1
|
Anastasiadou DP, Couturier N, Goel S, Argyris DG, Vodopyanov S, Rivera-Sanchez L, Gonzalez E, Kreger J, Griffen A, Kazakov A, Burt J, Recoder N, Duran CL, Harney AS, Quesnel A, Filippou PS, Lenis VP, Shukla S, Entenberg D, Zintiridou A, Chen X, Eddy RJ, Oktay MH, Condeelis JS, Karagiannis NS, Briceno A, Guzik H, Alon R, DesMarais V, Ioannou G, Gnjatic S, Raynolds DM, Macedo R, Reshef R, Gil-Henn H, MacLean AL, Torres ER, LaFave LM, Lauvau G, Karagiannis GS. Intratumoral CXCL12 Gradients Contextualize Tumor Cell Invasion, Migration and Immune Suppression in Breast Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618571. [PMID: 39464015 PMCID: PMC11507869 DOI: 10.1101/2024.10.15.618571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Although the CXCL12/CXCR4 pathway has been prior investigated for its prometastatic and immuno- suppressive roles in the tumor microenvironment, evidence on the spatiotemporal regulation of these hallmarks has been lacking. Here, we demonstrate that CXCL12 forms a gradient specifically around cancer cell intravasation doorways, also known as Tumor Microenvironment of Metastasis (TMEM) doorways, thus facilitating the chemotactic translocation of prometastatic tumor cells expressing CXCR4 toward the perivascular TMEM doorways for subsequent entry into peripheral circulation. Fur- thermore, we demonstrate that the CXCL12-rich micro-environment around TMEM doorways may cre- ate immunosuppressive niches, whereby CD8 + T cells, despite being attracted to these regions, often exhibit reduced effector functions, limiting their efficacy. While the CXCL12/CXCR4 pathway can mini- mally influence the overall composition of immune cell populations, it biases the distribution of CD8 + T cells away from TMEM doorways, justifying its prior-established role as immunosuppressive factor for CD8 + T cells. Our research suggests that the complex interactions between CXCL12 and the various tumor and immune cell types contributes not only to the completion of the initial steps of the metastatic cascade, but also offers an immunological "sanctuary" to prometastatic tumor cells homed around TMEM doorways. Overall, our study enhances our current understanding on the mechanisms, via which CXCL12 orchestrates tumor cell behavior and immune dynamics, potentially guiding future thera- peutic strategies to combat breast cancer metastasis and improve anti-tumor immunity.
Collapse
|
2
|
Bruni S, Mercogliano MF, Mauro FL, Cordo Russo RI, Schillaci R. Cancer immune exclusion: breaking the barricade for a successful immunotherapy. Front Oncol 2023; 13:1135456. [PMID: 37284199 PMCID: PMC10239871 DOI: 10.3389/fonc.2023.1135456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Immunotherapy has changed the course of cancer treatment. The initial steps were made through tumor-specific antibodies that guided the setup of an antitumor immune response. A new and successful generation of antibodies are designed to target immune checkpoint molecules aimed to reinvigorate the antitumor immune response. The cellular counterpart is the adoptive cell therapy, where specific immune cells are expanded or engineered to target cancer cells. In all cases, the key for achieving positive clinical resolutions rests upon the access of immune cells to the tumor. In this review, we focus on how the tumor microenvironment architecture, including stromal cells, immunosuppressive cells and extracellular matrix, protects tumor cells from an immune attack leading to immunotherapy resistance, and on the available strategies to tackle immune evasion.
Collapse
|
3
|
Assessment of MRI to estimate metastatic dissemination risk and prometastatic effects of chemotherapy. NPJ Breast Cancer 2022; 8:101. [PMID: 36056005 PMCID: PMC9440218 DOI: 10.1038/s41523-022-00463-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 07/11/2022] [Indexed: 11/10/2022] Open
Abstract
Metastatic dissemination in breast cancer is regulated by specialized intravasation sites called “tumor microenvironment of metastasis” (TMEM) doorways, composed of a tumor cell expressing the actin-regulatory protein Mena, a perivascular macrophage, and an endothelial cell, all in stable physical contact. High TMEM doorway number is associated with an increased risk of distant metastasis in human breast cancer and mouse models of breast carcinoma. Here, we developed a novel magnetic resonance imaging (MRI) methodology, called TMEM Activity-MRI, to detect TMEM-associated vascular openings that serve as the portal of entry for cancer cell intravasation and metastatic dissemination. We demonstrate that TMEM Activity-MRI correlates with primary tumor TMEM doorway counts in both breast cancer patients and mouse models, including MMTV-PyMT and patient-derived xenograft models. In addition, TMEM Activity-MRI is reduced in mouse models upon treatment with rebastinib, a specific and potent TMEM doorway inhibitor. TMEM Activity-MRI is an assay that specifically measures TMEM-associated vascular opening (TAVO) events in the tumor microenvironment, and as such, can be utilized in mechanistic studies investigating molecular pathways of cancer cell dissemination and metastasis. Finally, we demonstrate that TMEM Activity-MRI increases upon treatment with paclitaxel in mouse models, consistent with prior observations that chemotherapy enhances TMEM doorway assembly and activity in human breast cancer. Our findings suggest that TMEM Activity-MRI is a promising precision medicine tool for localized breast cancer that could be used as a non-invasive test to determine metastatic risk and serve as an intermediate pharmacodynamic biomarker to monitor therapeutic response to agents that block TMEM doorway-mediated dissemination.
Collapse
|
4
|
Borriello L, Coste A, Traub B, Sharma VP, Karagiannis GS, Lin Y, Wang Y, Ye X, Duran CL, Chen X, Friedman M, Sosa MS, Sun D, Dalla E, Singh DK, Oktay MH, Aguirre-Ghiso JA, Condeelis JS, Entenberg D. Primary tumor associated macrophages activate programs of invasion and dormancy in disseminating tumor cells. Nat Commun 2022; 13:626. [PMID: 35110548 PMCID: PMC8811052 DOI: 10.1038/s41467-022-28076-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 01/07/2022] [Indexed: 02/07/2023] Open
Abstract
Metastases are initiated by disseminated tumor cells (DTCs) that colonize distant organs. Growing evidence suggests that the microenvironment of the primary tumor primes DTCs for dormant or proliferative fates. However, the manner in which this occurs remains poorly understood. Here, using the Window for High-Resolution Intravital Imaging of the Lung (WHRIL), we study the live lung longitudinally and follow the fate of individual DTCs that spontaneously disseminate from orthotopic breast tumors. We find that spontaneously DTCs have increased levels of retention, increased speed of extravasation, and greater survival after extravasation, compared to experimentally metastasized tumor cells. Detailed analysis reveals that a subset of macrophages within the primary tumor induces a pro-dissemination and pro-dormancy DTC phenotype. Our work provides insight into how specific primary tumor microenvironments prime a subpopulation of cells for expression of proteins associated with dissemination and dormancy.
Collapse
Affiliation(s)
- Lucia Borriello
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Anouchka Coste
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Brian Traub
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Ved P Sharma
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - George S Karagiannis
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Yu Lin
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Yarong Wang
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Xianjun Ye
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Camille L Duran
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Xiaoming Chen
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Madeline Friedman
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Maria Soledad Sosa
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan Sun
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Erica Dalla
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deepak K Singh
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Maja H Oktay
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
- Department of Pathology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Julio A Aguirre-Ghiso
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| | - David Entenberg
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
- Department of Pathology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
5
|
Duran CL, Borriello L, Karagiannis GS, Entenberg D, Oktay MH, Condeelis JS. Targeting Tie2 in the Tumor Microenvironment: From Angiogenesis to Dissemination. Cancers (Basel) 2021; 13:cancers13225730. [PMID: 34830883 PMCID: PMC8616247 DOI: 10.3390/cancers13225730] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary The dissemination of cancer cells from their original location to distant organs where they grow, a process called metastasis, causes more than 90% of cancer deaths. The identification of the molecular mechanisms of metastasis and the development of anti-metastatic therapies are essential to increase patient survival. In recent years, targeting the tumor microenvironment has become a promising avenue to prevent both tumor growth and metastasis. As the tumor microenvironment contains not only cancer cells but also blood vessels, immune cells, and other non-cancerous cells, it is naïve to think that therapy only affects a single cell type in this complex environment. Here we review the importance, and ways to inhibit the function, of one therapeutic target: the receptor Tie2. Tie2 is a receptor present on the cell surface of several cell types within the tumor microenvironment and regulates tumor angiogenesis, growth, and metastasis to distant organs. Abstract The Tie2 receptor tyrosine kinase is expressed in vascular endothelial cells, tumor-associated macrophages, and tumor cells and has been a major focus of research in therapies targeting the tumor microenvironment. The most extensively studied Tie2 ligands are Angiopoietin 1 and 2 (Ang1, Ang2). Ang1 plays a critical role in vessel maturation, endothelial cell migration, and survival. Ang2, depending on the context, may function to disrupt connections between the endothelial cells and perivascular cells, promoting vascular regression. However, in the presence of VEGF-A, Ang2 instead promotes angiogenesis. Tie2-expressing macrophages play a critical role in both tumor angiogenesis and the dissemination of tumor cells from the primary tumor to secondary sites. Therefore, Ang-Tie2 signaling functions as an angiogenic switch during tumor progression and metastasis. Here we review the recent advances and complexities of targeting Tie2 signaling in the tumor microenvironment as a possible anti-angiogenic, and anti-metastatic, therapy and describe its use in combination with chemotherapy.
Collapse
Affiliation(s)
- Camille L. Duran
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA; (C.L.D.); (L.B.); (D.E.); (M.H.O.)
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA;
| | - Lucia Borriello
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA; (C.L.D.); (L.B.); (D.E.); (M.H.O.)
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA;
| | - George S. Karagiannis
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA;
- Department of Microbiology and Immunology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
| | - David Entenberg
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA; (C.L.D.); (L.B.); (D.E.); (M.H.O.)
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA;
- Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
| | - Maja H. Oktay
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA; (C.L.D.); (L.B.); (D.E.); (M.H.O.)
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA;
- Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Department of Pathology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
| | - John S. Condeelis
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA; (C.L.D.); (L.B.); (D.E.); (M.H.O.)
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA;
- Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Department of Surgery, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Correspondence:
| |
Collapse
|
6
|
Ma J, Yan T, Bai Y, Ye M, Ma C, Ma X, Zhang L. TMEM100 negatively regulated by microRNA‑106b facilitates cellular apoptosis by suppressing survivin expression in NSCLC. Oncol Rep 2021; 46:185. [PMID: 34278505 DOI: 10.3892/or.2021.8136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/28/2021] [Indexed: 11/06/2022] Open
Abstract
Non‑small cell lung cancer (NSCLC) is a common malignant tumour. Nevertheless, the 5‑year survival rate of NSCLC patients remains poor. Thus, identifying critical factors involved in regulating the progression of NSCLC is important for providing potential treatment targets. In the present study, it was observed that transmembrane protein 100 (TMEM100) was significantly downregulated in NSCLC tissues compared with paired peritumoral tissues. Decreased TMEM100 expression was associated with poor clinical outcomes in NSCLC patients. Moreover, TMEM100 overexpression inhibited colony formation and facilitated apoptosis by suppressing survivin expression in NSCLC cells, whereas TMEM100 knockdown had the opposite effect. In addition, microRNA (miR)‑106b, a miR with controversial roles in different human cancers, was upregulated in NSCLC and directly downregulated TMEM100 expression. The roles of miR‑106b in cell survival were mitigated by the restoration of TMEM100. The aforementioned results indicated that TMEM100 induced cell apoptosis and inhibited cell survival by serving as a tumour suppressor and that miR‑106b‑mitigatedTMEM100 expression defined a potentially oncogenic pathway in NSCLC.
Collapse
Affiliation(s)
- Jun Ma
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, P.R. China
| | - Tingting Yan
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Yongrui Bai
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Ming Ye
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Chunhui Ma
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Xiumei Ma
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Lei Zhang
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| |
Collapse
|
7
|
Breast Cancer Cell Re-Dissemination from Lung Metastases-A Mechanism for Enhancing Metastatic Burden. J Clin Med 2021; 10:jcm10112340. [PMID: 34071839 PMCID: PMC8199463 DOI: 10.3390/jcm10112340] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022] Open
Abstract
Although metastatic disease is the primary cause of mortality in cancer patients, the mechanisms leading to overwhelming metastatic burden are still incompletely understood. Metastases are the endpoint of a series of multi-step events involving cancer cell intravasation, dissemination to distant organs, and outgrowth to metastatic colonies. Here we show, for the first-time, that breast cancer cells do not solely disseminate to distant organs from primary tumors and metastatic nodules in the lymph nodes, but also do so from lung metastases. Thus, our findings indicate that metastatic dissemination could continue even after the removal of the primary tumor. Provided that the re-disseminated cancer cells initiate growth upon arrival to distant sites, cancer cell re-dissemination from metastatic foci could be one of the crucial mechanisms leading to overt metastases and patient demise. Therefore, the development of new therapeutic strategies to block cancer cell re-dissemination would be crucial to improving survival of patients with metastatic disease.
Collapse
|
8
|
Asiry S, Kim G, Filippou PS, Sanchez LR, Entenberg D, Marks DK, Oktay MH, Karagiannis GS. The Cancer Cell Dissemination Machinery as an Immunosuppressive Niche: A New Obstacle Towards the Era of Cancer Immunotherapy. Front Immunol 2021; 12:654877. [PMID: 33927723 PMCID: PMC8076861 DOI: 10.3389/fimmu.2021.654877] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Although cancer immunotherapy has resulted in unpreceded survival benefits to subsets of oncology patients, accumulating evidence from preclinical animal models suggests that the immunosuppressive tumor microenvironment remains a detrimental factor limiting benefit for many patient subgroups. Recent efforts on lymphocyte-mediated immunotherapies are primarily focused on eliminating cancer foci at primary and metastatic sites, but few studies have investigated the impact of these therapies on the highly complex process of cancer cell dissemination. The metastatic cascade involves the directional streaming of invasive/migratory tumor cells toward specialized blood vessel intravasation gateways, called TMEM doorways, to the peripheral circulation. Importantly, this process occurs under the auspices of a specialized tumor microenvironment, herewith referred to as "Dissemination Trajectory", which is supported by an ample array of tumor-associated macrophages (TAMs), skewed towards an M2-like polarization spectrum, and which is also vital for providing microenvironmental cues for cancer cell invasion, migration and stemness. Based on pre-existing evidence from preclinical animal models, this article outlines the hypothesis that dissemination trajectories do not only support the metastatic cascade, but also embody immunosuppressive niches, capable of providing transient and localized immunosubversion cues to the migratory/invasive cancer cell subpopulation while in the act of departing from a primary tumor. So long as these dissemination trajectories function as "immune deserts", the migratory tumor cell subpopulation remains efficient in evading immunological destruction and seeding metastatic sites, despite administration of cancer immunotherapy and/or other cytotoxic treatments. A deeper understanding of the molecular and cellular composition, as well as the signaling circuitries governing the function of these dissemination trajectories will further our overall understanding on TAM-mediated immunosuppression and will be paramount for the development of new therapeutic strategies for the advancement of optimal cancer chemotherapies, immunotherapies, and targeted therapies.
Collapse
Affiliation(s)
- Saeed Asiry
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, New York City, NY, United States
| | - Gina Kim
- Department of Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, New York City, NY, United States
| | - Panagiota S. Filippou
- School of Health and Life Sciences, Teesside University, Middlesbrough, United Kingdom
- National Horizons Centre, Teesside University, Darlington, United Kingdom
| | - Luis Rivera Sanchez
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York City, NY, United States
| | - David Entenberg
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York City, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York City, NY, United States
- Integrated Imaging Program, Albert Einstein College of Medicine, New York City, NY, United States
| | - Douglas K. Marks
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY, United States
| | - Maja H. Oktay
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, New York City, NY, United States
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York City, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York City, NY, United States
- Integrated Imaging Program, Albert Einstein College of Medicine, New York City, NY, United States
| | - George S. Karagiannis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York City, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York City, NY, United States
- Integrated Imaging Program, Albert Einstein College of Medicine, New York City, NY, United States
| |
Collapse
|
9
|
Coste A, Karagiannis GS, Wang Y, Xue EA, Lin Y, Skobe M, Jones JG, Oktay MH, Condeelis JS, Entenberg D. Hematogenous Dissemination of Breast Cancer Cells From Lymph Nodes Is Mediated by Tumor MicroEnvironment of Metastasis Doorways. Front Oncol 2020; 10:571100. [PMID: 33194666 PMCID: PMC7649363 DOI: 10.3389/fonc.2020.571100] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/17/2020] [Indexed: 11/24/2022] Open
Abstract
In primary breast tumors, cancer cells hematogenously disseminate through doorways in the vasculature composed of three-cell complexes (known as Tumor MicroEnvironment of Metastasis) comprising a perivascular macrophage, a tumor cell overexpressing the actin-regulatory protein Mammalian Enabled (Mena), and an endothelial cell, all in direct physical contact. It has been previously shown that once tumor cells establish lymph node metastases in patients, TMEM doorways form in the metastatic tumor cell nests. However, it has not been established if such lymph node-TMEM doorways actively transit tumor cells into the peripheral circulation and on to tertiary sites. To address this question in this short report, we used a mouse model of lymph node metastasis to demonstrate that TMEM doorways: (1) exist in tumor-positive lymph nodes of mice, (2) are restricted to the blood vascular endothelium, (3) serve as a mechanism for further dissemination to peripheral sites such as to the lungs, and (4) their activity can be abrogated by a pharmaceutical intervention. Our data suggest that cancer cell dissemination via TMEM doorways is a common mechanism of breast cancer cell dissemination to distant sites and thus the pharmacological targeting of TMEM may be necessary, even after resection of the primary tumor, to suppress cancer cell dissemination.
Collapse
Affiliation(s)
- Anouchka Coste
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Department of Surgery, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States
| | - George S Karagiannis
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States
| | - Yarong Wang
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States
| | - Emily A Xue
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States
| | - Yu Lin
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States
| | - Mihaela Skobe
- Department of Oncological Sciences and Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Joan G Jones
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Department of Pathology, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Department of Epidemiology and Population Health, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States
| | - Maja H Oktay
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Department of Pathology, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Department of Surgery, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States
| | - David Entenberg
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States
| |
Collapse
|
10
|
Borriello L, Karagiannis GS, Duran CL, Coste A, Oktay MH, Entenberg D, Condeelis JS. The role of the tumor microenvironment in tumor cell intravasation and dissemination. Eur J Cell Biol 2020; 99:151098. [PMID: 32800278 DOI: 10.1016/j.ejcb.2020.151098] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/15/2020] [Accepted: 06/29/2020] [Indexed: 01/11/2023] Open
Abstract
Metastasis, a process that requires tumor cell dissemination followed by tumor growth, is the primary cause of death in cancer patients. An essential step of tumor cell dissemination is intravasation, a process by which tumor cells cross the blood vessel endothelium and disseminate to distant sites. Studying this process is of utmost importance given that intravasation in the primary tumor, as well as the secondary and tertiary metastases, is the key step in the systemic spread of tumor cells, and that this process continues even after removal of the primary tumor. High-resolution intravital imaging of the tumor microenvironment of breast carcinoma has revealed that tumor cell intravasation exclusively occurs at doorways, termed "Tumor MicroEnvironment of Metastasis" (TMEM), composed of three different cell types: a Tie2high/VEGFhigh perivascular macrophage, a Mena overexpressing tumor cell, and an endothelial cell, all in direct contact. In this review article, we discuss the interactions between these cell types, the subsequent signaling events which lead to tumor cell intravasation, and the role of invadopodia in supporting tumor cell invasion and dissemination. We end our review by discussing how the knowledge acquired from the use of intravital imaging is now leading to new clinical trials targeting tumor cell dissemination and preventing metastatic progression.
Collapse
Affiliation(s)
- Lucia Borriello
- Department of Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA.
| | - George S Karagiannis
- Department of Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Integrated Imaging Program, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Camille L Duran
- Department of Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Integrated Imaging Program, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Anouchka Coste
- Department of Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Department of Surgery, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Maja H Oktay
- Department of Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Integrated Imaging Program, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Department of Pathology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - David Entenberg
- Department of Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Integrated Imaging Program, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA.
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Integrated Imaging Program, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Department of Surgery, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
11
|
Avagliano A, Fiume G, Ruocco MR, Martucci N, Vecchio E, Insabato L, Russo D, Accurso A, Masone S, Montagnani S, Arcucci A. Influence of Fibroblasts on Mammary Gland Development, Breast Cancer Microenvironment Remodeling, and Cancer Cell Dissemination. Cancers (Basel) 2020; 12:E1697. [PMID: 32604738 PMCID: PMC7352995 DOI: 10.3390/cancers12061697] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
The stromal microenvironment regulates mammary gland development and tumorigenesis. In normal mammary glands, the stromal microenvironment encompasses the ducts and contains fibroblasts, the main regulators of branching morphogenesis. Understanding the way fibroblast signaling pathways regulate mammary gland development may offer insights into the mechanisms of breast cancer (BC) biology. In fact, the unregulated mammary fibroblast signaling pathways, associated with alterations in extracellular matrix (ECM) remodeling and branching morphogenesis, drive breast cancer microenvironment (BCM) remodeling and cancer growth. The BCM comprises a very heterogeneous tissue containing non-cancer stromal cells, namely, breast cancer-associated fibroblasts (BCAFs), which represent most of the tumor mass. Moreover, the different components of the BCM highly interact with cancer cells, thereby generating a tightly intertwined network. In particular, BC cells activate recruited normal fibroblasts in BCAFs, which, in turn, promote BCM remodeling and metastasis. Thus, comparing the roles of normal fibroblasts and BCAFs in the physiological and metastatic processes, could provide a deeper understanding of the signaling pathways regulating BC dissemination. Here, we review the latest literature describing the structure of the mammary gland and the BCM and summarize the influence of epithelial-mesenchymal transition (EpMT) and autophagy in BC dissemination. Finally, we discuss the roles of fibroblasts and BCAFs in mammary gland development and BCM remodeling, respectively.
Collapse
Affiliation(s)
- Angelica Avagliano
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (G.F.); (E.V.)
| | - Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy;
| | - Nunzia Martucci
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| | - Eleonora Vecchio
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (G.F.); (E.V.)
| | - Luigi Insabato
- Anatomic Pathology Unit, Department of Advanced Biomedical Sciences, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (L.I.); (D.R.)
| | - Daniela Russo
- Anatomic Pathology Unit, Department of Advanced Biomedical Sciences, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (L.I.); (D.R.)
| | - Antonello Accurso
- Department of General, Oncological, Bariatric and Endocrine-Metabolic Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Stefania Masone
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Stefania Montagnani
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| | - Alessandro Arcucci
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| |
Collapse
|
12
|
Hu Q, Wang G, Chen X, Zhang L, Zhao W, Jiang Y, Zhang C, Sun J, Xu H, Li H, Kong Q, Zhao J, Li X, Zhang X, Lv W, Liu Y, Yang G, Mu L, Wang J. Neural-specific distribution of transmembrane protein TMEM240 and formation of TMEM240-Body. Int J Biol Macromol 2020; 161:692-703. [PMID: 32535204 DOI: 10.1016/j.ijbiomac.2020.06.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/18/2020] [Accepted: 06/09/2020] [Indexed: 10/24/2022]
Abstract
Mutation in TMEM240 is suggested to cause SCA21, but the specific mechanism has not been clarified. The subcellular localization, specific biological function, and corresponding mechanism of action of TMEM240 have also not been delineated. In this study, the mRNA and protein expression of TMEM240 were assessed using qPCR and western blotting, respectively. Live cell imaging was used to establish the sub-cellular location of TMEM240, and electron microscopy was used to determine the morphology and distribution of TMEM240 in the cell. TMEM240 was specifically expressed in the neurons. Exogenous TMEM240 formed a multilayered cell structure, which we refer to as TMEM240-Body (T240-Body). T240-Body was separated and purified by centrifugation and filtration. An anchor protein His-tagged-GFP-BP on Ni-NTA agarose was used to pull down T240-GFP binding proteins. Both the N-terminal and the C-terminal of TMEM240 were confirmed to be inside the T240-Body. Co-localization experiments suggested that peroxisomes might contribute to T240-Body formation, and the two transmembrane regions of TMEM240 appear to be essential for formation of the T240-Body. Emerin protein contributed to formation of T240-Body when combined with TMEM240. Overall, this study provides new insights into TMEM240, which inform future research to further our understanding of its biological function.
Collapse
Affiliation(s)
- Qiongqiong Hu
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China; Department of Neurology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, China
| | - Guangyou Wang
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Xin Chen
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Liulei Zhang
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Wei Zhao
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Yan Jiang
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Chong Zhang
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Jin Sun
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Hao Xu
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Hulun Li
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Qingfei Kong
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Jiarui Zhao
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Xinrong Li
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Xiaoyu Zhang
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Weiqi Lv
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Yumei Liu
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Gaiqing Yang
- Department of Neurology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, China
| | - Lili Mu
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China.
| | - Jinghua Wang
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China; Ministry of Education Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, Heilongjiang 150086, China.
| |
Collapse
|
13
|
Tumor Microenvironment of Metastasis (TMEM) Doorways Are Restricted to the Blood Vessel Endothelium in Both Primary Breast Cancers and Their Lymph Node Metastases. Cancers (Basel) 2019; 11:cancers11101507. [PMID: 31597373 PMCID: PMC6827388 DOI: 10.3390/cancers11101507] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 12/27/2022] Open
Abstract
Cancer cells metastasize from primary tumors to regional lymph nodes and distant sites via the lymphatic and blood vascular systems, respectively. Our prior work has demonstrated that in primary breast tumors, cancer cells utilize a three-cell complex (known as tumor microenvironment of metastasis, or TMEM) composed of a perivascular macrophage, a tumor cell expressing high levels of the actin-regulatory protein mammalian enabled (Mena), and an endothelial cell as functional “doorways” for hematogenous dissemination. Here, we studied a well-annotated case–control cohort of human invasive ductal carcinoma of the breast and metastatic lymph nodes from a separate breast cancer cohort. We demonstrate that in primary breast tumors, blood vessels are always present within tumor cell nests (TCNs) and tumor-associated stroma (TAS), while lymphatic vessels are only occasionally present in TCN and TAS. Furthermore, TMEM doorways not only exist in primary tumors as previously reported but also in lymph node metastases. In addition, we show that TMEM intravasation doorways are restricted to the blood vascular endothelium in both primary tumors and lymph node metastases, suggesting that breast cancer dissemination to distant sites from both primary tumors and metastatic foci in lymph nodes occurs hematogenously at TMEM doorways. TMEMs are very rarely detected at lymphatic vessels and do not confer clinical prognostic significance, indicating they are not participants in TMEM-associated hematogenous dissemination. These findings are consistent with recent observations that hematogenous dissemination from lymph nodes occurs via blood vessels.
Collapse
|
14
|
Karagiannis GS, Pastoriza JM, Borriello L, Jafari R, Coste A, Condeelis JS, Oktay MH, Entenberg D. Assessing Tumor Microenvironment of Metastasis Doorway-Mediated Vascular Permeability Associated with Cancer Cell Dissemination using Intravital Imaging and Fixed Tissue Analysis. J Vis Exp 2019:10.3791/59633. [PMID: 31305525 PMCID: PMC6784529 DOI: 10.3791/59633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The most common cause of cancer related mortality is metastasis, a process that requires dissemination of cancer cells from the primary tumor to secondary sites. Recently, we established that cancer cell dissemination in primary breast cancer and at metastatic sites in the lung occurs only at doorways called Tumor MicroEnvironment of Metastasis (TMEM). TMEM doorway number is prognostic for distant recurrence of metastatic disease in breast cancer patients. TMEM doorways are composed of a cancer cell which over-expresses the actin regulatory protein Mena in direct contact with a perivascular, proangiogenic macrophage which expresses high levels of TIE2 and VEGF, where both of these cells are tightly bound to a blood vessel endothelial cell. Cancer cells can intravasate through TMEM doorways due to transient vascular permeability orchestrated by the joint activity of the TMEM-associated macrophage and the TMEM-associated Mena-expressing cancer cell. In this manuscript, we describe two methods for assessment of TMEM-mediated transient vascular permeability: intravital imaging and fixed tissue immunofluorescence. Although both methods have their advantages and disadvantages, combining the two may provide the most complete analyses of TMEM-mediated vascular permeability as well as microenvironmental prerequisites for TMEM function. Since the metastatic process in breast cancer, and possibly other types of cancer, involves cancer cell dissemination via TMEM doorways, it is essential to employ well established methods for the analysis of the TMEM doorway activity. The two methods described here provide a comprehensive approach to the analysis of TMEM doorway activity, either in naïve or pharmacologically treated animals, which is of paramount importance for pre-clinical trials of agents that prevent cancer cell dissemination via TMEM.
Collapse
Affiliation(s)
- George S Karagiannis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine; Integrated Imaging Program, Albert Einstein College of Medicine;
| | - Jessica M Pastoriza
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine; Department of Surgery, Montefiore Medical Center
| | - Lucia Borriello
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine
| | - Rojin Jafari
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine
| | - Anouchka Coste
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine; Department of Surgery, Montefiore Medical Center
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine; Integrated Imaging Program, Albert Einstein College of Medicine; Department of Surgery, Montefiore Medical Center;
| | - Maja H Oktay
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine; Integrated Imaging Program, Albert Einstein College of Medicine; Department of Pathology, Montefiore Medical Center;
| | - David Entenberg
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine; Integrated Imaging Program, Albert Einstein College of Medicine;
| |
Collapse
|
15
|
Zhang X, Xing XX, Cui JF. Invadopodia formation: An important step in matrix stiffness-regulated tumor invasion and metastasis. Shijie Huaren Xiaohua Zazhi 2019; 27:589-597. [DOI: 10.11569/wcjd.v27.i9.589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Highly motile and invasive abilities are symbolic features of metastatic tumor cells. Being a critical molecular event for maintaining the highly migratory and invasive capabilities of tumor cells, invadopodia formation undoubtedly determines the progression of tumor invasion and metastasis. Growing numbers of studies suggest that increased matrix stiffness, as a notable property of physical mechanics in solid tumors, participates in the regulation of tumor invasion and metastasis via different molecular mechanisms. However, to date the relevant mechanisms of matrix stiffness-induced invadopodia formation and activity in tumor cells remain largely unclear. This paper is to make a review on the structure and function of invadopodia, the stages and inductive factors of invadopodia formation, the regulatory mechanisms of matrix stiffness-induced invadopodia formation and so on, with an aim to reveal the important roles of invadopodia in matrix stiffness-regulated tumor invasion and metastasis.
Collapse
Affiliation(s)
- Xi Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiao-Xia Xing
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jie-Feng Cui
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
16
|
Estrogen receptor-α regulation of microRNA-590 targets FAM171A1-a modifier of breast cancer invasiveness. Oncogenesis 2019; 8:5. [PMID: 30631046 PMCID: PMC6328622 DOI: 10.1038/s41389-018-0113-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/12/2018] [Accepted: 12/11/2018] [Indexed: 12/27/2022] Open
Abstract
The pathobiology and aggressiveness of the triple negative breast cancer (TNBC) are influenced by genes that are preferentially expressed in TNBC cells. However, the nature of such genes with the role in invasiveness of TNBC cells is not fully understood. Here, we identified FAM171A1, member (A1) of the family with sequence similarity 171, as an overexpressed candidate gene in TNBC cells and tumors as compared to estrogen receptor-alpha (ERα) positive breast cancer. We found that the expression of FAM171A1 correlates well with the loss of ERα as well as its newly identified target miR590-5p in TNBC but not in ERα-positive cells. In addition, we report that ERα regulates FAM171A1 expression through a mechanism which involves ERα stimulation of miR590-5p expression via binding to its promoter, and in-turn, miR590-5p suppression of FAM171A1 expression. Further, we found that the levels of FAM171A1 correlate well with cancer cell aggressiveness as depletion or overexpression of FAM171A1 confers reduced or increased ability of TNBC cells to form mammospheres, respectively in accordance with the previous report of increased mammosphere formation potential of metastatic cells. In brief, results presented here have demonstrated that ERα regulation of FAM171A1 expression via miR590-5p explains the molecular basis of the noticed reduced levels of FAM171A1 in ER-positive breast cancer cells and that FAM171A1 is a preferably TNBC- overexpressed gene. Further, the noted loss of ERα-miR590-5p axis may upregulate the expression of FAM171A1 and consequently, resulting aggressiveness of TNBC cells. These findings suggest that FAM171A1 might represent a potentially novel therapeutic target for TNBC tumors.
Collapse
|
17
|
Abstract
Cancer metastasis is defined as the dissemination of malignant cells from the primary tumor site, leading to colonization of distant organs and the establishment of a secondary tumor. Metastasis is frequently associated with chemoresistance and is the major cause of cancer-related mortality. Metastatic cells need to acquire the ability to resist to stresses provided by different environments, such as reactive oxygen species, shear stress, hemodynamic forces, stromal composition, and immune responses, to colonize other tissues. Hence, only a small population of cells has a metastasis-initiating potential. Several studies have revealed the misregulation of transcriptional variants during cancer progression, and many splice events can be used to distinguish between normal and tumoral tissue. These variants, which are abnormally expressed in malignant cells, contribute to an adaptive response of tumor cells and the success of the metastatic cascade, promoting an anomalous cell cycle, cellular adhesion, resistance to death, cell survival, migration and invasion. Understanding the different aspects of splicing regulation and the influence of transcriptional variants that control metastatic cells is critical for the development of therapeutic strategies. In this review, we describe how transcriptional variants contribute to metastatic competence and discuss how targeting specific isoforms may be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Joice De Faria Poloni
- a Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Diego Bonatto
- a Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil
| |
Collapse
|
18
|
Jin X, Guan Y, Shen H, Pang Y, Liu L, Jia Q, Meng F, Zhang X. Copy Number Variation of Immune-Related Genes and Their Association with Iodine in Adults with Autoimmune Thyroid Diseases. Int J Endocrinol 2018; 2018:1705478. [PMID: 29713342 PMCID: PMC5866896 DOI: 10.1155/2018/1705478] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/31/2018] [Accepted: 02/06/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Autoimmune thyroid diseases (AITD) are complex conditions that are caused by an interaction between genetic susceptibility and environmental triggers. Iodine is already known to be an environmental trigger for AITD, but genes associated with susceptibility need to be further assessed. Therefore, the aims of this study were to assess the association between copy number variations (CNVs) and AITD, to identify genes related with susceptibility to AITD, and to investigate the interaction between iodine status and CNVs in the occurrence of AITD. METHODS Blood samples from 15 patients with AITD and 15 controls were assessed by chromosome microarray to identify candidate genes. The copy number of candidate genes and urinary iodine level was determined in adults from areas of different iodine statuses including 158 patients and 181 controls. RESULTS The immune-related genes, SIRPB1 and TMEM91, were selected as candidate genes. The distribution of SIRPB1 CNV in AITD patients and controls was significantly different and was considered a risk factor for AITD. There was no significant association between urinary iodine level and candidate gene CNVs. CONCLUSION SIRPB1 CNV and an excess of iodine were risk factors for AITD, but an association with the occurrence of AITD was not found.
Collapse
Affiliation(s)
- Xing Jin
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yunfeng Guan
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
| | - Hongmei Shen
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yi Pang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lixiang Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
| | - Qingzhen Jia
- Institute for Endemic Disease Prevention and Treatment of Shanxi Province, Linfen, Shanxi, China
| | - Fangang Meng
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaoye Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
19
|
Tumor Cell Invadopodia: Invasive Protrusions that Orchestrate Metastasis. Trends Cell Biol 2017; 27:595-607. [PMID: 28412099 DOI: 10.1016/j.tcb.2017.03.003] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 12/26/2022]
Abstract
Invadopodia are a subset of invadosomes that are implicated in the integration of signals from the tumor microenvironment to support tumor cell invasion and dissemination. Recent progress has begun to define how tumor cells regulate the plasticity necessary for invadopodia to assemble and function efficiently in the different microenvironments encountered during dissemination in vivo. Exquisite mapping by many laboratories of the pathways involved in integrating diverse invadopodium initiation signals, from growth factors, to extracellular matrix (ECM) and cell-cell contact in the tumor microenvironment, has led to insight into the molecular basis of this plasticity. Here, we integrate this new information to discuss how the invadopodium is an important conductor that orchestrates tumor cell dissemination during metastasis.
Collapse
|
20
|
Karagiannis GS, Goswami S, Jones JG, Oktay MH, Condeelis JS. Signatures of breast cancer metastasis at a glance. J Cell Sci 2016; 129:1751-8. [PMID: 27084578 DOI: 10.1242/jcs.183129] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gene expression profiling has yielded expression signatures from which prognostic tests can be derived to facilitate clinical decision making in breast cancer patients. Some of these signatures are based on profiling of whole tumor tissue (tissue signatures), which includes all tumor and stromal cells. Prognostic markers have also been derived from the profiling of metastasizing tumor cells, including circulating tumor cells (CTCs) and migratory-disseminating tumor cells within the primary tumor. The metastasis signatures based on CTCs and migratory-disseminating tumor cells have greater potential for unraveling cell biology insights and mechanistic underpinnings of tumor cell dissemination and metastasis. Of clinical interest is the promise that stratification of patients into high or low metastatic risk, as well as assessing the need for cytotoxic therapy, might be improved if prognostics derived from these two types of signatures are used in a combined way. The aim of this Cell Science at a Glance article and accompanying poster is to navigate through both types of signatures and their derived prognostics, as well as to highlight biological insights and clinical applications that could be derived from them, especially when they are used in combination.
Collapse
Affiliation(s)
- George S Karagiannis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sumanta Goswami
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Joan G Jones
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY 10461, USA Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Maja H Oktay
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY 10461, USA Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|