1
|
Sato S, Gillette M, de Santiago PR, Kuhn E, Burgess M, Doucette K, Feng Y, Mendez-Dorantes C, Ippoliti PJ, Hobday S, Mitchell MA, Doberstein K, Gysler SM, Hirsch MS, Schwartz L, Birrer MJ, Skates SJ, Burns KH, Carr SA, Drapkin R. LINE-1 ORF1p as a candidate biomarker in high grade serous ovarian carcinoma. Sci Rep 2023; 13:1537. [PMID: 36707610 PMCID: PMC9883229 DOI: 10.1038/s41598-023-28840-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/25/2023] [Indexed: 01/29/2023] Open
Abstract
Long interspersed element 1 (LINE-1) open reading frame 1 protein (ORF1p) expression is a common feature of many cancer types, including high-grade serous ovarian carcinoma (HGSOC). Here, we report that ORF1p is not only expressed but also released by ovarian cancer and primary tumor cells. Immuno-multiple reaction monitoring-mass spectrometry assays showed that released ORF1p is confidently detectable in conditioned media, ascites, and patients' plasma, implicating ORF1p as a potential biomarker. Interestingly, ORF1p expression is detectable in fallopian tube (FT) epithelial precursors of HGSOC but not in benign FT, suggesting that ORF1p expression in an early event in HGSOC development. Finally, treatment of FT cells with DNA methyltransferase inhibitors led to robust expression and release of ORF1p, validating the regulatory role of DNA methylation in LINE-1 repression in non-tumorigenic tissue.
Collapse
Affiliation(s)
- Sho Sato
- Penn Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Michael Gillette
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.,Harvard Medical School, Boston, MA, 02115, USA
| | - Pamela R de Santiago
- Penn Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Eric Kuhn
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Michael Burgess
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Kristen Doucette
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Yi Feng
- Penn Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | | | - Paul J Ippoliti
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Sara Hobday
- Penn Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Marilyn A Mitchell
- Penn Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Kai Doberstein
- Penn Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Stefan M Gysler
- Penn Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Michelle S Hirsch
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, 02115, USA
| | - Lauren Schwartz
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael J Birrer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Steven J Skates
- Harvard Medical School, Boston, MA, 02115, USA.,Biostatistics and Computational Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Kathleen H Burns
- Harvard Medical School, Boston, MA, 02115, USA.,Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Steven A Carr
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Harvard Medical School, Boston, MA, 02115, USA
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA. .,Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
2
|
Yaari Z, Yang Y, Apfelbaum E, Cupo C, Settle AH, Cullen Q, Cai W, Roche KL, Levine DA, Fleisher M, Ramanathan L, Zheng M, Jagota A, Heller DA. A perception-based nanosensor platform to detect cancer biomarkers. SCIENCE ADVANCES 2021; 7:eabj0852. [PMID: 34797711 PMCID: PMC8604403 DOI: 10.1126/sciadv.abj0852] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/14/2021] [Indexed: 05/15/2023]
Abstract
Conventional molecular recognition elements, such as antibodies, present issues for developing biomolecular assays for use in certain technologies, such as implantable devices. Additionally, antibody development and use, especially for highly multiplexed applications, can be slow and costly. We developed a perception-based platform based on an optical nanosensor array that leverages machine learning algorithms to detect multiple protein biomarkers in biofluids. We demonstrated this platform in gynecologic cancers, often diagnosed at advanced stages, leading to low survival rates. We investigated the detection of protein biomarkers in uterine lavage samples, which are enriched with certain cancer markers compared to blood. We found that the method enables the simultaneous detection of multiple biomarkers in patient samples, with F1-scores of ~0.95 in uterine lavage samples from patients with cancer. This work demonstrates the potential of perception-based systems for the development of multiplexed sensors of disease biomarkers without the need for specific molecular recognition elements.
Collapse
Affiliation(s)
- Zvi Yaari
- Memorial Sloan Kettering Cancer Center, NY, New York 10065, USA
| | - Yoona Yang
- Lehigh University, Bethlehem, PA 18015, USA
| | - Elana Apfelbaum
- Memorial Sloan Kettering Cancer Center, NY, New York 10065, USA
| | - Christian Cupo
- Memorial Sloan Kettering Cancer Center, NY, New York 10065, USA
| | - Alex H. Settle
- Memorial Sloan Kettering Cancer Center, NY, New York 10065, USA
| | - Quinlan Cullen
- Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Winson Cai
- Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Kara Long Roche
- Memorial Sloan Kettering Cancer Center, NY, New York 10065, USA
| | | | - Martin Fleisher
- Memorial Sloan Kettering Cancer Center, NY, New York 10065, USA
| | | | - Ming Zheng
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | | | - Daniel A. Heller
- Memorial Sloan Kettering Cancer Center, NY, New York 10065, USA
- Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
3
|
Globus T, Moskaluk C, Pramoonjago P, Gelmont B, Moyer A, Bykhovski A, Ferrance J. Sub-terahertz vibrational spectroscopy of ovarian cancer and normal control tissue for molecular diagnostic technology. Cancer Biomark 2019; 24:405-419. [DOI: 10.3233/cbm-182120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Tatiana Globus
- ECE Department, University of Virginia, Charlottesville, VA, 22904-4743, USA
- Vibratess LLC, Charlottesville, VA, 22902, USA
| | - Christopher Moskaluk
- Department of Pathology, University of Virginia, Charlottesville, VA, 22908-0712, USA
| | - Patcharin Pramoonjago
- Department of Pathology, University of Virginia, Charlottesville, VA, 22908-0712, USA
| | - Boris Gelmont
- ECE Department, University of Virginia, Charlottesville, VA, 22904-4743, USA
| | - Aaron Moyer
- Vibratess LLC, Charlottesville, VA, 22902, USA
| | | | | |
Collapse
|
4
|
Yagi T, Shoaib M, Kuschner C, Nishikimi M, Becker LB, Lee AT, Kim J. Challenges and Inconsistencies in Using Lysophosphatidic Acid as a Biomarker for Ovarian Cancer. Cancers (Basel) 2019; 11:cancers11040520. [PMID: 30979045 PMCID: PMC6521627 DOI: 10.3390/cancers11040520] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/27/2019] [Accepted: 04/09/2019] [Indexed: 12/31/2022] Open
Abstract
Increased detection of plasma lysophosphatidic acid (LPA) has been proposed as a potential diagnostic biomarker in ovarian cancer, but inconsistency exists in these reports. It has been shown that LPA can undergo an artificial increase during sample processing and analysis, which has not been accounted for in ovarian cancer research. The aim of this study is to provide a potential explanation about how the artificial increase in LPA may have interfered with previous LPA analysis in ovarian cancer research. Using an established LC-MS method, we measured LPA and other lysophospholipid levels in plasma obtained from three cohorts of patients: non-cancer controls, patients with benign ovarian tumors, and those with ovarian cancer. We did not find the LPA level to be higher in cancer samples. To understand this inconsistency, we observed that LPA content changed more significantly than other lysophospholipids as a function of plasma storage time while frozen. Additionally, only LPA was found to be adversely impacted by incubation time depending on the Ethylenediaminetetraacetic acid (EDTA) concentration used during blood drawing. We also show that the inhibition of autotaxin effectively prevented artificial LPA generation during incubation at room temperature. Our data suggests that the artificial changes in LPA content may contribute to the discrepancies reported in literature. Any future studies planning to measure plasma LPA should carefully design the study protocol to consider these confounding factors.
Collapse
Affiliation(s)
- Tsukasa Yagi
- Center for Immunology and Inflammation, Feinstein Institute for Medical Research, 350 Community Dr., Manhasset, NY 11030, USA.
| | - Muhammad Shoaib
- Center for Immunology and Inflammation, Feinstein Institute for Medical Research, 350 Community Dr., Manhasset, NY 11030, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, USA.
| | - Cyrus Kuschner
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, USA.
| | - Mitsuaki Nishikimi
- Center for Immunology and Inflammation, Feinstein Institute for Medical Research, 350 Community Dr., Manhasset, NY 11030, USA.
| | - Lance B Becker
- Center for Immunology and Inflammation, Feinstein Institute for Medical Research, 350 Community Dr., Manhasset, NY 11030, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, USA.
| | - Annette T Lee
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, USA.
- Robert S. Boas Center for Genomics & Human Genetics, Feinstein Institute for Medical Research, 350 Community Dr., Manhasset, NY 11030, USA.
| | - Junhwan Kim
- Center for Immunology and Inflammation, Feinstein Institute for Medical Research, 350 Community Dr., Manhasset, NY 11030, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, USA.
| |
Collapse
|
5
|
Zhang M, Zhang Y, Fu J, Zhang L. Serum CA125 levels are decreased in rectal cancer but increased in fibrosis-associated diseases and in most types of cancers. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 162:241-252. [DOI: 10.1016/bs.pmbts.2018.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
6
|
Briggs MT, Condina MR, Klingler‐Hoffmann M, Arentz G, Everest‐Dass AV, Kaur G, Oehler MK, Packer NH, Hoffmann P. TranslatingN‐Glycan Analytical Applications into Clinical Strategies for Ovarian Cancer. Proteomics Clin Appl 2018; 13:e1800099. [DOI: 10.1002/prca.201800099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/30/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Matthew T. Briggs
- Adelaide Proteomics CentreSchool of Biological SciencesUniversity of Adelaide Adelaide 5005 Australia
- ARC Centre for Nanoscale BioPhotonics (CNBP)University of Adelaide Adelaide 5005 Australia
- Future Industries InstituteMawson Lakes CampusUniversity of South Australia 5095 Mawson Lakes
| | - Mark R. Condina
- Future Industries InstituteMawson Lakes CampusUniversity of South Australia 5095 Mawson Lakes
| | | | - Georgia Arentz
- Future Industries InstituteMawson Lakes CampusUniversity of South Australia 5095 Mawson Lakes
| | - Arun V. Everest‐Dass
- Institute for GlycomicsGold Coast CampusGriffith University Gold Coast 4215 Australia
- ARC Centre for Nanoscale BioPhotonics (CNBP)Macquarie University Sydney 2109 Australia
| | - Gurjeet Kaur
- Institute for Research in Molecular Medicine (INFORMM)Universiti Sains Malaysia Pulau Pinang Malaysia
| | - Martin K. Oehler
- Department of Gynaecological OncologyRoyal Adelaide Hospital Adelaide 5000 South Australia Australia
- Robinson InstituteUniversity of Adelaide Adelaide 5005 Australia
| | - Nicolle H. Packer
- Institute for GlycomicsGold Coast CampusGriffith University Gold Coast 4215 Australia
- ARC Centre for Nanoscale BioPhotonics (CNBP)Macquarie University Sydney 2109 Australia
| | - Peter Hoffmann
- Future Industries InstituteMawson Lakes CampusUniversity of South Australia 5095 Mawson Lakes
| |
Collapse
|
7
|
Samykutty A, Grizzle WE, Fouts BL, McNally MW, Chuong P, Thomas A, Chiba A, Otali D, Woloszynska A, Said N, Frederick PJ, Jasinski J, Liu J, McNally LR. Optoacoustic imaging identifies ovarian cancer using a microenvironment targeted theranostic wormhole mesoporous silica nanoparticle. Biomaterials 2018; 182:114-126. [PMID: 30118979 PMCID: PMC6289590 DOI: 10.1016/j.biomaterials.2018.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 12/12/2022]
Abstract
At the intersection of the newly emerging fields of optoacoustic imaging and theranostic nanomedicine, promising clinical progress can be made in dismal prognosis of ovarian cancer. An acidic pH targeted wormhole mesoporous silica nanoparticle (V7-RUBY) was developed to serve as a novel tumor specific theranostic nanoparticle detectable using multispectral optoacoustic tomographic (MSOT) imaging. We report the synthesis of a small, < 40 nm, biocompatible asymmetric wormhole pore mesoporous silica core particle that has both large loading capacity and favorable release kinetics combined with tumor-specific targeting and gatekeeping. V7-RUBY exploits the acidic tumor microenvironment for tumor-specific targeting and tumor-specific release. In vitro, treatment with V7-RUBY containing either paclitaxel or carboplatin resulted in increased cell death at pH 6.6 in comparison to drug alone (p < 0.0001). In orthotopic ovarian xenograft mouse models, V7-RUBY containing IR780 was specifically detected within the tumor 7X and 4X higher than the liver and >10X higher than in the kidney using both multispectral optoacoustic tomography (MSOT) imaging with secondary confirmation using near infrared fluorescence imaging (p < 0.0004). The V7-RUBY system carrying a cargo of either contrast agent or an anti-neoplastic drug has the potential to become a theranostic nanoparticle which can improve both diagnosis and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Abhilash Samykutty
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27013, USA
| | - William E Grizzle
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Benjamin L Fouts
- Department of Chemistry, Earlham College, Indianapolis, IN, 27013, USA
| | - Molly W McNally
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27013, USA
| | - Phillip Chuong
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Alexandra Thomas
- Department of Hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, NC 27013, USA
| | - Akiko Chiba
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27013, USA
| | - Dennis Otali
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Anna Woloszynska
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Neveen Said
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27013, USA
| | - Peter J Frederick
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Jacek Jasinski
- Conn Center Materials Characterization, University of Louisville, Louisville, KY 40202, USA
| | - Jie Liu
- Department of Forest Materials, North Carolina State University, Raleigh, NC 27695, USA
| | - Lacey R McNally
- Department of Bioengineering, Wake Forest School of Medicine, Winston-Salem, North Carolina 27013, USA; Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27013, USA.
| |
Collapse
|
8
|
Wang J, Dean DC, Hornicek FJ, Shi H, Duan Z. RNA sequencing (RNA-Seq) and its application in ovarian cancer. Gynecol Oncol 2018; 152:194-201. [PMID: 30297273 DOI: 10.1016/j.ygyno.2018.10.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/29/2018] [Accepted: 10/01/2018] [Indexed: 12/31/2022]
Abstract
Despite the surgical and chemotherapeutic advances over the past few decades, ovarian cancer remains the leading cause of gynecological cancer-related mortality. The absence of biomarkers in early detection and the development of drug resistance are principal causes of treatment failure in ovarian cancer. Recent progress in RNA sequencing (RNA-Seq) with Next Generation Sequencing technology has expanded the understanding of the molecular pathogenesis of ovarian cancer. As compared to previous hybridization-based microarray and Sanger sequence-based methods, RNA-Seq provides multiple layers of resolutions and transcriptome complexity, with less background noise and a broader dynamic range of RNA expression. Beyond quantifying gene expression, the data generated by RNA-Seq accelerates the identification of alternatively spliced genes, fusion genes, mutations/SNPs, allele-specific expression, novel transcripts and non-coding RNAs. RNA-Seq has been successfully applied in ovarian cancer research for earlier detection, ascertaining pathological origin, and defining the aberrant genes and dysregulated molecular pathways across patient groups. This review outlines the distinct advantages of RNA-Seq compared to other transcriptomics methods and its recent applications in ovarian cancer.
Collapse
Affiliation(s)
- Jinglu Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Dylan C Dean
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Francis J Hornicek
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Huirong Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Zhenfeng Duan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
9
|
Enhancement of Ovarian Tumor Detection by DR6-Targeted Ultrasound Imaging Agents in Laying Hen Model of Spontaneous Ovarian Cancer. Int J Gynecol Cancer 2018; 26:1375-85. [PMID: 27465898 DOI: 10.1097/igc.0000000000000784] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE The lack of an effective early detection test leads to high case to death ratio of women with ovarian cancer (OVCA). To improve early detection, tumor-associated imaging targets need to be established and imaging agents to image these targets need to be developed. Targeted imaging agents offer potential for improvement of signal intensities from their targets. Expression of death receptor 6 (DR6) by ovarian malignant cells and tumor-associated microvessels increases during OVCA development and represents a novel target for ultrasound imaging. The goal of this study was to examine the feasibility of newly developed DR6-targeted ultrasound imaging agents in enhancing early detection of ovarian tumors in laying hen model of spontaneous OVCA. MATERIALS AND METHODS The study was conducted in an exploratory cross-sectional design using 4-year-old laying hens (n = 130). DR6-targeted imaging agents were developed by conjugating microbubbles with rabbit anti-chicken DR6 antibodies. Changes in signal intensity of ultrasound imaging were determined before and after injection of targeted imaging agents in hens with or without spontaneous OVCA. Following targeted imaging, normal or tumor ovaries were processed for histopathological and immunohistochemical studies. RESULTS DR6-targeted imaging agents bound with their targets expressed by malignant cells and tumor-associated microvessels in the ovary. Compared with pretargeted imaging, targeted imaging is enhanced by approximately 40% ultrasound echo signal intensity (P < 0.001) from early- and late-stage OVCA. Differences in signal enhancement were not observed among different histological subtypes of OVCA at early or late stages. Higher imaging signal intensities were associated with enhancement in DR6 expression by ovarian malignant cells and increase in the frequency of DR6-expressing microvessels during OVCA development. CONCLUSIONS The results of this study suggest that DR6-targeted imaging agents enhance the visualization of ovarian tumors and tumor-associated microvessels in hens with early-stage OVCA and will form a foundation for clinical studies.
Collapse
|
10
|
Yeganeh PN, Richardson C, Bahrani-Mostafavi Z, Tait DL, Mostafavi MT. Dysregulation of AKT3 along with a small panel of mRNAs stratifies high-grade serous ovarian cancer from both normal epithelia and benign tumor tissues. Genes Cancer 2017; 8:784-798. [PMID: 29321820 PMCID: PMC5755724 DOI: 10.18632/genesandcancer.164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/01/2017] [Indexed: 01/14/2023] Open
Abstract
Screening methods of High-Grade Serous Ovarian Cancer (HGSOC) lack specificity and sensitivity, partly due to benign tumors producing false-positive findings. We utilized a differential expression analysis pipeline on malignant tumor (MT) and normal epithelial (NE) samples, and also filtered the results to discriminate between MT and benign tumor (BT). We report that a panel of 26 dysregulated genes stratifies MT from both BT and NE. We further validated our findings by utilizing unsupervised clustering methods on two independent datasets. We show that the 26-genes panel completely distinguishes HGSOC from NE, and produces a more accurate classification between HGSOC and BT. Pathway analysis reveals that AKT3 is of particular significance, because of its high fold change and appearance in the majority of the dysregulated pathways. mRNA patterns of AKT3 suggest essential connections with tumor growth and metastasis, as well as a strong biomarker potential when used with 3 other genes (PTTG1, MND1, CENPF). Our results show that dysregulation of the 26-mRNA signature panel provides an evidence of malignancy and contribute to the design of a high specificity biomarker panel for detection of HGSOC, potentially in an early more curable stage.
Collapse
Affiliation(s)
- Pourya Naderi Yeganeh
- College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Christine Richardson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Zahra Bahrani-Mostafavi
- College of Health and Human Services, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - David L. Tait
- Division of Gynecological Oncology and Obstetrics, Levine Cancer Institute, Carolinas Medical Center, Charlotte, NC, USA
| | - M. Taghi Mostafavi
- College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC, USA
| |
Collapse
|
11
|
Johari-Ahar M, Rashidi MR, Barar J, Aghaie M, Mohammadnejad D, Ramazani A, Karami P, Coukos G, Omidi Y. An ultra-sensitive impedimetric immunosensor for detection of the serum oncomarker CA-125 in ovarian cancer patients. NANOSCALE 2015; 7:3768-79. [PMID: 25644549 DOI: 10.1039/c4nr06687a] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Effective treatment of ovarian cancer depends upon the early detection of the malignancy. Here, we report on the development of a new nanostructured immunosensor for early detection of cancer antigen 125 (CA-125). A gold electrode was modified with mercaptopropionic acid (MPA), and then consecutively conjugated with silica coated gold nanoparticles (AuNP@SiO2), CdSe quantum dots (QDs) and anti-CA-125 monoclonal antibody (mAb). The engineered MPA|AuNP@SiO2|QD|mAb immunosensor was characterised using transmission electron microscopy (TEM), atomic force microscopy (AFM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Successive conjugation of AuNP@SiO2, CdSe QD and anti-CA-125 mAb onto the gold electrode resulted in sensitive detection of CA-125 with a limit of detection (LOD) of 0.0016 U mL(-1) and a linear detection range (LDR) of 0-0.1 U mL(-1). Based on the high sensitivity and specificity of the immunosensor, we propose this highly stable and reproducible biosensor for the early detection of CA-125.
Collapse
Affiliation(s)
- M Johari-Ahar
- Research Centre for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Anugraham M, Jacob F, Nixdorf S, Everest-Dass AV, Heinzelmann-Schwarz V, Packer NH. Specific glycosylation of membrane proteins in epithelial ovarian cancer cell lines: glycan structures reflect gene expression and DNA methylation status. Mol Cell Proteomics 2014; 13:2213-32. [PMID: 24855066 DOI: 10.1074/mcp.m113.037085] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Epithelial ovarian cancer is the fifth most common cause of cancer in women worldwide bearing the highest mortality rate among all gynecological cancers. Cell membrane glycans mediate various cellular processes such as cell signaling and become altered during carcinogenesis. The extent to which glycosylation changes are influenced by aberrant regulation of gene expression is nearly unknown for ovarian cancer and remains crucial in understanding the development and progression of this disease. To address this effect, we analyzed the membrane glycosylation of non-cancerous ovarian surface epithelial (HOSE 6.3 and HOSE 17.1) and serous ovarian cancer cell lines (SKOV 3, IGROV1, A2780, and OVCAR 3), the most common histotype among epithelial ovarian cancers. N-glycans were released from membrane glycoproteins by PNGase F and analyzed using nano-liquid chromatography on porous graphitized carbon and negative-ion electrospray ionization mass spectrometry (ESI-MS). Glycan structures were characterized based on their molecular masses and tandem MS fragmentation patterns. We identified characteristic glycan features that were unique to the ovarian cancer membrane proteins, namely the "bisecting N-acetyl-glucosamine" type N-glycans, increased levels of α 2-6 sialylated N-glycans and "N,N'-diacetyl-lactosamine" type N-glycans. These N-glycan changes were verified by examining gene transcript levels of the enzymes specific for their synthesis (MGAT3, ST6GAL1, and B4GALNT3) using qRT-PCR. We further evaluated the potential epigenetic influence on MGAT3 expression by treating the cell lines with 5-azacytidine, a DNA methylation inhibitor. For the first time, we provide evidence that MGAT3 expression may be epigenetically regulated by DNA hypomethylation, leading to the synthesis of the unique "bisecting GlcNAc" type N-glycans on the membrane proteins of ovarian cancer cells. Linking the observation of specific N-glycan substructures and their complex association with epigenetic programming of their associated synthetic enzymes in ovarian cancer could potentially be used for the development of novel anti-glycan drug targets and clinical diagnostic tools.
Collapse
Affiliation(s)
- Merrina Anugraham
- From the ‡Department of Chemistry & Biomolecular Sciences, Biomolecular Frontiers Research Centre, Faculty of Science, Macquarie University, NSW 2109, Sydney, Australia
| | - Francis Jacob
- §Gynaecological Research Group, Department of Biomedicine, Women's University Hospital Basel, University of Basel, Basel 4003, Switzerland; ¶Ovarian Cancer Group, Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, NSW 2052, Sydney, Australia
| | - Sheri Nixdorf
- ¶Ovarian Cancer Group, Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, NSW 2052, Sydney, Australia
| | - Arun Vijay Everest-Dass
- From the ‡Department of Chemistry & Biomolecular Sciences, Biomolecular Frontiers Research Centre, Faculty of Science, Macquarie University, NSW 2109, Sydney, Australia
| | - Viola Heinzelmann-Schwarz
- §Gynaecological Research Group, Department of Biomedicine, Women's University Hospital Basel, University of Basel, Basel 4003, Switzerland; ¶Ovarian Cancer Group, Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, NSW 2052, Sydney, Australia
| | - Nicolle H Packer
- From the ‡Department of Chemistry & Biomolecular Sciences, Biomolecular Frontiers Research Centre, Faculty of Science, Macquarie University, NSW 2109, Sydney, Australia;
| |
Collapse
|
13
|
Can CA-125 predict lymph node metastasis in epithelial ovarian cancers in Turkish population? DISEASE MARKERS 2014; 2014:492537. [PMID: 24795494 PMCID: PMC3984847 DOI: 10.1155/2014/492537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 02/15/2014] [Accepted: 02/17/2014] [Indexed: 01/03/2023]
Abstract
Objective. The role of single preoperative serum CA-125 levels in predicting pelvic or paraaortic lymph node metastasis in patients operated for epithelial ovarian cancer has been investigated. Methods. 176 patients diagnosed with epithelial ovarian carcinoma after staging laparotomy between January 2002 and May 2010 were evaluated retrospectively. Results. The mean, geometric mean, and median of preoperative serum CA-125 levels were 632,6, 200,29, and 191,5 U/mL, respectively. The cut-off value predicting lymph node metastases in the ROC curve was 71,92 U/mL, which is significant in logistic regression analysis (P = 0.005). The preoperative log CA-125 levels were also statistically significant in predicting lymph node metastasis in logistic regression analysis (P = 0.008). Conclusions. The tumor marker CA-125, which increases with grade independent of the effect of stage in EOC, is predictive of lymph node metastasis with a high rate of false positivity in Turkish population. The high false positive rate may obscure the predictive value of CA-125.
Collapse
|
14
|
Karabudak AA, Hafner J, Shetty V, Chen S, Secord AA, Morse MA, Philip R. Autoantibody biomarkers identified by proteomics methods distinguish ovarian cancer from non-ovarian cancer with various CA-125 levels. J Cancer Res Clin Oncol 2013; 139:1757-70. [PMID: 23999876 DOI: 10.1007/s00432-013-1501-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/21/2013] [Indexed: 02/06/2023]
Abstract
PURPOSE CA-125 has been a valuable marker for detecting ovarian cancer, however, it is not sensitive enough to detect early-stage disease and not specific to ovarian cancer. The purpose of our study was to identify autoantibody markers that are specific to ovarian cancer regardless of CA-125 levels. METHODS Top-down and iTRAQ quantitative proteomics methods were used to identify high-frequency autoantibodies in ovarian cancer. Protein microarrays comprising the recombinant autoantigens were screened using serum samples from various stages of ovarian cancer with diverse levels of CA-125 as well as benign and healthy controls. ROC curve and dot blot analyses were performed to validate the sensitivity and specificity of the autoantibody markers. RESULTS The proteomics methodologies identified more than 60 potential high-frequency autoantibodies in ovarian cancer. Individual serum samples from ovarian cancer stages I-IV compared to control samples that were screened on a microarray containing native recombinant autoantigens revealed a panel of stage I high-frequency autoantibodies. Preliminary ROC curve and dot blot analyses performed with the ovarian cancer samples showed higher specificity and sensitivity as compared to CA-125. Three autoantibody markers exhibited higher specificity in various stages of ovarian cancer with low and normal CA-125 levels. CONCLUSIONS Proteomics technologies are suitable for the identification of protein biomarkers and also the identification of autoantibody biomarkers when combined with protein microarray screening. Using native recombinant autoantigen arrays to screen autoantibody markers, it is possible to identify markers with higher sensitivity and specificity than CA-125 that are relevant to early detection of ovarian cancer.
Collapse
|
15
|
Identifying Serum Biomarkers for Ovarian Cancer by Screening With Surface-Enhanced Laser Desorption/Ionization Mass Spectrometry and the Artificial Neural Network. Int J Gynecol Cancer 2013; 23:667-72. [DOI: 10.1097/igc.0b013e31827e1989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
16
|
Beer LA, Wang H, Tang HY, Cao Z, Chang-Wong T, Tanyi JL, Zhang R, Liu Q, Speicher DW. Identification of multiple novel protein biomarkers shed by human serous ovarian tumors into the blood of immunocompromised mice and verified in patient sera. PLoS One 2013; 8:e60129. [PMID: 23544127 PMCID: PMC3609810 DOI: 10.1371/journal.pone.0060129] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/22/2013] [Indexed: 01/17/2023] Open
Abstract
The most cancer-specific biomarkers in blood are likely to be proteins shed directly by the tumor rather than less specific inflammatory or other host responses. The use of xenograft mouse models together with in-depth proteome analysis for identification of human proteins in the mouse blood is an under-utilized strategy that can clearly identify proteins shed by the tumor. In the current study, 268 human proteins shed into mouse blood from human OVCAR-3 serous tumors were identified based upon human vs. mouse species differences using a four-dimensional plasma proteome fractionation strategy. A multi-step prioritization and verification strategy was subsequently developed to efficiently select some of the most promising biomarkers from this large number of candidates. A key step was parallel analysis of human proteins detected in the tumor supernatant, because substantially greater sequence coverage for many of the human proteins initially detected in the xenograft mouse plasma confirmed assignments as tumor-derived human proteins. Verification of candidate biomarkers in patient sera was facilitated by in-depth, label-free quantitative comparisons of serum pools from patients with ovarian cancer and benign ovarian tumors. The only proteins that advanced to multiple reaction monitoring (MRM) assay development were those that exhibited increases in ovarian cancer patients compared with benign tumor controls. MRM assays were facilely developed for all 11 novel biomarker candidates selected by this process and analysis of larger pools of patient sera suggested that all 11 proteins are promising candidate biomarkers that should be further evaluated on individual patient blood samples.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Biomarkers, Tumor/blood
- Cell Line, Tumor
- Chromatography, Liquid
- Disease Models, Animal
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Immunocompromised Host
- Mass Spectrometry
- Mice
- Molecular Sequence Data
- Molecular Weight
- Neoplasm Proteins/blood
- Neoplasm Proteins/chemistry
- Neoplasm Staging
- Neoplasms, Cystic, Mucinous, and Serous/blood
- Neoplasms, Cystic, Mucinous, and Serous/genetics
- Ovarian Neoplasms/blood
- Ovarian Neoplasms/genetics
- Proteome/chemistry
- Proteome/metabolism
- Reproducibility of Results
- Staining and Labeling
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Lynn A. Beer
- Center for Systems and Computational Biology, and Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Huan Wang
- Center for Systems and Computational Biology, and Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Hsin-Yao Tang
- Center for Systems and Computational Biology, and Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Zhijun Cao
- Center for Systems and Computational Biology, and Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Tony Chang-Wong
- Center for Systems and Computational Biology, and Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Janos L. Tanyi
- Ovarian Cancer Research Center, The University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rugang Zhang
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Qin Liu
- Center for Systems and Computational Biology, and Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - David W. Speicher
- Center for Systems and Computational Biology, and Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
17
|
Kim JH, Kim YW, Kim IW, Park DC, Kim YW, Lee KH, Jang CK, Ahn WS. Identification of candidate biomarkers using the Experion™ automated electrophoresis system in serum samples from ovarian cancer patients. Int J Oncol 2013; 42:1257-62. [PMID: 23443953 DOI: 10.3892/ijo.2013.1803] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/02/2012] [Indexed: 11/05/2022] Open
Abstract
Ovarian cancer is the most common cause of disease-related death in women globally. Detection of ovarian cancer using new biomarkers is necessary for early diagnosis. To date, there have been no obvious biomarkers for ovarian cancer detection in the incipient stage. In this study, we discovered potential diagnostic serological biomarkers for ovarian cancer using the Experion™ automated electrophoresis system. Sera from 14 healthy women and 84 ovarian cancer patients at stages I- IV were applied to the Experion to compare the protein expression levels. To examine the protein expression pattern of Experion data, proteins in the samples were resolved using 10 and 15% sodium dodecyl sulfate-polyacrylamide gel electrophoresis and visualized by silver staining. The candidate biomarkers elevated in ovarian cancer were purified and determined using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. α-2-macroglobulin (173.7 kDa), ceruloplasmin (147 kDa), inter-α-trypsin inhibitor family heavy chain-related protein (126 kDa), C-1 inhibitor (115.2 kDa) and hemoglobin α/β (14.4 kDa were overexpressed in the ovarian cancer sera. This study documents a novel way to measure ovarian cancer or cancer-related proteins for biomarkers using the Experion assay system, which should be easily adaptable for high-throughput diagnosis to establish databases of ovarian cancer for clinical applications.
Collapse
Affiliation(s)
- Ju Hee Kim
- Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 130-040, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Aune G, Stunes AK, Lian AM, Reseland JE, Tingulstad S, Torp SH, Syversen U. Circulating interleukin-8 and plasminogen activator inhibitor-1 are increased in women with ovarian carcinoma. RESULTS IN IMMUNOLOGY 2012; 2:190-5. [PMID: 24371583 DOI: 10.1016/j.rinim.2012.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/08/2012] [Accepted: 10/15/2012] [Indexed: 12/16/2022]
Abstract
Elevated serum levels of several cytokines have been reported in ovarian cancer. We have previously found a diagnostic and prognostic value of hepatocyte growth factor (HGF). The aims of this study were to evaluate the diagnostic and prognostic value of multiple serum cytokines in women with ovarian tumors, and to examine possible associations between serum levels of cytokines and the previously analyzed HGF. Preoperative levels of multiple cytokines were quantified by serum-based immunoassays in 113 women with a pelvic mass: 57 carcinomas, 23 borderline tumors, and 33 benign ovarian tumors. The results were related to clinicopathological parameters. Univariate and multivariate analyses of five-year overall survival were performed. The women with ovarian carcinoma had significantly higher preoperative serum levels of cancer antigen 125 (CA 125), interleukin 8 (IL-8), and plasminogen activator inhibitor-1 (PAI-1) than women with benign ovarian tumors. Serum IL-8 and PAI-1 levels were positively correlated to serum levels of HGF. In a multivariate analysis of five-year overall survival, IL-8 had a prognostic impact. Serum levels of IL-8 and PAI-1 were elevated in women with ovarian carcinoma compared to women with benign ovarian tumors, and positively correlated to serum HGF levels in women with ovarian tumors. IL-8 also seemed to have a prognostic impact.
Collapse
Affiliation(s)
- Guro Aune
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian, University of Science and Technology (NTNU), Trondheim, Norway
| | - Astrid Kamilla Stunes
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian, University of Science and Technology (NTNU), Trondheim, Norway
| | - Aina-Mari Lian
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo (UiO), Oslo, Norway
| | - Janne Elin Reseland
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo (UiO), Oslo, Norway
| | - Solveig Tingulstad
- Department of Gynecological Oncology, Department of Laboratory Medicine, Children's and Women's Health, St. Olav's University Hospital, Trondheim, Norway
| | - Sverre H Torp
- Department of Pathology and Medical Genetics, Department of Laboratory Medicine, Children's and Women's Health, St. Olav's University Hospital, Trondheim, Norway
| | - Unni Syversen
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian, University of Science and Technology (NTNU), Trondheim, Norway ; Department of Endocrinology, St. Olav's University Hospital, Trondheim, Norway
| |
Collapse
|
19
|
Development of multiplexed bead-based immunoassays for the detection of early stage ovarian cancer using a combination of serum biomarkers. PLoS One 2012; 7:e44960. [PMID: 22970327 PMCID: PMC3438175 DOI: 10.1371/journal.pone.0044960] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 08/10/2012] [Indexed: 12/13/2022] Open
Abstract
CA125 as a biomarker of ovarian cancer is ineffective for the general population. The aim of this study was to evaluate multiplexed bead-based immunoassay of multiple ovarian cancer-associated biomarkers such as transthyretin and apolipoprotein A1, together with CA125, to improve the identification and evaluation of prognosis of ovarian cancer. We measured the serum levels of CA125, transthyretin, and apolipoprotein A1 from the serum of 61 healthy individuals, 84 patients with benign ovarian disease, and 118 patients with ovarian cancer using a multiplex liquid assay system, Luminex 100. The results were then analyzed according to healthy and/or benign versus ovarian cancer subjects. When CA125 was combined with the other biomarkers, the overall sensitivity and specificity were significantly improved in the ROC curve, which showed 95% and 97% sensitivity and specificity, respectively. At 95% specificity for all stages the sensitivity increased to 95.5% compared to 67% for CA125 alone. For stage I+II, the sensitivity increased from 30% for CA125 alone to 93.9%. For stage III+IV, the corresponding values were 96.5% and 91.6%, respectively. Also, the three biomarkers were sufficient for maximum separation between noncancer (healthy plus benign group) and stage I+II or all stages (I-IV) of disease. The new combination of transthyretin, and apolipoprotein A1 with CA125 improved both the sensitivity and the specificity of ovarian cancer diagnosis compared with those of individual biomarkers. These findings suggest the benefit of the combination of these markers for the diagnosis of ovarian cancer.
Collapse
|
20
|
Evaluation of proteomics-identified CCL18 and CXCL1 as circulating tumor markers for differential diagnosis between ovarian carcinomas and benign pelvic masses. Int J Biol Markers 2012; 26:262-73. [PMID: 21928244 DOI: 10.5301/jbm.2011.8616] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2011] [Indexed: 11/20/2022]
Abstract
A lack of sensitive and specific tumor markers for early diagnosis and treatment is a major cause for the high mortality rate of ovarian cancer. The purpose of this study was to identify potential proteomics-based biomarkers useful for the differential diagnosis between ovarian cancer and benign pelvic masses. Serum samples from 41 patients with ovarian cancer, 32 patients with benign pelvic masses, and 41 healthy female blood donors were examined, and proteomic profiling of the samples was assessed by surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) mass spectroscopy (MS). A confirmatory study was also conducted with serum specimens from 58 patients with ovarian carcinoma, 37 patients with benign pelvic masses, and 48 healthy women. A classification tree was established using Biomarker Pattern Software. Six differentially expressed proteins (APP, CA 125, CCL18, CXCL1, IL-8, and ITIH4) were separated by high-performance liquid chromatography and identified by matrix-assisted laser desorption/ionization (MALDI)-MS/MS and database searches. Two of the proteins overexpressed in ovarian cancer patients, chemokine CC2 motif ligand 18 (CCL18) and chemokine CXC motif ligand 1 (CXCL1), were automatically selected in a multivariate predictive model. These two protein biomarkers were then validated and evaluated by enzyme-linked immunosorbent assay (ELISA) in 535 serum specimens (130 ovarian cancer, 64 benign ovarian masses, 36 lung cancer, 60 gastric cancer, 55 nasopharyngeal carcinoma, 48 hepatocellular carcinoma, and 142 healthy women). The combined use of CCL18 and CXCL1 as biomarkers for ovarian cancer had a sensitivity of 92% and a specificity of 97%. The multivariate ELISA analysis of the two putative markers in combination with CA 125 resulted in a sensitivity of 99% for healthy women and 94% for benign pelvic masses, and a specificity of 92% for both groups; these values were significantly higher than those obtained with CA 125 alone (p and lt;0.05). We conclude that serum CCL18 and CXCL1 are potentially useful as novel circulating tumor markers for the differential diagnosis between ovarian cancer and benign ovarian masses.
Collapse
|
21
|
Callesen AK, Mogensen O, Jensen AK, Kruse TA, Martinussen T, Jensen ON, Madsen JS. Reproducibility of mass spectrometry based protein profiles for diagnosis of ovarian cancer across clinical studies: A systematic review. J Proteomics 2012; 75:2758-72. [PMID: 22366292 DOI: 10.1016/j.jprot.2012.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 02/02/2012] [Accepted: 02/04/2012] [Indexed: 02/02/2023]
Abstract
The focus of this systematic review is to give an overview of the current status of clinical protein profiling studies using MALDI and SELDI MS platforms in the search for ovarian cancer biomarkers. A total of 34 profiling studies were qualified for inclusion in the review. Comparative analysis of published discriminatory peaks to peaks found in an original MALDI MS protein profiling study was made to address the key question of reproducibility across studies. An overlap was found despite substantial heterogeneity between studies relating to study design, biological material, pre-analytical treatment, and data analysis. About 47% of the peaks reported to be associated to ovarian cancer were also represented in our experimental study, and 34% of these redetected peaks also showed a significant difference between cases and controls in our study. Thus, despite known problems related to reproducibility an overlap in peaks between clinical studies was demonstrated, which indicate convergence toward a set of common discriminating, reproducible peaks for ovarian cancer. The potential of the discriminating protein peaks for clinical use as ovarian cancer biomarkers will be discussed and evaluated. This article is part of a Special Issue entitled: Proteomics: The clinical link.
Collapse
Affiliation(s)
- Anne K Callesen
- Institute of Regional Health Services Research, University of Southern Denmark, Odense, Denmark.
| | | | | | | | | | | | | |
Collapse
|
22
|
Dangaj D, Abbott KL, Mookerjee A, Zhao A, Kirby PS, Sandaltzopoulos R, Powell DJ, Lamazière A, Siegel DL, Wolf C, Scholler N. Mannose receptor (MR) engagement by mesothelin GPI anchor polarizes tumor-associated macrophages and is blocked by anti-MR human recombinant antibody. PLoS One 2011; 6:e28386. [PMID: 22163010 PMCID: PMC3232216 DOI: 10.1371/journal.pone.0028386] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 11/07/2011] [Indexed: 12/18/2022] Open
Abstract
Tumor-infiltrating macrophages respond to microenvironmental signals by developing a tumor-associated phenotype characterized by high expression of mannose receptor (MR, CD206). Antibody cross-linking of CD206 triggers anergy in dendritic cells and CD206 engagement by tumoral mucins activates an immune suppressive phenotype in tumor-associated macrophages (TAMs). Many tumor antigens are heavily glycosylated, such as tumoral mucins, and/or attached to tumor cells by mannose residue-containing glycolipids (GPI anchors), as for example mesothelin and the family of carcinoembryonic antigen (CEA). However, the binding to mannose receptor of soluble tumor antigen GPI anchors via mannose residues has not been systematically studied. To address this question, we analyzed the binding of tumor-released mesothelin to ascites-infiltrating macrophages from ovarian cancer patients. We also modeled functional interactions between macrophages and soluble mesothelin using an in vitro system of co-culture in transwells of healthy donor macrophages with human ovarian cancer cell lines. We found that soluble mesothelin bound to human macrophages and that the binding depended on the presence of GPI anchor and of mannose receptor. We next challenged the system with antibodies directed against the mannose receptor domain 4 (CDR4-MR). We isolated three novel anti-CDR4-MR human recombinant antibodies (scFv) using a yeast-display library of human scFv. Anti-CDR4-MR scFv #G11 could block mesothelin binding to macrophages and prevent tumor-induced phenotype polarization of CD206(low) macrophages towards TAMs. Our findings indicate that tumor-released mesothelin is linked to GPI anchor, engages macrophage mannose receptor, and contributes to macrophage polarization towards TAMs. We propose that compounds able to block tumor antigen GPI anchor/CD206 interactions, such as our novel anti-CRD4-MR scFv, could prevent tumor-induced TAM polarization and have therapeutic potential against ovarian cancer, through polarization control of tumor-infiltrating innate immune cells.
Collapse
Affiliation(s)
- Denarda Dangaj
- Department of Obstetrics and Gynecology, Penn Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Karen L. Abbott
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Ananda Mookerjee
- Department of Obstetrics and Gynecology, Penn Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Aizhi Zhao
- Department of Obstetrics and Gynecology, Penn Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Pamela S. Kirby
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Raphael Sandaltzopoulos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Daniel J. Powell
- Department of Obstetrics and Gynecology, Penn Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Antonin Lamazière
- Department of Biochemistry, School of Medicine Saint Antoine, Université Pierre et Marie Curie, Paris, France
| | - Don L. Siegel
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Claude Wolf
- Department of Biochemistry, School of Medicine Saint Antoine, Université Pierre et Marie Curie, Paris, France
| | - Nathalie Scholler
- Department of Obstetrics and Gynecology, Penn Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
23
|
Kaur M, MacPherson CR, Schmeier S, Narasimhan K, Choolani M, Bajic VB. In Silico discovery of transcription factors as potential diagnostic biomarkers of ovarian cancer. BMC SYSTEMS BIOLOGY 2011; 5:144. [PMID: 21923952 PMCID: PMC3184078 DOI: 10.1186/1752-0509-5-144] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Accepted: 09/19/2011] [Indexed: 01/21/2023]
Abstract
BACKGROUND Our study focuses on identifying potential biomarkers for diagnosis and early detection of ovarian cancer (OC) through the study of transcription regulation of genes affected by estrogen hormone. RESULTS The results are based on a set of 323 experimentally validated OC-associated genes compiled from several databases, and their subset controlled by estrogen. For these two gene sets we computationally determined transcription factors (TFs) that putatively regulate transcription initiation. We ranked these TFs based on the number of genes they are likely to control. In this way, we selected 17 top-ranked TFs as potential key regulators and thus possible biomarkers for a set of 323 OC-associated genes. For 77 estrogen controlled genes from this set we identified three unique TFs as potential biomarkers. CONCLUSIONS We introduced a new methodology to identify potential diagnostic biomarkers for OC. This report is the first bioinformatics study that explores multiple transcriptional regulators of OC-associated genes as potential diagnostic biomarkers in connection with estrogen responsiveness. We show that 64% of TF biomarkers identified in our study are validated based on real-time data from microarray expression studies. As an illustration, our method could identify CP2 that in combination with CA125 has been reported to be sensitive in diagnosing ovarian tumors.
Collapse
Affiliation(s)
- Mandeep Kaur
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Cameron R MacPherson
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Sebastian Schmeier
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Kothandaraman Narasimhan
- Centre for Excellence in Genomic Medicine Research, King Abdul Aziz University, PO. Box 80216, Jeddah 21589, Kingdom of Saudi Arabia
| | - Mahesh Choolani
- Diagnostic Biomarker Discovery Laboratory, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, 5 Lower Kent Ridge Road, 119074, Singapore
| | - Vladimir B Bajic
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
24
|
Jacob F, Goldstein DR, Bovin NV, Pochechueva T, Spengler M, Caduff R, Fink D, Vuskovic MI, Huflejt ME, Heinzelmann-Schwarz V. Serum antiglycan antibody detection of nonmucinous ovarian cancers by using a printed glycan array. Int J Cancer 2011; 130:138-46. [PMID: 21351089 DOI: 10.1002/ijc.26002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 02/02/2011] [Indexed: 12/25/2022]
Abstract
Epithelial ovarian cancer has the highest mortality rate among gynecological cancers. Altered glycosylation is associated with oncogenic transformation producing tumor-associated carbohydrate antigens. We investigated the potential of natural occurring antiglycan antibodies in the diagnosis of ovarian cancer by using printed glycan array. Antiglycan antibodies bound to 203 chemically synthesized printed glycans were detected via biotin-streptavidin fluorescence system in serum of women with normal operative findings (healthy controls; n = 24) and nonmucinous borderline or ovarian cancer of various FIGO stages (n = 33). Data were validated measuring blood group associated di-, tri and tetrasaccharide antigens on known ABO blood groups. Antiglycan antibodies demonstrated high reproducibility (r(c) > 0.9). Cluster analysis identified repetitive patterns of specific core carbohydrate structures: 11 N-linked glycans, 3 O-linked glycans and 2 glycosphingolipids. Biomarker detection revealed 24 glycans including P(1) (Galα1-4Galβ1-4GlcNAcβ; p < 0.001) significantly discriminating between (low-) malignant tumors and healthy controls. Comparable sensitivity and specificity with tumor marker CA125 was achieved by a panel of multivariate selected and linear combined antiglycan antibody signals (79.2 and 84.8%, respectively). Our findings demonstrate the potential of glycan arrays in the development of a new generation of biomarkers for ovarian cancer.
Collapse
Affiliation(s)
- Francis Jacob
- Translational Research Group, University Hospital Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Orengo AM, Fabbi M, Miglietta L, Andreani C, Bruzzone M, Puppo A, Cristoforoni P, Centurioni MG, Gualco M, Salvi S, Boccardo S, Truini M, Piazza T, Canevari S, Mezzanzanica D, Ferrini S. Interleukin (IL)-18, a biomarker of human ovarian carcinoma, is predominantly released as biologically inactive precursor. Int J Cancer 2011; 129:1116-25. [PMID: 21710494 DOI: 10.1002/ijc.25757] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 10/13/2010] [Indexed: 12/12/2022]
Abstract
Interleukin (IL)-18 is a proinflammatory and immune-enhancing cytokine, which exerts antitumor effects in vivo, mediated by the induction of interferon (IFN)γ. We previously reported that IL-18 processing is defective in epithelial ovarian carcinoma (EOC) cells, which secrete an inactive precursor (pro-IL-18) in vitro. In addition, IL-18 was reported as a potential biomarker of EOC. Here, we further investigated its role as a serological marker in human EOC and addressed its possible biological activity in vivo. Our data indicate that immunoreactive IL-18 is increased in EOC patients' sera at diagnosis as compared with age-matched healthy women. IL-18 levels were higher in the ascitic fluids than in sera, suggesting a local production in the peritoneal cavity. Indeed, immunohistochemical analysis of tumors showed IL-18 expression in cytokeratine-positive neoplastic cells, although also scattered histiocytes and some lymphoid cells stained for IL-18. The detection of human IL-18 in sera and ascitic fluids of immunodeficient mice, orthotopically implanted with human EOC cells, further suggested that circulating IL-18 is tumor-derived. However, IL-18 is not an EOC specific biomarker, as increased serum levels were found also in some endometrial cancer patients. By means of a new monoclonal antibody, we characterized IL-18 present in the ascitic fluid as pro-IL-18, which is biologically inactive. Accordingly, IFNγ was not increased in EOC patients' sera and ascitic fluids and showed no correlation with IL-18 levels. Altogether these data indicate that IL-18 in EOC fluids is predominantly tumor-derived and that its lack of biological activity may represent a mechanism of tumor-escape.
Collapse
Affiliation(s)
- Anna Maria Orengo
- Department of Translational Oncology, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Rauh-Hain JA, Krivak TC, Del Carmen MG, Olawaiye AB. Ovarian cancer screening and early detection in the general population. REVIEWS IN OBSTETRICS & GYNECOLOGY 2011; 4:15-21. [PMID: 21629494 PMCID: PMC3100094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Worldwide, the estimated annual incidence of ovarian cancer is 204,000, with 125,000 deaths. In developed countries, ovarian cancer remains the most lethal of all gynecologic malignancies. One of the reasons for the high fatality rate is that more than 70% of women with ovarian cancer are diagnosed with advanced disease. There is a close correlation between stage at presentation and survival; therefore, early detection of ovarian cancer represents the best hope for mortality reduction and long-term disease control. There is preliminary evidence that screening can improve survival, but the impact of screening on mortality from ovarian cancer is still unclear. The proteomic approach has yielded encouraging preliminary findings, but these findings are not mature enough for clinical use. At this time, clear recommendations cannot be made on the basis of the available data.
Collapse
|
27
|
Nunez-Cruz S, Connolly DC, Scholler N. An orthotopic model of serous ovarian cancer in immunocompetent mice for in vivo tumor imaging and monitoring of tumor immune responses. J Vis Exp 2010:2146. [PMID: 21178956 DOI: 10.3791/2146] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
BACKGROUND Ovarian cancer is generally diagnosed at an advanced stage where the case/fatality ratio is high and thus remains the most lethal of all gynecologic malignancies among US women. Serous tumors are the most widespread forms of ovarian cancer and the Tg-MISIIR-TAg transgenic represents the only mouse model that spontaneously develops this type of tumors. Tg-MISIIR-TAg mice express SV40 transforming region under control of the Mullerian Inhibitory Substance type II Receptor (MISIIR) gene promoter. Additional transgenic lines have been identified that express the SV40 TAg transgene, but do not develop ovarian tumors. Non-tumor prone mice exhibit typical lifespan for C57Bl/6 mice and are fertile. These mice can be used as syngeneic allograft recipients for tumor cells isolated from Tg-MISIIR-TAg-DR26 mice. OBJECTIVE Although tumor imaging is possible, early detection of deep tumors is challenging in small living animals. To enable preclinical studies in an immunologically intact animal model for serous ovarian cancer, we describe a syngeneic mouse model for this type of ovarian cancer that permits in vivo imaging, studies of the tumor microenvironment and tumor immune responses. METHODS We first derived a TAg+ mouse cancer cell line (MOV1) from a spontaneous ovarian tumor harvested in a 26 week-old DR26 Tg-MISIIR-TAg female. Then, we stably transduced MOV1 cells with TurboFP635 Lentivirus mammalian vector that encodes Katushka, a far-red mutant of the red fluorescent protein from sea anemone Entacmaea quadricolor with excitation/emission maxima at 588/635 nm. We orthotopically implanted MOV1(Kat) in the ovary of non-tumor prone Tg-MISIIR-TAg female mice. Tumor progression was followed by in vivo optical imaging and tumor microenvironment was analyzed by immunohistochemistry. RESULTS Orthotopically implanted MOV1(Kat) cells developed serous ovarian tumors. MOV1(Kat) tumors could be visualized by in vivo imaging up to three weeks after implantation (fig. 1) and were infiltrated with leukocytes, as observed in human ovarian cancers (fig. 2). CONCLUSIONS We describe an orthotopic model of ovarian cancer suitable for in vivo imaging of early tumors due to the high pH-stability and photostability of Katushka in deep tissues. We propose the use of this novel syngeneic model of serous ovarian cancer for in vivo imaging studies and monitoring of tumor immune responses and immunotherapies.
Collapse
Affiliation(s)
- Selene Nunez-Cruz
- Penn Ovarian Cancer Research Center, Center for Research on Reproduction and Womans Health, Department of Obstetrics and Gynecology, University of Pennsylvania-School of Medicine, USA.
| | | | | |
Collapse
|
28
|
Patients with ovarian carcinoma excrete different altered levels of urine CD59, kininogen-1 and fragments of inter-alpha-trypsin inhibitor heavy chain H4 and albumin. Proteome Sci 2010; 8:58. [PMID: 21083881 PMCID: PMC2998473 DOI: 10.1186/1477-5956-8-58] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 11/17/2010] [Indexed: 01/12/2023] Open
Abstract
Background Diagnosis of ovarian carcinoma is in urgent need for new complementary biomarkers for early stage detection. Proteins that are aberrantly excreted in the urine of cancer patients are excellent biomarker candidates for development of new noninvasive protocol for early diagnosis and screening purposes. In the present study, urine samples from patients with ovarian carcinoma were analysed by two-dimensional gel electrophoresis and the profiles generated were compared to those similarly obtained from age-matched cancer negative women. Results Significant reduced levels of CD59, kininogen-1 and a 39 kDa fragment of inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4), and enhanced excretion of a 19 kDa fragment of albumin, were detected in the urine of patients with ovarian carcinoma compared to the control subjects. The different altered levels of the proteins were confirmed by Western blotting using antisera and a lectin that bind to the respective proteins. Conclusion CD59, kininogen-1 and fragments of ITIH4 and albumin may be used as complementary biomarkers in the development of new noninvasive protocols for diagnosis and screening of ovarian carcinoma.
Collapse
|
29
|
Eifler RL, Lind J, Falkenhagen D, Weber V, Fischer MB, Zeillinger R. Enrichment of circulating tumor cells from a large blood volume using leukapheresis and elutriation: proof of concept. CYTOMETRY PART B-CLINICAL CYTOMETRY 2010; 80:100-11. [PMID: 20954267 DOI: 10.1002/cyto.b.20560] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 07/07/2010] [Accepted: 07/21/2010] [Indexed: 12/25/2022]
Abstract
BACKGROUND The aim of this study was to determine the applicability of a sequential process using leukapheresis, elutriation, and fluorescence-activated cell sorting (FACS) to enrich and isolate circulating tumor cells from a large blood volume to allow further molecular analysis. METHODS Mononuclear cells were collected from 10 L of blood by leukapheresis, to which carboxyfluorescein succinimidyl ester prelabeled CaOV-3 tumor cells were spiked at a ratio of 26 to 10⁶ leukocytes. Elutriation separated the spiked leukapheresates primarily by cell size into distinct fractions, and leukocytes and tumor cells, characterized as carboxyfluorescein succinimidyl ester positive, EpCAM positive and CD45 negative events, were quantified by flow cytometry. Tumor cells were isolated from the last fraction using FACS or anti-EpCAM coupled immunomagnetic beads, and their recovery and purity determined by fluorescent microscopy and real-time PCR. RESULTS Leukapheresis collected 13.5 x 10⁹ mononuclear cells with 87% efficiency. In total, 53 to 78% of spiked tumor cells were pre-enriched in the last elutriation fraction among 1.6 x 10⁹ monocytes. Flow cytometry predicted a circulating tumor cell purity of ~90% giving an enrichment of 100,000-fold following leukapheresis, elutriation, and FACS, where CaOV-3 cells were identified as EpCAM positive and CD45 negative events. FACS confirmed this purity. Alternatively, immunomagnetic bead adsorption recovered 10% of tumor cells with a median purity of 3.5%. CONCLUSIONS This proof of concept study demonstrated that elutriation and FACS following leukapheresis are able to enrich and isolate tumor cells from a large blood volume for molecular characterization.
Collapse
Affiliation(s)
- Robert L Eifler
- Department of Clinical Medicine and Biotechnology, Danube University, Krems, Austria; Department of Blood Transfusion, Medical University of Vienna, Austria
| | | | | | | | | | | |
Collapse
|
30
|
Duer R, Lund R, Tanaka R, Christensen DA, Herron JN. In-Plane Parallel Scanning: A Microarray Technology for Point-of-Care Testing. Anal Chem 2010; 82:8856-65. [DOI: 10.1021/ac101571b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Reuven Duer
- PLC Diagnostics, Inc., 192 Odebolt Drive, Thousand Oaks, California 91360, United States, Departments of Bioengineering and Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Russell Lund
- PLC Diagnostics, Inc., 192 Odebolt Drive, Thousand Oaks, California 91360, United States, Departments of Bioengineering and Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Richard Tanaka
- PLC Diagnostics, Inc., 192 Odebolt Drive, Thousand Oaks, California 91360, United States, Departments of Bioengineering and Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Douglas A. Christensen
- PLC Diagnostics, Inc., 192 Odebolt Drive, Thousand Oaks, California 91360, United States, Departments of Bioengineering and Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - James N. Herron
- PLC Diagnostics, Inc., 192 Odebolt Drive, Thousand Oaks, California 91360, United States, Departments of Bioengineering and Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
31
|
Hays JL, Kim G, Giuroiu I, Kohn EC. Proteomics and ovarian cancer: integrating proteomics information into clinical care. J Proteomics 2010; 73:1864-72. [PMID: 20561909 DOI: 10.1016/j.jprot.2010.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 05/20/2010] [Accepted: 05/25/2010] [Indexed: 01/03/2023]
Abstract
The power of proteomics allows unparalleled opportunity to query the molecular mechanisms of a malignant cell and the tumor microenvironment in patients with ovarian cancer and other solid tumors. This information has given us insight into the perturbations of signaling pathways within tumor cells and has aided the discovery of new drug targets for the tumor and possible prognostic indicators of outcome and disease response to therapy. Proteomics analysis of serum and ascites has also given us sources with which to discover possible early markers for the presence of new disease and for the progression of established cancer throughout the course of treatment. Unfortunately, this wealth of information has yielded little to date in changing the clinical care of these patients from a diagnostic, prognostic, or treatment perspective. The rational examination and translation of proteomics data in the context of past clinical trials and the design of future clinical trials must occur before we can march forward into the future of personalized medicine.
Collapse
Affiliation(s)
- John L Hays
- Molecular Signaling Section, Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-1906, USA.
| | | | | | | |
Collapse
|
32
|
Jacob F, Goldstein DR, Fink D, Heinzelmann-Schwarz V. Proteogenomic studies in epithelial ovarian cancer: established knowledge and future needs. Biomark Med 2009; 3:743-56. [DOI: 10.2217/bmm.09.48] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
There has been a concerted effort over the last decade to improve our understanding of the complex biology of ovarian cancer. A linear growth in published proteogenomic studies has addressed a variety of questions regarding its molecular pathogenesis. A number of genes have been identified by transcriptomic approaches, some of which are being investigated as putative tumor markers (HE4, OPN, Ep-CAM and Mesothelin), whilst others are potential targets for molecular therapeutic approaches (VEGF, IO4, EGFR, MUC1, CLDN4 and SLPI). Proteogenomics has the potential to further change our current characterization and treatment of ovarian cancer. Additional advances will depend on integrated study designs, interdisciplinary collaborations, use of robust high-throughput platforms, as well as uniform guidelines for bioinformatic analyses.
Collapse
Affiliation(s)
- Francis Jacob
- Translational Research Group, Department of Gynecology, University Hospital Zurich, Nord I D222, Frauenklinikstrasse 10, 8091 Zurich, Switzerland
| | - Darlene R Goldstein
- Institut de mathématiques, Ecole Polytéchnique Fédérale, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Daniel Fink
- Department of Gynecology, University Hospital Zurich, Switzerland
| | - Viola Heinzelmann-Schwarz
- Translational Research Group, Department of Gynecology, University Hospital Zurich, Nord I D222, Frauenklinikstrasse 10, 8091 Zurich, Switzerland
| |
Collapse
|
33
|
Zohny SF, Fayed ST. Clinical utility of circulating matrix metalloproteinase-7 (MMP-7), CC chemokine ligand 18 (CCL18) and CC chemokine ligand 11 (CCL11) as markers for diagnosis of epithelial ovarian cancer. Med Oncol 2009; 27:1246-53. [PMID: 19937162 DOI: 10.1007/s12032-009-9366-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 11/10/2009] [Indexed: 10/20/2022]
Abstract
Ovarian cancer remains a highly lethal disease. The aim of the present study was to evaluate the usefulness of measuring serum matrix metalloproteinase-7 (MMP-7), CC chemokine ligand 18 (CCL18) and CC chemokine ligand 11 (CCL11) in comparison with serum cancer antigen 125 (CA 125) for diagnosis of epithelial ovarian cancer (EOC). This study included 51 patients with EOC, 27 patients with benign ovarian lesions and 29 healthy volunteers. Serum CA 125 was determined by microparticle enzyme immunoassay, while serum MMP-7, CCL18 and CCL11 were measured using enzyme-linked immunosorbent assay. The sensitivity and specificity were 86.3% and 92.9% for CA 125, 80.4% and 87.5% for MMP-7, 84.3% and 91.1% for CCL18 and, 68.6% and 62.5% for CCL11. Combination of CA 125, MMP-7, CCL18 and CCL11 gave a promising sensitivity of 100%, but specificity was decreased to 60.7%. The combined use of serum CA 125, MMP-7, CCL18 and CCL11 effectively detected early stages EOC with high sensitivity of 94.4%. Our data indicate that serum MMP-7, CCL18 and CCL11, in combination with CA 125 could be useful in diagnosis of EOC.
Collapse
Affiliation(s)
- Samir F Zohny
- Biochemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
| | | |
Collapse
|