Meta-analysis showed a significant association between the VDR rs1544410 Bb + bb genotype and b allele and an increased odds of developing severe/critical COVID-19 (Bb + bb vs. BB = 2 studies, OR = 1.73, 95% confidence interval (CI): 1.16-2.57, P = 0.007, I2 = 0%; b allele vs. B allele = 2 studies, OR = 1.31, 95% CI: 1.03-1.67; P = 0.03; I2 = 0%). Regarding the mortality rate, VDR rs731236 TT-genotype, TT + Tt genotype, and T allele; VDR rs1544410 bb-genotype, Bb + bb genotype, and b allele; VDR rs7975232 AA-genotype, AA + Aa genotype, and A allele; and VDR rs2228570 ff-genotype, Ff + ff genotype, and f allele were associated with increased odds of death due to COVID-19. In conclusion, the present study suggests that SNPs rs1544410 may serve as a predictive biomarker for COVID-19 severity and rs731236, rs1544410, rs7975232, and rs2228570 as predictive biomarkers for COVID-19 mortality. More well-designed studies involving a larger number of COVID-19 patients are required to validate and replicate these findings.
Collapse
Affiliation(s)
| | - Marília Berlofa Visacri
- University of São Paulo (USP), Faculty of Pharmaceutical Sciences, Department of Pharmacy, São Paulo, SP, Brazil.
| | - Júlia Tiemi Siguemoto
- University of Campinas (UNICAMP), Faculty of Pharmaceutical Sciences, Campinas, SP, Brazil
| | - Carolini Motta Neri
- University of Campinas (UNICAMP), Faculty of Pharmaceutical Sciences, Campinas, SP, Brazil
| | | | - Aline de Souza Nicoletti
- University of Campinas (UNICAMP), School of Medical Sciences, Department of Pharmacology, Campinas, SP, Brazil
| | - Inajara Rotta
- Federal University of Paraná (UFPR), Department of Pharmacy, Curitiba, PR, Brazil
| | | | | | - Eder de Carvalho Pincinato
- University of Campinas (UNICAMP), School of Medical Sciences, Department of Clinical Pathology, Campinas, SP, Brazil
| | - Patricia Moriel
- University of Campinas (UNICAMP), Faculty of Pharmaceutical Sciences, Campinas, SP, Brazil
| |
Collapse
|
8
|
Mormile R. Endometriosis and susceptibility to COVID-19 infection: a floating river without blanks? Arch Gynecol Obstet 2024; 309:1695-1696. [PMID: 38104306 DOI: 10.1007/s00404-023-07337-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/03/2023] [Indexed: 12/19/2023]
Affiliation(s)
- Raffaella Mormile
- Division of Pediatrics and Neonatology, Moscati Hospital, Via A. Gramsci, 81031, Aversa, Italy.
| |
Collapse
|
9
|
Omer A. MicroRNAs as powerful tool against COVID-19: Computational perspective. WIREs Mech Dis 2023; 15:e1621. [PMID: 37345625 DOI: 10.1002/wsbm.1621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/13/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 is the virus that is responsible for the current pandemic, COVID-19 (SARS-CoV-2). MiRNAs, a component of RNAi technology, belong to the family of short, noncoding ssRNAs, and may be crucial in the battle against this global threat since they are involved in regulating complex biochemical pathways and may prevent viral proliferation, translation, and host expression. The complicated metabolic pathways are modulated by the activity of many proteins, mRNAs, and miRNAs working together in miRNA-mediated genetic control. The amount of omics data has increased dramatically in recent years. This massive, linked, yet complex metabolic regulatory network data offers a wealth of opportunity for iterative analysis; hence, extensive, in-depth, but time-efficient screening is necessary to acquire fresh discoveries; this is readily performed with the use of bioinformatics. We have reviewed the literature on microRNAs, bioinformatics, and COVID-19 infection to summarize (1) the function of miRNAs in combating COVID-19, and (2) the use of computational methods in combating COVID-19 in certain noteworthy studies, and (3) computational tools used by these studies against COVID-19 in several purposes. This article is categorized under: Infectious Diseases > Computational Models.
Collapse
Affiliation(s)
- Ankur Omer
- Government College Silodi, MPHED, Katni, Madhya Pradesh, India
| |
Collapse
|
10
|
Parry PI, Lefringhausen A, Turni C, Neil CJ, Cosford R, Hudson NJ, Gillespie J. 'Spikeopathy': COVID-19 Spike Protein Is Pathogenic, from Both Virus and Vaccine mRNA. Biomedicines 2023; 11:2287. [PMID: 37626783 PMCID: PMC10452662 DOI: 10.3390/biomedicines11082287] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
The COVID-19 pandemic caused much illness, many deaths, and profound disruption to society. The production of 'safe and effective' vaccines was a key public health target. Sadly, unprecedented high rates of adverse events have overshadowed the benefits. This two-part narrative review presents evidence for the widespread harms of novel product COVID-19 mRNA and adenovectorDNA vaccines and is novel in attempting to provide a thorough overview of harms arising from the new technology in vaccines that relied on human cells producing a foreign antigen that has evidence of pathogenicity. This first paper explores peer-reviewed data counter to the 'safe and effective' narrative attached to these new technologies. Spike protein pathogenicity, termed 'spikeopathy', whether from the SARS-CoV-2 virus or produced by vaccine gene codes, akin to a 'synthetic virus', is increasingly understood in terms of molecular biology and pathophysiology. Pharmacokinetic transfection through body tissues distant from the injection site by lipid-nanoparticles or viral-vector carriers means that 'spikeopathy' can affect many organs. The inflammatory properties of the nanoparticles used to ferry mRNA; N1-methylpseudouridine employed to prolong synthetic mRNA function; the widespread biodistribution of the mRNA and DNA codes and translated spike proteins, and autoimmunity via human production of foreign proteins, contribute to harmful effects. This paper reviews autoimmune, cardiovascular, neurological, potential oncological effects, and autopsy evidence for spikeopathy. With many gene-based therapeutic technologies planned, a re-evaluation is necessary and timely.
Collapse
Affiliation(s)
- Peter I. Parry
- Children’s Health Research Clinical Unit, Faculty of Medicine, The University of Queensland, South Brisbane, QLD 4101, Australia
- Department of Psychiatry, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Astrid Lefringhausen
- Children’s Health Defence (Australia Chapter), Huskisson, NSW 2540, Australia; (A.L.); (R.C.); (J.G.)
| | - Conny Turni
- Microbiology Research, QAAFI (Queensland Alliance for Agriculture and Food Innovation), The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Christopher J. Neil
- Department of Medicine, University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Robyn Cosford
- Children’s Health Defence (Australia Chapter), Huskisson, NSW 2540, Australia; (A.L.); (R.C.); (J.G.)
| | - Nicholas J. Hudson
- School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Julian Gillespie
- Children’s Health Defence (Australia Chapter), Huskisson, NSW 2540, Australia; (A.L.); (R.C.); (J.G.)
| |
Collapse
|
11
|
Rasizadeh R, Aghbash PS, Nahand JS, Entezari-Maleki T, Baghi HB. SARS-CoV-2-associated organs failure and inflammation: a focus on the role of cellular and viral microRNAs. Virol J 2023; 20:179. [PMID: 37559103 PMCID: PMC10413769 DOI: 10.1186/s12985-023-02152-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
SARS-CoV-2 has been responsible for the recent pandemic all over the world, which has caused many complications. One of the hallmarks of SARS-CoV-2 infection is an induced immune dysregulation, in some cases resulting in cytokine storm syndrome, acute respiratory distress syndrome and many organs such as lungs, brain, and heart that are affected during the SARS-CoV-2 infection. Several physiological parameters are altered as a result of infection and cytokine storm. Among them, microRNAs (miRNAs) might reflect this poor condition since they play a significant role in immune cellular performance including inflammatory responses. Both host and viral-encoded miRNAs are crucial for the successful infection of SARS-CoV-2. For instance, dysregulation of miRNAs that modulate multiple genes expressed in COVID-19 patients with comorbidities (e.g., type 2 diabetes, and cerebrovascular disorders) could affect the severity of the disease. Therefore, altered expression levels of circulating miRNAs might be helpful to diagnose this illness and forecast whether a COVID-19 patient could develop a severe state of the disease. Moreover, a number of miRNAs could inhibit the expression of proteins, such as ACE2, TMPRSS2, spike, and Nsp12, involved in the life cycle of SARS-CoV-2. Accordingly, miRNAs represent potential biomarkers and therapeutic targets for this devastating viral disease. In the current study, we investigated modifications in miRNA expression and their influence on COVID-19 disease recovery, which may be employed as a therapy strategy to minimize COVID-19-related disorders.
Collapse
Affiliation(s)
- Reyhaneh Rasizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Shiri Aghbash
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taher Entezari-Maleki
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran.
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Bautista-Becerril B, Nava-Quiroz KJ, Muñoz-Soria E, Camarena Á, Fricke-Galindo I, Buendia-Roldan I, Pérez-Rubio G, Chavez-Galán L, Pérez-Torres K, Téllez-Quijada F, Márquez-García E, Moncada-Morales A, Hernández-Zenteno RDJ, Jaime-Capetillo ME, Falfán-Valencia R. High Expression Levels of miR-21-5p in Younger Hospitalized COVID-19 Patients Are Associated with Mortality and Critical Disease. Int J Mol Sci 2023; 24:10112. [PMID: 37373259 DOI: 10.3390/ijms241210112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
In COVID-19, critical disease and invasive mechanical ventilation (IMV) increase the risk of death, mainly in patients over 60 years of age. OBJECTIVES To find the relationship between miR-21-5p and miR-146a-5p in terms of the severity, IMV, and mortality in hospitalized COVID-19 patients younger than 55 years of age. METHODS The patients were stratified according to disease severity using the IDSA/WHO criteria for severe and critical COVID-19 and subclassified into critical non-survivors and critical survivors. RESULTS Ninety-seven severe/critical COVID-19 patients were included; 81.3% of the deceased were male and 18.8% were female. Higher expression miR-21-5p levels were associated as follows: severe vs. critical disease (p = 0.007, FC = 0.498), PaO2/FiO2 index, mild vs. severe (p = 0.027, FC = 0.558), and survivors vs. non-survivors (p = 0.03, FC = 0.463). Moreover, we identified correlations with clinical variables: CRP (rho = -0.54, p < 0.001), D-dimer (rho = -0.47, p < 0.05), related to damage in the kidney (rho = 0.60, p < 0.001), liver (rho = 0.41, p < 0.05), and lung (rho = 0.54, p < 0.001). Finally, miR-21-5p thresholds were calculated according to severity (8.191), IMV (8.191), and mortality (8.237); these values increased the risk of developing a critical disease (OR = 4.19), the need for IMV (OR = 5.63), and death (OR = 6.00). CONCLUSION Increased expression levels of miR-21-5p are related to worse outcome of COVID-19 in younger hospitalized patients.
Collapse
Affiliation(s)
- Brandon Bautista-Becerril
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Karol J Nava-Quiroz
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico
| | - Evangelina Muñoz-Soria
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Ángel Camarena
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico
| | - Ingrid Fricke-Galindo
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico
| | - Ivette Buendia-Roldan
- Translational Research Laboratory on Aging and Pulmonary Fibrosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico
| | - Leslie Chavez-Galán
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico
| | - Karina Pérez-Torres
- Translational Research Laboratory on Aging and Pulmonary Fibrosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico
| | - Fernanda Téllez-Quijada
- Translational Research Laboratory on Aging and Pulmonary Fibrosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico
| | - Eduardo Márquez-García
- Unidad de Biología Molecular, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico
| | - Angelica Moncada-Morales
- Unidad de Biología Molecular, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico
| | | | - María Esther Jaime-Capetillo
- Clinical Laboratory Service, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico
| |
Collapse
|
13
|
Li S, Duan X, Jiang N, Jeyarajan AJ, Warner CA, Li Y, Xu M, Li X, Tan L, Li M, Shao T, Li S, Chen L, Gao Y, Han M, Lin W. Vaccination increased host antiviral gene expression and reduced COVID-19 severity during the Omicron variant outbreak in Fuyang City, China. Int Immunopharmacol 2023; 120:110333. [PMID: 37201409 DOI: 10.1016/j.intimp.2023.110333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND The differences in host antiviral gene expression and disease severity between vaccinated and non-vaccinated coronavirus disease 2019 (COVID-19) patients are not well characterized. We sought to compare the clinical characteristics and host antiviral gene expression patterns of vaccinated and non-vaccinated cohorts at the Second People's Hospital of Fuyang City. METHODS In this case-control study, we retrospectively analyzed 113 vaccinated patients with a COVID-19 Omicron variant infection, 46 non-vaccinated COVID-19 patients, and 24 healthy subjects (no history of COVID-19) recruited from the Second People's Hospital of Fuyang City. Blood samples were collected from each study participant for RNA extraction and PCR. We compared host antiviral gene expression profiles between healthy controls and COVID-19 patients who were either vaccinated or non-vaccinated at the time of infection. RESULTS In the vaccinated group, most patients were asymptomatic, with only 42.9 % of patients developing fever. Notably, no patients had extrapulmonary organ damage. In contrast, 21.4 % of patients in the non-vaccinated group developed severe/critical (SC) disease and 78.6 % had mild/moderate (MM) disease, with fever occurring in 74.2 % patients. We found that Omicron infection in COVID-19 vaccinated patients was associated with significantly increased expression of several important host antiviral genes including IL12B, IL13, CXCL11, CXCL9, IFNA2, IFNA1, IFNγ, and TNFα. CONCLUSION Vaccinated patients infected with the Omicron variant were mostly asymptomatic. In contrast, non-vaccinated patients frequently developed SC or MM disease. Older patients with SC COVID-19 also had a higher occurrence of mild liver dysfunction. Omicron infection in COVID-19 vaccinated patients was associated with the activation of key host antiviral genes and thus may play a role in reducing disease severity.
Collapse
Affiliation(s)
- Shasha Li
- Department of Hepatology, The Second People's Hospital of Fuyang City, Fuyang 236015, Anhui Province, PR China
| | - Xiaoqiong Duan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, Sichuan Province, PR China
| | - Ning Jiang
- Department of Hepatology, The Second People's Hospital of Fuyang City, Fuyang 236015, Anhui Province, PR China; Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, PR China
| | - Andre J Jeyarajan
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Charlotte A Warner
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Yujia Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, Sichuan Province, PR China
| | - Min Xu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, Sichuan Province, PR China
| | - Xiuyong Li
- Department of Hepatology, The Second People's Hospital of Fuyang City, Fuyang 236015, Anhui Province, PR China
| | - Lin Tan
- Department of Hepatology, The Second People's Hospital of Fuyang City, Fuyang 236015, Anhui Province, PR China
| | - Ming Li
- Department of Hepatology, The Second People's Hospital of Fuyang City, Fuyang 236015, Anhui Province, PR China
| | - Tuo Shao
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Shilin Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, Sichuan Province, PR China
| | - Limin Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, Sichuan Province, PR China
| | - Yufeng Gao
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, PR China.
| | - Mingfeng Han
- Department of Hepatology, The Second People's Hospital of Fuyang City, Fuyang 236015, Anhui Province, PR China.
| | - Wenyu Lin
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
14
|
Dasgupta S, Das SS, Patidar S, Kajaria V, Chowdhury SR, Chaudhury K. Identification of Common Dysregulated Genes in COVID-19 and Hypersensitivity Pneumonitis: A Systems Biology and Machine Learning Approach. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:205-214. [PMID: 37062762 DOI: 10.1089/omi.2022.0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
A comprehensive knowledge on systems biology of severe acute respiratory syndrome coronavirus 2 is crucial for differential diagnosis of COVID-19. Interestingly, the radiological and pathological features of COVID-19 mimic that of hypersensitivity pneumonitis (HP), another pulmonary fibrotic phenotype. This motivated us to explore the overlapping pathophysiology of COVID-19 and HP, if any, and using a systems biology approach. Two datasets were obtained from the Gene Expression Omnibus database (GSE147507 and GSE150910) and common differentially expressed genes (DEGs) for both diseases identified. Fourteen common DEGs, significantly altered in both diseases, were found to be implicated in complement activation and growth factor activity. A total of five microRNAs (hsa-miR-1-3p, hsa-miR-20a-5p, hsa-miR-107, hsa-miR-16-5p, and hsa-miR-34b-5p) and five transcription factors (KLF6, ZBTB7A, ELF1, NFIL3, and ZBT33) exhibited highest interaction with these common genes. Next, C3, CFB, MMP-9, and IL1A were identified as common hub genes for both COVID-19 and HP. Finally, these top-ranked genes (hub genes) were evaluated using random forest classifier to discriminate between the disease and control group (coronavirus disease 2019 [COVID-19] vs. controls, and HP vs. controls). This supervised machine learning approach demonstrated 100% and 87.6% accuracy in differentiating COVID-19 from controls, and HP from controls, respectively. These findings provide new molecular leads that inform COVID-19 and HP diagnostics and therapeutics research and innovation.
Collapse
Affiliation(s)
- Sanjukta Dasgupta
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Sankha Subhra Das
- Department of Human Genetics, University of California Los Angeles (UCLA), Los Angeles, California, USA
| | - Sankalp Patidar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Vaibhav Kajaria
- Department of Pulmonology, Fortis Hospital Anandapur, Kolkata, India
| | | | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
15
|
Vásquez V, Orozco J. Detection of COVID-19-related biomarkers by electrochemical biosensors and potential for diagnosis, prognosis, and prediction of the course of the disease in the context of personalized medicine. Anal Bioanal Chem 2023; 415:1003-1031. [PMID: 35970970 PMCID: PMC9378265 DOI: 10.1007/s00216-022-04237-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 02/07/2023]
Abstract
As a more efficient and effective way to address disease diagnosis and intervention, cutting-edge technologies, devices, therapeutic approaches, and practices have emerged within the personalized medicine concept depending on the particular patient's biology and the molecular basis of the disease. Personalized medicine is expected to play a pivotal role in assessing disease risk or predicting response to treatment, understanding a person's health status, and, therefore, health care decision-making. This work discusses electrochemical biosensors for monitoring multiparametric biomarkers at different molecular levels and their potential to elucidate the health status of an individual in a personalized manner. In particular, and as an illustration, we discuss several aspects of the infection produced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as a current health care concern worldwide. This includes SARS-CoV-2 structure, mechanism of infection, biomarkers, and electrochemical biosensors most commonly explored for diagnostics, prognostics, and potentially assessing the risk of complications in patients in the context of personalized medicine. Finally, some concluding remarks and perspectives hint at the use of electrochemical biosensors in the frame of other cutting-edge converging/emerging technologies toward the inauguration of a new paradigm of personalized medicine.
Collapse
Affiliation(s)
- Viviana Vásquez
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 N° 52-20, Medellín, 050010, Colombia
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 N° 52-20, Medellín, 050010, Colombia.
| |
Collapse
|
16
|
Muacevic A, Adler JR, Nigh G, McCullough PA. A Potential Role of the Spike Protein in Neurodegenerative Diseases: A Narrative Review. Cureus 2023; 15:e34872. [PMID: 36788995 PMCID: PMC9922164 DOI: 10.7759/cureus.34872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 02/13/2023] Open
Abstract
Human prion protein and prion-like protein misfolding are widely recognized as playing a causal role in many neurodegenerative diseases. Based on in vitro and in vivo experimental evidence relating to prion and prion-like disease, we extrapolate from the compelling evidence that the spike glycoprotein of SARS-CoV-2 contains extended amino acid sequences characteristic of a prion-like protein to infer its potential to cause neurodegenerative disease. We propose that vaccine-induced spike protein synthesis can facilitate the accumulation of toxic prion-like fibrils in neurons. We outline various pathways through which these proteins could be expected to distribute throughout the body. We review both cellular pathologies and the expression of disease that could become more frequent in those who have undergone mRNA vaccination. Specifically, we describe the spike protein's contributions, via its prion-like properties, to neuroinflammation and neurodegenerative diseases; to clotting disorders within the vasculature; to further disease risk due to suppressed prion protein regulation in the context of widely prevalent insulin resistance; and to other health complications. We explain why these prion-like characteristics are more relevant to vaccine-related mRNA-induced spike proteins than natural infection with SARS-CoV-2. We note with an optimism an apparent loss of prion-like properties among the current Omicron variants. We acknowledge that the chain of pathological events described throughout this paper is only hypothetical and not yet verified. We also acknowledge that the evidence we usher in, while grounded in the research literature, is currently largely circumstantial, not direct. Finally, we describe the implications of our findings for the general public, and we briefly discuss public health recommendations we feel need urgent consideration. An earlier version of this article was previously posted to the Authorea preprint server on August 16, 2022.
Collapse
|
17
|
Madè A, Greco S, Vausort M, Miliotis M, Schordan E, Baksi S, Zhang L, Baryshnikova E, Ranucci M, Cardani R, Fagherazzi G, Ollert M, Tastsoglou S, Vatsellas G, Hatzigeorgiou A, Firat H, Devaux Y, Martelli F. Association of miR-144 levels in the peripheral blood with COVID-19 severity and mortality. Sci Rep 2022; 12:20048. [PMID: 36414650 PMCID: PMC9681736 DOI: 10.1038/s41598-022-23922-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
Coronavirus disease-2019 (COVID-19) can be asymptomatic or lead to a wide symptom spectrum, including multi-organ damage and death. Here, we explored the potential of microRNAs in delineating patient condition and predicting clinical outcome. Plasma microRNA profiling of hospitalized COVID-19 patients showed that miR-144-3p was dynamically regulated in response to COVID-19. Thus, we further investigated the biomarker potential of miR-144-3p measured at admission in 179 COVID-19 patients and 29 healthy controls recruited in three centers. In hospitalized patients, circulating miR-144-3p levels discriminated between non-critical and critical illness (AUCmiR-144-3p = 0.71; p = 0.0006), acting also as mortality predictor (AUCmiR-144-3p = 0.67; p = 0.004). In non-hospitalized patients, plasma miR-144-3p levels discriminated mild from moderate disease (AUCmiR-144-3p = 0.67; p = 0.03). Uncontrolled release of pro-inflammatory cytokines can lead to clinical deterioration. Thus, we explored the added value of a miR-144/cytokine combined analysis in the assessment of hospitalized COVID-19 patients. A miR-144-3p/Epidermal Growth Factor (EGF) combined score discriminated between non-critical and critical hospitalized patients (AUCmiR-144-3p/EGF = 0.81; p < 0.0001); moreover, a miR-144-3p/Interleukin-10 (IL-10) score discriminated survivors from nonsurvivors (AUCmiR-144-3p/IL-10 = 0.83; p < 0.0001). In conclusion, circulating miR-144-3p, possibly in combination with IL-10 or EGF, emerges as a noninvasive tool for early risk-based stratification and mortality prediction in COVID-19.
Collapse
Affiliation(s)
- Alisia Madè
- grid.419557.b0000 0004 1766 7370Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Via Morandi 30, 20097 San Donato Milanese, MI Italy
| | - Simona Greco
- grid.419557.b0000 0004 1766 7370Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Via Morandi 30, 20097 San Donato Milanese, MI Italy
| | - Melanie Vausort
- grid.451012.30000 0004 0621 531XCardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
| | - Marios Miliotis
- grid.418497.7Hellenic Pasteur Institute, 11521 Athens, Greece ,grid.410558.d0000 0001 0035 6670DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece
| | - Eric Schordan
- grid.450762.2Firalis SA, 35 Rue du Fort, 68330 Huningue, France
| | - Shounak Baksi
- grid.451012.30000 0004 0621 531XCardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
| | - Lu Zhang
- grid.451012.30000 0004 0621 531XBioinformatics Platform, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Ekaterina Baryshnikova
- grid.419557.b0000 0004 1766 7370Department of Cardiovascular Anesthesia and ICU, IRCCS Policlinico San Donato, Via Morandi 30, 20097 San Donato Milanese, MI Italy
| | - Marco Ranucci
- grid.419557.b0000 0004 1766 7370Department of Cardiovascular Anesthesia and ICU, IRCCS Policlinico San Donato, Via Morandi 30, 20097 San Donato Milanese, MI Italy
| | - Rosanna Cardani
- grid.419557.b0000 0004 1766 7370BioCor Biobank, UOC SMEL-1 of Clinical Pathology, Department of Pathology and Laboratory Medicine, IRCCS-Policlinico San Donato, Via Morandi 30, 20097 San Donato Milanese, MI Italy
| | - Guy Fagherazzi
- grid.451012.30000 0004 0621 531XDeep Digital Phenotyping Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B Rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Markus Ollert
- grid.451012.30000 0004 0621 531XDepartment of Infection and Immunity, Luxembourg Institute of Health, 29, Rue Henri Koch, 4354 Esch-Sur-Alzette, Luxembourg ,grid.10825.3e0000 0001 0728 0170Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis (ORCA), University of Southern Denmark, 5000 Odense, Denmark
| | - Spyros Tastsoglou
- grid.418497.7Hellenic Pasteur Institute, 11521 Athens, Greece ,grid.410558.d0000 0001 0035 6670DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece
| | - Giannis Vatsellas
- grid.417593.d0000 0001 2358 8802Greek Genome Center, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Artemis Hatzigeorgiou
- grid.418497.7Hellenic Pasteur Institute, 11521 Athens, Greece ,grid.410558.d0000 0001 0035 6670DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece
| | - Hüseyin Firat
- grid.450762.2Firalis SA, 35 Rue du Fort, 68330 Huningue, France
| | - Yvan Devaux
- grid.451012.30000 0004 0621 531XCardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
| | - Fabio Martelli
- grid.419557.b0000 0004 1766 7370Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Via Morandi 30, 20097 San Donato Milanese, MI Italy
| |
Collapse
|
18
|
Understanding the Pivotal Role of the Vagus Nerve in Health from Pandemics. Bioengineering (Basel) 2022; 9:bioengineering9080352. [PMID: 36004877 PMCID: PMC9405360 DOI: 10.3390/bioengineering9080352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
The COVID-19 pandemic seems endless with the regular emergence of new variants. Is the SARS-CoV-2 virus particularly evasive to the immune system, or is it merely disrupting communication between the body and the brain, thus pre-empting homeostasis? Retrospective analysis of the COVID-19 and AIDS pandemics, as well as prion disease, emphasizes the pivotal but little-known role of the 10th cranial nerve in health. Considering neuroimmunometabolism from the point of view of the vagus nerve, non-invasive bioengineering solutions aiming at monitoring and stimulating the vagal tone are subsequently discussed as the next optimal and global preventive treatments, far beyond pandemics.
Collapse
|
19
|
Li X, Wang Y, Zhou Q, Pan J, Xu J. Potential Predictive Value of miR-125b-5p, miR-155-5p and Their Target Genes in the Course of COVID-19. Infect Drug Resist 2022; 15:4079-4091. [PMID: 35937783 PMCID: PMC9346419 DOI: 10.2147/idr.s372420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose This study aimed to provide new biomarkers for predicting the disease course of COVID-19 by analyzing the dynamic changes of microRNA (miRNA) and its target gene expression in the serum of COVID-19 patients at different stages. Methods Serum samples were collected from all COVID-19 patients at three time points: the acute stage, the turn-negative stage, and the recovery stage. The expression level of miRNA and the target mRNA was measured by Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR). The classification tree model was established to predict the disease course, and the prediction efficiency of independent variables in the model was analyzed using the receiver operating characteristic (ROC) curve. Results The expression of miR-125b-5p and miR-155-5p was significantly up-regulated in the acute stage and gradually decreased in the turn-negative and recovery stages. The expression of the target genes CDH5, STAT3, and TRIM32 gradually down-regulated in the acute, turn-negative, and recovery stages. MiR-125b-5p, miR-155-5p, STAT3, and TRIM32 constituted a classification tree model with 100% accuracy of prediction and AUC >0.7 for identification and prediction in all stages. Conclusion MiR-125b-5p, miR-155-5p, STAT3, and TRIM32 could be useful biomarkers to predict the time nodes of the acute, turn-negative, and recovery stages of COVID-19.
Collapse
Affiliation(s)
- Xuewen Li
- Department of Laboratory Medicine, First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yiting Wang
- Department of Laboratory Medicine, First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Qi Zhou
- Department of Pediatrics, First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Junqi Pan
- Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Melbourne, Victoria, Australia
| | - Jiancheng Xu
- Department of Laboratory Medicine, First Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
20
|
MicroRNAs as Potential Tools for Predicting Cancer Patients’ Susceptibility to SARS-CoV-2 Infection and Vaccination Response. Cells 2022; 11:cells11152279. [PMID: 35892576 PMCID: PMC9332853 DOI: 10.3390/cells11152279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Coronavirus disease (COVID-19) is an infectious disease that is caused by a highly contagious and severe acute respiratory syndrome—coronavirus 2 (SARS-CoV-2). This infection started to spread across the world in 2019 and rapidly turned into a global pandemic, causing an urgent necessity for treatment strategies development. The mRNA vaccines against SARS-CoV-2 can trigger an immune response, providing genetic information that allows the production of spike glycoproteins. MiRNAs play a crucial role in diverse key cellular processes, including antiviral defense. Several miRNAs are described as key factors in SARS-CoV-2 human infection through the regulation of ACE2 levels and by the inhibition of SARS-CoV-2 replication and spike expression. Consequently, these molecules have been considered as highly promising biomarkers. In numerous human malignancies, it has been recognized that miRNAs expression is dysregulated. Since miRNAs can target SARS-CoV-2-associated mRNAs, in cancer patients, the deregulation of these molecules can impair the immune response to the vaccines. Therefore, in this review, we propose a miRNA profile of seven SARS-CoV-2-related miRNAs, namely miR-214, miR-98-5p, miR-7-5p, miR-24-3p, miR-145-5p, miR-223-3p and miR-15b-5p, that are deregulated in a high number of cancers and have the potential to be used as prognostic biomarkers to stratify cancer patients.
Collapse
|
21
|
The Effect of Host miRNAs on Prognosis in COVID-19: miRNA-155 May Promote Severity via Targeting Suppressor of Cytokine Signaling 1 (SOCS1) Gene. Genes (Basel) 2022; 13:genes13071146. [PMID: 35885930 PMCID: PMC9320261 DOI: 10.3390/genes13071146] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
The epigenetic features contribute to variations in host susceptibility to SARS-CoV-2 infection and severity of symptoms. This study aimed to evaluate the relationship between the relative expression of microRNAs (miRNAs) and the severity of the disease in COVID-19 patients. The miRNA profiles were monitored during the different stages of the disease course using reverse transcription–quantitative polymerase chain reaction (RT-qPCR). The expression levels of the selected 11 miRNAs were measured in the blood samples collected from 73 patients (moderate, n = 37; severe, n = 25; critically ill, n = 11, a total of 219 longitudinal samples) on hospitalization day and days 7 and 21. Expression changes were expressed as “fold change” compared to healthy controls (n = 10). Our study found that several miRNAs differed according to disease severity, with the miR-155-5p the most strongly upregulated (p = 0.0001). A statistically significant negative correlation was observed between the expression of miR-155-5p and its target gene, the suppressor of cytokine signaling 1 (SOCS1). The relative expression of miR-155-5p was significantly increased and SOCS1 was significantly decreased with the disease progression (r = −0.805 p = 0.0001, r = −0.940 p = 0.0001, r = −0.933 p = 0.0001 for admission, day 7, and day 21, respectively). The overexpression of miR-155-5p has significantly increased inflammatory cytokine production and promoted COVID-19 progression. We speculated that microRNA-155 facilitates immune inflammation via targeting SOCS1, thus establishing its association with disease prognosis.
Collapse
|
22
|
Nicoletti ADS, Visacri MB, da Ronda CRDSC, Vasconcelos PEDNS, Quintanilha JCF, de Souza RN, Ventura DDS, Eguti A, Silva LFDS, Perroud Junior MW, Catharino RR, Reis LO, Dos Santos LA, Durán N, Fávaro WJ, Lancellotti M, da Costa JL, Moriel P, Pincinato EDC. Differentially expressed plasmatic microRNAs in Brazilian patients with Coronavirus disease 2019 (COVID-19): preliminary results. Mol Biol Rep 2022; 49:6931-6943. [PMID: 35301654 PMCID: PMC8929466 DOI: 10.1007/s11033-022-07338-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/03/2022] [Indexed: 01/08/2023]
Abstract
Background Coronavirus disease 2019 (COVID-19) is caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It is known that host microRNAs (miRNAs) can be modulated to favor viral infection or to protect the host. Herein, we report preliminary results of a study aiming at identifying differentially expressed plasmatic miRNAs in Brazilian patients with COVID-19. Methods and results miRNAs were extracted from the plasma of eight patients with COVID-19 (four patients with mild COVID-19 and four patients with severe/critical COVID-19) and four healthy controls. Patients and controls were matched for sex and age. miRNA expression levels were detected using high-throughput sequencing. Differential miRNA expression and enrichment analyses were further evaluated. A total of 18 miRNAs were differentially expressed between patients with COVID-19 and controls. miR-4433b-5p, miR-6780b-3p, miR-6883-3p, miR-320b, miR-7111-3p, miR-4755-3p, miR-320c, and miR-6511a-3p were the most important miRNAs significantly involved in the PI3K/AKT, Wnt/β-catenin, and STAT3 signaling pathways. Moreover, 42 miRNAs were differentially expressed between severe/critical and mild patients with COVID-19. miR-451a, miR-101-3p, miR-185-5p, miR-30d-5p, miR-25-3p, miR-342-3p, miR-30e-5p, miR-150-5p, miR-15b-5p, and miR-29c-3p were the most important miRNAs significantly involved in the Wnt/β-catenin, NF-κβ, and STAT3 signaling pathways. Conclusions If validated by quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR) in a larger number of participants, the miRNAs identified in this study might be used as possible biomarkers for the diagnosis and severity of COVID-19. Supplementary Information The online version contains supplementary material available at 10.1007/s11033-022-07338-9.
Collapse
Affiliation(s)
| | | | - Carla Regina da Silva Correa da Ronda
- Faculty of Pharmaceutical Sciences, University of Campinas, Cândido Portinari Street, 200, Cidade Universitária Zeferino Vaz-Barão Geraldo, Campinas, SP, 13083-871, Brazil
| | | | | | | | | | - Adriana Eguti
- Hospital Estadual Sumaré Dr. Leandro Francheschini, Sumaré, SP, Brazil
| | | | - Mauricio Wesley Perroud Junior
- School of Medical Sciences, University of Campinas, Campinas, SP, Brazil.,Hospital Estadual Sumaré Dr. Leandro Francheschini, Sumaré, SP, Brazil
| | - Rodrigo Ramos Catharino
- Faculty of Pharmaceutical Sciences, University of Campinas, Cândido Portinari Street, 200, Cidade Universitária Zeferino Vaz-Barão Geraldo, Campinas, SP, 13083-871, Brazil.,Innovare Biomarkers Laboratory, University of Campinas, Campinas, SP, Brazil
| | | | | | - Nelson Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, University of Campinas, Campinas, SP, Brazil
| | - Wagner José Fávaro
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, University of Campinas, Campinas, SP, Brazil
| | - Marcelo Lancellotti
- Faculty of Pharmaceutical Sciences, University of Campinas, Cândido Portinari Street, 200, Cidade Universitária Zeferino Vaz-Barão Geraldo, Campinas, SP, 13083-871, Brazil
| | - José Luiz da Costa
- Faculty of Pharmaceutical Sciences, University of Campinas, Cândido Portinari Street, 200, Cidade Universitária Zeferino Vaz-Barão Geraldo, Campinas, SP, 13083-871, Brazil
| | - Patricia Moriel
- Faculty of Pharmaceutical Sciences, University of Campinas, Cândido Portinari Street, 200, Cidade Universitária Zeferino Vaz-Barão Geraldo, Campinas, SP, 13083-871, Brazil.
| | | |
Collapse
|
23
|
Viral and Host Genetic and Epigenetic Biomarkers Related to SARS-CoV-2 Cell Entry, Infection Rate, and Disease Severity. BIOLOGY 2022; 11:biology11020178. [PMID: 35205046 PMCID: PMC8869311 DOI: 10.3390/biology11020178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 12/23/2022]
Abstract
The rapid spread of COVID-19 outbreak lead to a global pandemic declared in March 2020. The common features of corona virus family helped to resolve structural characteristics and entry mechanism of SARS-CoV-2. However, rapid mutagenesis leads to the emergence of new strains that may have different reproduction rates or infectivity and may impact the course and severity of the disease. Host related factors may also play a role in the susceptibility for infection as well as the severity and outcomes of the COVID-19. We have performed a literature and database search to summarize potential viral and host-related genomic and epigenomic biomarkers, such as genetic variability, miRNA, and DNA methylation in the molecular pathway of SARS-CoV-2 entry into the host cell, that may be related to COVID-19 susceptibility and severity. Bioinformatics tools may help to predict the effect of mutations in the spike protein on the binding to the ACE2 receptor and the infectivity of the strain. SARS-CoV-2 may also target several transcription factors and tumour suppressor genes, thus influencing the expression of different host genes and affecting cell signalling. In addition, the virus may interfere with RNA expression in host cells by exploiting endogenous miRNA and its viral RNA. Our analysis showed that numerous human miRNA may form duplexes with different coding and non-coding regions of viral RNA. Polymorphisms in human genes responsible for viral entry and replication, as well as in molecular damage response and inflammatory pathways may also contribute to disease prognosis and outcome. Gene ontology analysis shows that proteins encoded by such polymorphic genes are highly interconnected in regulation of defense response. Thus, virus and host related genetic and epigenetic biomarkers may help to predict the course of the disease and the response to treatment.
Collapse
|