1
|
Menyailo ME, Kopantseva EE, Khozyainova AA, Korobeynikova AA, Denisov EV. Soft tissue sarcomas at the single-cell and spatial resolution: new markers and targets. Cancer Gene Ther 2024:10.1038/s41417-024-00856-7. [PMID: 39582085 DOI: 10.1038/s41417-024-00856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
Soft tissue sarcomas (STS) are heterogeneous and aggressive tumors, originating in connective tissues embryologically derived from the mesenchyme. Due to their rarity, crucial information about their biology is still lacking. In recent years, single-cell and spatial analyses have opened up new horizons in oncology, leading to the possibility of characterizing the internal architecture of the tumor at the single-cell and spatial levels. This review summarizes the first results acquired through these revolutionary methods for different types of STS. We discuss tumor cell populations and their evolution, interactions between tumor cells and the microenvironment, new prognostic markers, and clinically important targets. Finally, we examine the challenges presented by the single-cell and spatial omics of STS and the future perspectives in this field.
Collapse
Affiliation(s)
- Maxim E Menyailo
- Single Cell Biology Laboratory, Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia, 115093, Moscow, Russia
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009, Tomsk, Russia
| | - Elena E Kopantseva
- Single Cell Biology Laboratory, Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia, 115093, Moscow, Russia
| | - Anna A Khozyainova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009, Tomsk, Russia
| | - Anastasia A Korobeynikova
- Single Cell Biology Laboratory, Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia, 115093, Moscow, Russia
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009, Tomsk, Russia
| | - Evgeny V Denisov
- Single Cell Biology Laboratory, Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia, 115093, Moscow, Russia.
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009, Tomsk, Russia.
| |
Collapse
|
2
|
Bonada M, Pittarello M, De Fazio E, Gans A, Alimonti P, Slika H, Legnani F, Di Meco F, Tyler B. Pediatric Hemispheric High-Grade Gliomas and H3.3-G34 Mutation: A Review of the Literature on Biological Features and New Therapeutic Strategies. Genes (Basel) 2024; 15:1038. [PMID: 39202398 PMCID: PMC11353413 DOI: 10.3390/genes15081038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Pediatric high-grade glioma (pHGG) encompasses a wide range of gliomas with different genomic, epigenomic, and transcriptomic features. Almost 50% of pHGGs present a mutation in genes coding for histone 3, including the subtype harboring the H3.3-G34 mutation. In this context, histone mutations are frequently associated with mutations in TP53 and ATRX, along with PDGFRA and NOTCH2NL amplifications. Moreover, the H3.3-G34 histone mutation induces epigenetic changes in immune-related genes and exerts modulatory functions on the microenvironment. Also, the functionality of the blood-brain barrier (BBB) has an impact on treatment response. The prognosis remains poor with conventional treatments, thus eliciting the investigation of additional and alternative therapies. Promising molecular targets include PDGFRA amplification, BRAF mutation, EGFR amplification, NF1 loss, and IDH mutation. Considering that pHGGs harboring the H3.3-G34R mutation appear to be more susceptible to immunotherapies (ITs), different options have been recently explored, including immune checkpoint inhibitors, antibody mediated IT, and Car-T cells. This review aims to summarize the knowledge concerning cancer biology and cancer-immune cell interaction in this set of pediatric gliomas, with a focus on possible therapeutic options.
Collapse
Affiliation(s)
- Marta Bonada
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (M.B.); (F.L.); (F.D.M.)
- Department of Oncology and Hemato-Oncology, University of Milan School of Medicine, Via Rudini 8, 20122 Milan, Italy;
| | - Matilde Pittarello
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy;
| | - Emerson De Fazio
- Department of Medicine, Vita-Salute San Raffaele University School of Medicine, 20132 Milan, Italy;
| | - Alessandro Gans
- Department of Oncology and Hemato-Oncology, University of Milan School of Medicine, Via Rudini 8, 20122 Milan, Italy;
- ASST Ovest Milanese, Neurology and Stroke Unit, Neuroscience Department, 20025 Legnano, Italy
| | - Paolo Alimonti
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02120, USA;
| | - Hasan Slika
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| | - Federico Legnani
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (M.B.); (F.L.); (F.D.M.)
- Department of Oncology and Hemato-Oncology, University of Milan School of Medicine, Via Rudini 8, 20122 Milan, Italy;
| | - Francesco Di Meco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (M.B.); (F.L.); (F.D.M.)
- Department of Oncology and Hemato-Oncology, University of Milan School of Medicine, Via Rudini 8, 20122 Milan, Italy;
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| |
Collapse
|
3
|
Cao L, Liu Q, Ma Y, Wang S. Identification of immune-related signature with prognosis in children with stage 4 and 4S neuroblastoma. Clin Transl Oncol 2024; 26:905-916. [PMID: 37709978 DOI: 10.1007/s12094-023-03320-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023]
Abstract
OBJECTIVE Spontaneous regression of tumors is an attractive phenomenon that most commonly occurs in stage 4S neuroblastoma (NB). However, the mechanism underlying this phenomenon remains unclear. METHODS Datasets correlated with NB were downloaded from online public databases, the differentially expressed genes (DEGs) between stage 4 and 4S associated with immunity were identified, and functional enrichment analysis was utilized to explore the potential functions and signaling pathways of these DEGs. In addition, based on these DEGs, a prognostic signature was constructed and validated, and differences in immune cell infiltration were analyzed. RESULTS A total of 13 DEGs were finally identified, and functional enrichment analysis revealed that these DEGs were primarily enriched in the positive regulation of neuron differentiation and TGF-β signaling pathway. The signature successfully stratifies patients into two risk score groups and performs well in judging prognosis and predicting overall survival time. In addition, the prognostic value of the risk score calculated by the signature was independent of clinical factors. The results of immune cell infiltration showed that patients with a high infiltration of resting CD4 + memory T cells had a better prognosis, while plasma cells had a worse prognosis. CONCLUSION The results of the functional enrichment analysis of these identified DEGs suggested that these DEGs may be related to spontaneous regression of NB. In addition, the prognostic signature has the potential to create new risk stratification in patients with NB.
Collapse
Affiliation(s)
- Lijian Cao
- Department of Pediatric Surgical Oncology, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University and the National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, People's Republic of China
| | - Qingqing Liu
- Department of Pediatric Surgical Oncology, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University and the National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, People's Republic of China
| | - Yue Ma
- Department of Pediatric Surgical Oncology, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University and the National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, People's Republic of China
| | - Shan Wang
- Department of Pediatric Surgical Oncology, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University and the National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, People's Republic of China.
| |
Collapse
|
4
|
Dal Bello S, Martinuzzi D, Tereshko Y, Veritti D, Sarao V, Gigli GL, Lanzetta P, Valente M. The Present and Future of Optic Pathway Glioma Therapy. Cells 2023; 12:2380. [PMID: 37830595 PMCID: PMC10572241 DOI: 10.3390/cells12192380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/31/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
Optic pathway gliomas (OPGs) encompass two distinct categories: benign pediatric gliomas, which are characterized by favorable prognosis, and malignant adult gliomas, which are aggressive cancers associated with a poor outcome. Our review aims to explore the established standards of care for both types of tumors, highlight the emerging therapeutic strategies for OPG treatment, and propose potential alternative therapies that, while originally studied in a broader glioma context, may hold promise for OPGs pending further investigation. These potential therapies encompass immunotherapy approaches, molecular-targeted therapy, modulation of the tumor microenvironment, nanotechnologies, magnetic hyperthermia therapy, cyberKnife, cannabinoids, and the ketogenic diet. Restoring visual function is a significant challenge in cases where optic nerve damage has occurred due to the tumor or its therapeutic interventions. Numerous approaches, particularly those involving stem cells, are currently being investigated as potential facilitators of visual recovery in these patients.
Collapse
Affiliation(s)
- Simone Dal Bello
- Clinical Neurology Unit, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy
| | - Deborah Martinuzzi
- Department of Medicine—Ophthalmology, University of Udine, 33100 Udine, Italy
| | - Yan Tereshko
- Clinical Neurology Unit, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy
| | - Daniele Veritti
- Department of Medicine—Ophthalmology, University of Udine, 33100 Udine, Italy
| | - Valentina Sarao
- Department of Medicine—Ophthalmology, University of Udine, 33100 Udine, Italy
| | - Gian Luigi Gigli
- Department of Medical Area, University of Udine, 33100 Udine, Italy
| | - Paolo Lanzetta
- Department of Medicine—Ophthalmology, University of Udine, 33100 Udine, Italy
| | - Mariarosaria Valente
- Clinical Neurology Unit, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy
- Department of Medical Area, University of Udine, 33100 Udine, Italy
| |
Collapse
|
5
|
Báez-Flores J, Rodríguez-Martín M, Lacal J. The therapeutic potential of neurofibromin signaling pathways and binding partners. Commun Biol 2023; 6:436. [PMID: 37081086 PMCID: PMC10119308 DOI: 10.1038/s42003-023-04815-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
Neurofibromin controls many cell processes, such as growth, learning, and memory. If neurofibromin is not working properly, it can lead to health problems, including issues with the nervous, skeletal, and cardiovascular systems and cancer. This review examines neurofibromin's binding partners, signaling pathways and potential therapeutic targets. In addition, it summarizes the different post-translational modifications that can affect neurofibromin's interactions with other molecules. It is essential to investigate the molecular mechanisms that underlie neurofibromin variants in order to provide with functional connections between neurofibromin and its associated proteins for possible therapeutic targets based on its biological function.
Collapse
Affiliation(s)
- Juan Báez-Flores
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
| | - Mario Rodríguez-Martín
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
| | - Jesus Lacal
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain.
| |
Collapse
|
6
|
Fareez F, Wang BH, Brain I, Lu JQ. Lymphomas in patients with neurofibromatosis type 1 (NF1): another malignancy in the NF1 syndrome? Pathology 2023; 55:302-314. [PMID: 36774237 DOI: 10.1016/j.pathol.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 01/21/2023]
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant multisystem syndrome caused by mutations in the neurofibromin 1 (NF1) gene that encodes for the protein neurofibromin acting as a tumour suppressor. Neurofibromin functions primarily as a GTPase-activating protein for the Ras family of oncogenes, which activates many signalling pathways for cell proliferation and differentiation; without neurofibromin, Ras is constitutively activated, thereby turning on many downstream signalling pathways related to oncogenesis. Patients with NF1 have a well known predisposition for certain types of malignancies including malignant peripheral nerve sheath tumours, gliomas, and breast cancers, as well as a potential association of NF1 with lymphoproliferative disorders such as lymphomas. In this article, we review the pathophysiology and tumourigenesis of NF1, previously reported cases of cutaneous lymphomas in NF1 patients along with our case demonstration of a NF1-associated scalp B-cell lymphoma, and NF1-associated extra cutaneous lymphomas. The diagnosis of lymphomas particularly cutaneous lymphomas may be difficult in NF1 patients as they often have skin lesions and/or cutaneous/subcutaneous nodules or tumours like neurofibromas, which raises the possibility of underdiagnosed cutaneous lymphomas in NF1 patients. We also comprehensively discuss the association between NF1 and lymphomas. In summary, most studies support a potential association between NF1 and lymphomas. Further investigation is needed to clarify the association between NF1 and lymphomas in order to bring clinical awareness of possibly underdiagnosed NF1-associated lymphomas and individualised management of NF1 patients to practice.
Collapse
Affiliation(s)
- Faiha Fareez
- Department of Pathology and Molecular Medicine, Hamilton, Ontario, Canada
| | - Bill H Wang
- Department of Surgery/Neurosurgery, McMaster University, Hamilton, Ontario, Canada
| | - Ian Brain
- Department of Laboratory Medicine and Pathobiology/Hematopathology, University of Toronto, Toronto, Ontario, Canada
| | - Jian-Qiang Lu
- Department of Pathology and Molecular Medicine, Hamilton, Ontario, Canada; Department of Pathology and Molecular Medicine/Neuropathology, Hamilton General Hospital, Hamilton, Ontario, Canada.
| |
Collapse
|
7
|
Analysis of the current Covid-19 infection and vaccination status in patients with neurofibromatosis type 1. CHINESE JOURNAL OF PLASTIC AND RECONSTRUCTIVE SURGERY 2023. [PMCID: PMC10028342 DOI: 10.1016/j.cjprs.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Background To investigate the common symptoms after Covid-19 infection, characteristics of adverse events after vaccination, changes in clinical manifestations related to Neurofibromatosis type 1 (NF1), as well as the current vaccination status and factors related to vaccine hesitation among NF1 patients, in order to provide a basis for scientific protection and vaccine acceptance in NF1 individuals in the new phase of pandemic management. Methods From December 29, 2022, to January 10, 2023, we conducted a self-assessment questionnaire survey among diagnosed NF1 patients. General data were provided including sex, age, main clinical presentations, and current treatment. This study mainly focused on the infection and vaccination status of Covid-19 among these patients with NF1. The data were statistically analyzed using SPSS26.0 software. Results Of the 250 questionnaires distributed, 226 were valid. Among the 164 patients (72.6%) with Covid-19 infection, the most common infection symptoms and incidence of patients were not significantly different from those in the normal population (P > 0.05), but the incidence of symptoms such as nasal congestion, headache, myalgia, sore throat, abdominal pain, diarrhea, and eye discomfort was higher than that in the normal population (P < 0.05), and no severe infection was observed; 186 patients (82.3%) had completed the Covid-19 vaccination, and more than half of those who were not vaccinated had no plans for vaccination. Among the vaccinated patients, there was no significant difference in the incidence of adverse events, such as fever, pain, redness, and swelling at the injection site after vaccination, compared to the normal population (P > 0.05), but the incidence of fatigue and headache was higher in NF1 patients (P < 0.001). Most patients with NF1 believe that there is no significant progressive change in NF1-related clinical manifestations after Covid-19 infection and vaccination. Conclusion Currently, some NF1 patients appear to be worried about the evolution of their disease after Covid-19 infection in the face of large fluctuations in the pandemic situation, and some patients hesitate to receive the vaccine due to their special disease condition. Thus, clinical trials should be conducted to develop a refined pandemic response and vaccination program for this special group.
Collapse
|
8
|
Wu LMN, Zhang F, Rao R, Adam M, Pollard K, Szabo S, Liu X, Belcher KA, Luo Z, Ogurek S, Reilly C, Zhou X, Zhang L, Rubin J, Chang LS, Xin M, Yu J, Suva M, Pratilas CA, Potter S, Lu QR. Single-cell multiomics identifies clinically relevant mesenchymal stem-like cells and key regulators for MPNST malignancy. SCIENCE ADVANCES 2022; 8:eabo5442. [PMID: 36322658 PMCID: PMC9629745 DOI: 10.1126/sciadv.abo5442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Malignant peripheral nerve sheath tumor (MPNST), a highly aggressive Schwann cell (SC)-derived soft tissue sarcoma, arises from benign neurofibroma (NF); however, the identity, heterogeneity and origins of tumor populations remain elusive. Nestin+ cells have been implicated as tumor stem cells in MPNST; unexpectedly, single-cell profiling of human NF and MPNST and their animal models reveal a broad range of nestin-expressing SC lineage cells and dynamic acquisition of discrete cancer states during malignant transformation. We uncover a nestin-negative mesenchymal neural crest-like subpopulation as a previously unknown malignant stem-like state common to murine and human MPNSTs, which correlates with clinical severity. Integrative multiomics profiling further identifies unique regulatory networks and druggable targets against the malignant subpopulations in MPNST. Targeting key epithelial-mesenchymal transition and stemness regulators including ZEB1 and ALDH1A1 impedes MPNST growth. Together, our studies reveal the underlying principles of tumor cell-state evolution and their regulatory circuitries during NF-to-MPNST transformation, highlighting a hitherto unrecognized mesenchymal stem-like subpopulation in MPNST disease progression.
Collapse
Affiliation(s)
- Lai Man Natalie Wu
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Feng Zhang
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Rohit Rao
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mike Adam
- Division of Developmental Biology, Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kai Pollard
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sara Szabo
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xuezhao Liu
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Katie A. Belcher
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Zaili Luo
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sean Ogurek
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Colleen Reilly
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Xin Zhou
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Li Zhang
- Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Joshua Rubin
- Department of Neuroscience and Department of Neurology, Division of Hematology and Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Long-sheng Chang
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children’s Hospital and Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Mei Xin
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Mario Suva
- Department of Pathology and Department of Medicine, Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Christine A. Pratilas
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Steven Potter
- Division of Developmental Biology, Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Q. Richard Lu
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
9
|
Mousafeiris VK, Papaioannou I, Pantazidou G, Kalyva N, Repantis T. An Intrathoracic Meningocele in a Neurofibromatosis Type I Patient Mimicking Severe COVID-19 Disease. Cureus 2022; 14:e29872. [PMID: 36348911 PMCID: PMC9629748 DOI: 10.7759/cureus.29872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
Abstract
Intrathoracic meningoceles (IM) are quite rare; they are commonly associated with neurofibromatosis type 1 (NF-1). We report a case of a 55-year-old lady who was admitted to our emergency department with a sore throat, mild fever, cough, and right-sided chest pain, and tested positive for coronavirus disease 2019 (COVID-19). Ιmaging revealed a meningocele in the right upper pulmonary area, attributed to her NF-1. Clinicians should be aware that patients with NF-1 can develop IM, and they should be included in the differential diagnosis of patients with an intrathoracic mass.
Collapse
|
10
|
Koba H, Yoneda T, Morita H, Ueda T, Hara R, Terada N, Miyakawa M, Kimura H, Kasahara K. Prolonged response to atezolizumab with bevacizumab plus chemotherapy in a patient with lung cancer harboring mutation in EGFR after Afatinib treatment: A case report. CURRENT PROBLEMS IN CANCER: CASE REPORTS 2021. [DOI: 10.1016/j.cpccr.2021.100116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
11
|
Packer RJ, Iavarone A, Jones DTW, Blakeley JO, Bouffet E, Fisher MJ, Hwang E, Hawkins C, Kilburn L, MacDonald T, Pfister SM, Rood B, Rodriguez FJ, Tabori U, Ramaswamy V, Zhu Y, Fangusaro J, Johnston SA, Gutmann DH. Implications of new understandings of gliomas in children and adults with NF1: report of a consensus conference. Neuro Oncol 2021; 22:773-784. [PMID: 32055852 PMCID: PMC7283027 DOI: 10.1093/neuonc/noaa036] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gliomas are the most common primary central nervous system tumors occurring in children and adults with neurofibromatosis type 1 (NF1). Over the past decade, discoveries of the molecular basis of low-grade gliomas (LGGs) have led to new approaches for diagnosis and treatments. However, these new understandings have not been fully applied to the management of NF1-associated gliomas. A consensus panel consisting of experts in NF1 and gliomas was convened to review the current molecular knowledge of NF1-associated low-grade “transformed” and high-grade gliomas; insights gained from mouse models of NF1-LGGs; challenges in diagnosing and treating older patients with NF1-associated gliomas; and advances in molecularly targeted treatment and potential immunologic treatment of these tumors. Next steps are recommended to advance the management and outcomes for NF1-associated gliomas.
Collapse
Affiliation(s)
- Roger J Packer
- Center for Neuroscience and Behavioral Medicine, Washington, DC, USA.,Gilbert Family Neurofibromatosis Institute, Brain Tumor Institute, and Children's National Hospital, Washington, DC, USA
| | - Antonio Iavarone
- Departments of Neurology and Pathology Institute for Cancer Genetics Columbia University Medical Center, New York, New York, USA
| | - David T W Jones
- Division of Pediatric Neuro-Oncology German Cancer Research Center Hopp Children's Cancer Center Heidelberg, Germany
| | - Jaishri O Blakeley
- Departments of Neurology; Oncology; Neurosurgery, Baltimore, Maryland, USA
| | - Eric Bouffet
- Pediatric Neuro-Oncology Program; Research Institute; and The Arthur and Sonia Labatt; Brain Tumor Research Centre, Hospital for Sick Children, Toronto, Canada
| | - Michael J Fisher
- Department of Pediatric Oncology; Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Eugene Hwang
- Gilbert Family Neurofibromatosis Institute, Brain Tumor Institute, and Children's National Hospital, Washington, DC, USA
| | - Cynthia Hawkins
- Pediatric Neuro-Oncology Program; Research Institute; and The Arthur and Sonia Labatt; Brain Tumor Research Centre, Hospital for Sick Children, Toronto, Canada
| | - Lindsay Kilburn
- Gilbert Family Neurofibromatosis Institute, Brain Tumor Institute, and Children's National Hospital, Washington, DC, USA
| | - Tobey MacDonald
- Department of Pediatrics; Emory University School of Medicine, Atlanta, Georgia, USA
| | - Stefan M Pfister
- Division of Pediatric Neuro-Oncology German Cancer Research Center Hopp Children's Cancer Center Heidelberg, Germany
| | - Brian Rood
- Gilbert Family Neurofibromatosis Institute, Brain Tumor Institute, and Children's National Hospital, Washington, DC, USA
| | - Fausto J Rodriguez
- Pathology; The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Uri Tabori
- Pediatric Neuro-Oncology Program; Research Institute; and The Arthur and Sonia Labatt; Brain Tumor Research Centre, Hospital for Sick Children, Toronto, Canada
| | - Vijay Ramaswamy
- Pediatric Neuro-Oncology Program; Research Institute; and The Arthur and Sonia Labatt; Brain Tumor Research Centre, Hospital for Sick Children, Toronto, Canada
| | - Yuan Zhu
- Gilbert Family Neurofibromatosis Institute, Brain Tumor Institute, and Children's National Hospital, Washington, DC, USA
| | - Jason Fangusaro
- Department of Pediatrics; Emory University School of Medicine, Atlanta, Georgia, USA
| | - Stephen A Johnston
- Center for Innovations in Medicine; Biodesign Institute; Arizona State University, Tempe, Arizona, USA
| | - David H Gutmann
- Department of Neurology; Washington University, St Louis, Missouri, USA
| |
Collapse
|
12
|
Galvin R, Watson AL, Largaespada DA, Ratner N, Osum S, Moertel CL. Neurofibromatosis in the Era of Precision Medicine: Development of MEK Inhibitors and Recent Successes with Selumetinib. Curr Oncol Rep 2021; 23:45. [PMID: 33721151 DOI: 10.1007/s11912-021-01032-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW Patients with neurofibromatosis type 1 (NF1) are at increased risk for benign and malignant neoplasms. Recently, targeted therapy with the MEK inhibitor class has helped address these needs. We highlight recent successes with selumetinib while acknowledging ongoing challenges for NF1 patients and future directions. RECENT FINDINGS MEK inhibitors have demonstrated efficacy for NF1-related conditions, including plexiform neurofibromas and low-grade gliomas, two common causes of NF1-related morbidity. Active investigations for NF1-related neoplasms have benefited from advanced understanding of the genomic and cell signaling alterations in these conditions and development of sound preclinical animal models. Selumetinib has become the first FDA-approved targeted therapy for NF1 following its demonstrated efficacy for inoperable plexiform neurofibroma. Investigations of combination therapy and the development of a representative NF1 swine model hold promise for translating therapies for other NF1-associated pathology.
Collapse
Affiliation(s)
- Robert Galvin
- Divisions of Pediatric Hematology & Oncology and Bone Marrow Transplant, University of Minnesota, Minneapolis, MN, USA
| | | | - David A Largaespada
- Division of Pediatric Hematology & Oncology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Nancy Ratner
- Cincinnati Children's Hospital Division of Exp. Hematology and Cancer Biology, Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Sara Osum
- Division of Pediatric Hematology & Oncology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Christopher L Moertel
- Division of Pediatric Hematology & Oncology, University of Minnesota, Minneapolis, MN, USA.
- Pediatric Hematology MMC 484 Mayo, 8484B (Campus Delivery Code), 420 Delaware St SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
13
|
Kallionpää RA, Ahramo K, Aaltonen M, Pennanen P, Peltonen J, Peltonen S. Circulating free DNA in the plasma of individuals with neurofibromatosis type 1. Am J Med Genet A 2021; 185:1098-1104. [PMID: 33484105 DOI: 10.1002/ajmg.a.62081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023]
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant syndrome whose characteristic manifestations include benign neurofibromas, yet NF1 is also associated with a high risk of cancer. Measurements of circulating free plasma DNA (cfDNA) are gaining wider applicability in cancer diagnostics, targeting of therapy, and monitoring of therapeutic response. Individuals with NF1 are likely to be followed up using this method, but the effects of NF1 and neurofibromas on cfDNA levels are not known. We studied peripheral blood samples from 19 adults with NF1 and 12 healthy controls. The cfDNA was isolated from plasma with QIAamp Circulating Nucleic Acid Kit and quantified using the Qubit 2.0 Fluorometer. The cfDNA concentration of each sample was normalized relative to the plasma protein concentration. The normalized median concentration of cfDNA in plasma was 19.3 ng/ml (range 6.6-78.6) among individuals with NF1 and 15.9 ng/ml (range 4.8-47.0) among controls (p = .369). Individuals with NF1 who also had plexiform neurofibroma (pNF) showed non-significantly elevated cfDNA concentration compared to individuals with NF1 and without known pNF (median 25.4 vs. 18.8 ng/ml, p = .122). The effect of NF1 on cfDNA seems to be relatively small and NF1 is therefore unlikely to hamper the use of cfDNA-based assays.
Collapse
Affiliation(s)
- Roope A Kallionpää
- Department of Cell Biology and Anatomy, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Kaisa Ahramo
- Department of Cell Biology and Anatomy, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Marianna Aaltonen
- Department of Cell Biology and Anatomy, Institute of Biomedicine, University of Turku, Turku, Finland.,Turku University of Applied Sciences, Turku, Finland
| | - Paula Pennanen
- Department of Cell Biology and Anatomy, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Juha Peltonen
- Department of Cell Biology and Anatomy, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sirkku Peltonen
- Department of Dermatology and Venereology, University of Turku, Turku, Finland.,Department of Dermatology, Turku University Hospital, Turku, Finland.,Department of Dermatology and Venereology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Dermatology and Venereology, Region Västra Götaland Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
14
|
Haase S, Nuñez FM, Gauss JC, Thompson S, Brumley E, Lowenstein P, Castro MG. Hemispherical Pediatric High-Grade Glioma: Molecular Basis and Therapeutic Opportunities. Int J Mol Sci 2020; 21:ijms21249654. [PMID: 33348922 PMCID: PMC7766684 DOI: 10.3390/ijms21249654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
In this review, we discuss the molecular characteristics, development, evolution, and therapeutic perspectives for pediatric high-grade glioma (pHGG) arising in cerebral hemispheres. Recently, the understanding of biology of pHGG experienced a revolution with discoveries arising from genomic and epigenomic high-throughput profiling techniques. These findings led to identification of prevalent molecular alterations in pHGG and revealed a strong connection between epigenetic dysregulation and pHGG development. Although we are only beginning to unravel the molecular biology underlying pHGG, there is a desperate need to develop therapies that would improve the outcome of pHGG patients, as current therapies do not elicit significant improvement in median survival for this patient population. We explore the molecular and cell biology and clinical state-of-the-art of pediatric high-grade gliomas (pHGGs) arising in cerebral hemispheres. We discuss the role of driving mutations, with a special consideration of the role of epigenetic-disrupting mutations. We will also discuss the possibilities of targeting unique molecular vulnerabilities of hemispherical pHGG to design innovative tailored therapies.
Collapse
Affiliation(s)
- Santiago Haase
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (S.H.); (F.M.N.); (J.C.G.); (S.T.); (E.B.); (P.L.)
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Fernando M. Nuñez
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (S.H.); (F.M.N.); (J.C.G.); (S.T.); (E.B.); (P.L.)
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jessica C. Gauss
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (S.H.); (F.M.N.); (J.C.G.); (S.T.); (E.B.); (P.L.)
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sarah Thompson
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (S.H.); (F.M.N.); (J.C.G.); (S.T.); (E.B.); (P.L.)
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Emily Brumley
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (S.H.); (F.M.N.); (J.C.G.); (S.T.); (E.B.); (P.L.)
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Pedro Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (S.H.); (F.M.N.); (J.C.G.); (S.T.); (E.B.); (P.L.)
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Maria G. Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (S.H.); (F.M.N.); (J.C.G.); (S.T.); (E.B.); (P.L.)
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Correspondence:
| |
Collapse
|
15
|
Kallionpää RA, Peltonen S, Leppävirta J, Pöyhönen M, Auranen K, Järveläinen H, Peltonen J. Haploinsufficiency of the NF1 gene is associated with protection against diabetes. J Med Genet 2020; 58:378-384. [PMID: 32571896 PMCID: PMC8142421 DOI: 10.1136/jmedgenet-2020-107062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022]
Abstract
Background The hereditary predisposition to diabetes is only partially explained by genes identified so far. Neurofibromatosis type 1 (NF1) is a rare monogenic dominant syndrome caused by aberrations of the NF1 gene. Here, we used a cohort of 1410 patients with NF1 to study the association of the NF1 gene with type 1 (T1D) and type 2 diabetes (T2D). Methods A total of 1410 patients were confirmed to fulfil the National Institutes of Health diagnostic criteria for NF1 by individually reviewing their medical records. The patients with NF1 were compared with 14 017 controls matched for age, sex and area of residence as well as 1881 non-NF1 siblings of the patients with NF1. Register-based information on purchases of antidiabetic medication and hospital encounters related to diabetes were retrieved. The Cox proportional hazards model was used to calculate the relative risk for diabetes in NF1. Results Patients with NF1 showed a lower rate of T2D when compared with a 10-fold control cohort (HR 0.27, 95% CI 0.17 to 0.43) or with their siblings without NF1 (HR 0.28, 95% CI 0.16 to 0.47). The estimates remained practically unchanged after adjusting the analyses for history of obesity and dyslipidaemias. The rate of T1D in NF1 was decreased although statistically non-significantly (HR 0.58, 95% CI 0.27 to 1.25). Conclusion Haploinsufficiency of the NF1 gene may protect against T2D and probably T1D. Since NF1 negatively regulates the Ras signalling pathway, the results suggest that the Ras pathway may be involved in the pathogenesis of diabetes.
Collapse
Affiliation(s)
| | - Sirkku Peltonen
- Department of Dermatology and Venereology, University of Turku, Turku, Finland.,Department of Dermatology, Turku University Hospital, Turku, Finland
| | - Jussi Leppävirta
- Department of Clinical Genetics, HUSLAB, Helsinki University Hospital (HUS) Diagnostic Center, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Minna Pöyhönen
- Department of Clinical Genetics, HUSLAB, Helsinki University Hospital (HUS) Diagnostic Center, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Kari Auranen
- Department of Mathematics and Statistics and Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Hannu Järveläinen
- Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Internal Medicine, Satakunta Central Hospital, Pori, Finland
| | - Juha Peltonen
- Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
16
|
Nix JS, Blakeley J, Rodriguez FJ. An update on the central nervous system manifestations of neurofibromatosis type 1. Acta Neuropathol 2020; 139:625-641. [PMID: 30963251 DOI: 10.1007/s00401-019-02002-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023]
Abstract
Neurofibromatosis 1 (NF1) is an autosomal dominant genetic disorder that presents with variable phenotypes as a result of mutations in the neurofibromatosis type 1 (NF1) gene and subsequently, abnormal function of the protein product, neurofibromin. Patients with NF1 are at increased risk for central nervous system (CNS) manifestations including structural, functional, and neoplastic disease. The mechanisms underlying the varied manifestations of NF1 are incompletely understood, but the loss of functional neurofibromin, resulting in sustained activation of the oncoprotein RAS, is responsible for tumorigenesis throughout the body, including the CNS. Much of our understanding of NF1-related CNS manifestations is from a combination of data from animal models and natural history studies of people with NF1 and CNS disease. Data from animal models suggest the importance of both Nf1 mutations and somatic genetic alterations, such as Tp53 loss, for development of neoplasms, as well as the role of the timing of the acquisition of such alterations on the variability of CNS manifestations. A variety of non-neoplastic structural (macrocephaly, hydrocephalus, aqueductal stenosis, and vasculopathy) and functional (epilepsy, impaired cognition, attention deficits, and autism spectrum disorder) abnormalities occur with variable frequency in individuals with NF1. In addition, there is increasing evidence that similar appearing CNS neoplasms in people with and without the NF1 syndrome are due to distinct oncogenic pathways. Gliomas in people with NF1 show alterations in the RAS/MAPK pathway, generally in the absence of BRAF alterations (common to sporadic pilocytic astrocytomas) or IDH or histone H3 mutations (common to diffuse gliomas subsets). A subset of low-grade astrocytomas in these patients remain difficult to classify using standard criteria, and occasionally demonstrate morphologic features resembling subependymal giant cell astrocytomas that afflict patients with tuberous sclerosis complex ("SEGA-like astrocytomas"). There is also emerging evidence that NF1-associated high-grade astrocytomas have frequent co-existing alterations such as ATRX mutations and an alternative lengthening of telomeres (ALT) phenotype responsible for unique biologic properties. Ongoing efforts are seeking to improve diagnostic accuracy for CNS neoplasms in the setting of NF1 versus sporadic tumors. In addition, MEK inhibitors, which act on the RAS/MAPK pathway, continue to be studied as rational targets for the treatment of NF1-associated tumors, including CNS tumors.
Collapse
|
17
|
Zhang SH, Shurin GV, Khosravi H, Kazi R, Kruglov O, Shurin MR, Bunimovich YL. Immunomodulation by Schwann cells in disease. Cancer Immunol Immunother 2020; 69:245-253. [PMID: 31676924 PMCID: PMC11027810 DOI: 10.1007/s00262-019-02424-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022]
Abstract
Schwann cells are the principal glial cells of the peripheral nervous system which maintain neuronal homeostasis. Schwann cells support peripheral nerve functions and play a critical role in many pathological processes including injury-induced nerve repair, neurodegenerative diseases, infections, neuropathic pain and cancer. Schwann cells are implicated in a wide range of diseases due, in part, to their ability to interact and modulate immune cells. We discuss the accumulating examples of how Schwann cell regulation of the immune system initiates and facilitates the progression of various diseases. Furthermore, we highlight how Schwann cells may orchestrate an immunosuppressive tumor microenvironment by polarizing and modulating the activity of the dendritic cells.
Collapse
Affiliation(s)
- Sophia H Zhang
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Galina V Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Hasan Khosravi
- Department of Dermatology, University of Pittsburgh Medical Center, E1157 Thomas E. Starzl Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Rashek Kazi
- Department of Dermatology, University of Pittsburgh Medical Center, E1157 Thomas E. Starzl Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Oleg Kruglov
- Department of Dermatology, University of Pittsburgh Medical Center, E1157 Thomas E. Starzl Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Michael R Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Yuri L Bunimovich
- Department of Dermatology, University of Pittsburgh Medical Center, E1157 Thomas E. Starzl Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
18
|
Lobbous M, Bernstock JD, Coffee E, Friedman GK, Metrock LK, Chagoya G, Elsayed G, Nakano I, Hackney JR, Korf BR, Nabors LB. An Update on Neurofibromatosis Type 1-Associated Gliomas. Cancers (Basel) 2020; 12:E114. [PMID: 31906320 PMCID: PMC7017116 DOI: 10.3390/cancers12010114] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/26/2019] [Accepted: 12/29/2019] [Indexed: 12/22/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant tumor predisposition syndrome that affects children and adults. Individuals with NF1 are at high risk for central nervous system neoplasms including gliomas. The purpose of this review is to discuss the spectrum of intracranial gliomas arising in individuals with NF1 with a focus on recent preclinical and clinical data. In this review, possible mechanisms of gliomagenesis are discussed, including the contribution of different signaling pathways and tumor microenvironment. Furthermore, we discuss the recent notable advances in the developing therapeutic landscape for NF1-associated gliomas including clinical trials and collaborative efforts.
Collapse
Affiliation(s)
- Mina Lobbous
- Division of Neuro Oncology, Department of Neurology, University of Alabama at Birmingham, 510 20th Street South, Faculty Office Tower Suite 1020 Birmingham, Birmingham, AL 35294, USA; (E.C.)
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Elizabeth Coffee
- Division of Neuro Oncology, Department of Neurology, University of Alabama at Birmingham, 510 20th Street South, Faculty Office Tower Suite 1020 Birmingham, Birmingham, AL 35294, USA; (E.C.)
| | - Gregory K. Friedman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (G.K.F.); (L.K.M.)
| | - Laura K. Metrock
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (G.K.F.); (L.K.M.)
| | - Gustavo Chagoya
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (G.C.); (G.E.); (I.N.)
| | - Galal Elsayed
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (G.C.); (G.E.); (I.N.)
| | - Ichiro Nakano
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (G.C.); (G.E.); (I.N.)
| | - James R. Hackney
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Bruce R. Korf
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Louis B. Nabors
- Division of Neuro Oncology, Department of Neurology, University of Alabama at Birmingham, 510 20th Street South, Faculty Office Tower Suite 1020 Birmingham, Birmingham, AL 35294, USA; (E.C.)
| |
Collapse
|
19
|
Tandon S, Singh A, Arora P, Gautam RK. Neurofibromatosis with vitiligo: an uncommon association rather than coexistence? An Bras Dermatol 2019; 94:624-626. [PMID: 31777370 PMCID: PMC6857576 DOI: 10.1016/j.abd.2019.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 10/25/2018] [Indexed: 11/25/2022] Open
Affiliation(s)
- Sidharth Tandon
- Dermatology Department, PGIMER& Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Ajeet Singh
- Dermatology Department, PGIMER& Dr. Ram Manohar Lohia Hospital, New Delhi, India.
| | - Pooja Arora
- Dermatology Department, PGIMER& Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Ram Krishan Gautam
- Dermatology Department, PGIMER& Dr. Ram Manohar Lohia Hospital, New Delhi, India
| |
Collapse
|
20
|
Allergic Signs in Glioma Pathology: Current Knowledge and Future Perspectives. Cancers (Basel) 2019; 11:cancers11030404. [PMID: 30909395 PMCID: PMC6468578 DOI: 10.3390/cancers11030404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/24/2022] Open
Abstract
Historically restrained to immune defense against parasite infections, allergic inflammation has been recently rediscovered to protect from a wide array of environmental triggers, such as xenobiotics and carcinogens, which can induce DNA damage and ultimately lead to cancer development. Moreover, cells and mediators typical of allergic responses can importantly modulate the tissue inflammatory milieu, which represents a crucial gatekeeper towards the acquisition of malignancy by cancer cells through immune escape. Numerous studies have described an inverse association between allergies and glioma development. Mast cells, key players of allergic reactions, have been recently found at increased numbers in glioblastoma multiforme (GBM), the most common and lethal primary brain tumor, and they have been implicated in GBM pathogenesis. In this review, we summarize epidemiological studies and discuss the main evidence highlighting a potential interplay between allergic responses, and glioma formation and progression. Last, we draw future lines of research for better clarification whether and through which mechanisms allergic inflammation might impact on gliomagenesis. The comprehension of the immune mechanisms favoring or counteracting tumor growth might open the path to novel immunotherapy approaches.
Collapse
|