1
|
Halabi N, Thomas B, Chidiac O, Robay A, AbiNahed J, Jayyousi A, Al Suwaidi J, Bradic M, Abi Khalil C. Dysregulation of long non-coding RNA gene expression pathways in monocytes of type 2 diabetes patients with cardiovascular disease. Cardiovasc Diabetol 2024; 23:196. [PMID: 38849833 PMCID: PMC11161966 DOI: 10.1186/s12933-024-02292-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Monocytes play a central role in the pathophysiology of cardiovascular complications in type 2 diabetes (T2D) patients through different mechanisms. We investigated diabetes-induced changes in lncRNA genes from T2D patients with cardiovascular disease (CVD), long-duration diabetes, and poor glycemic control. METHODS We performed paired-end RNA sequencing of monocytes from 37 non-diabetes controls and 120 patients with T2D, of whom 86 had either macro or microvascular disease or both. Monocytes were sorted from peripheral blood using flow cytometry; their RNA was purified and sequenced. Alignments and gene counts were obtained with STAR to reference GRCh38 using Gencode (v41) annotations followed by batch correction with CombatSeq. Differential expression analysis was performed with EdgeR and pathway analysis with IPA software focusing on differentially expressed genes (DEGs) with a p-value < 0.05. Additionally, differential co-expression analysis was done with csdR to identify lncRNAs highly associated with diabetes-related expression networks with network centrality scores computed with Igraph and network visualization with Cytoscape. RESULTS Comparing T2D vs. non-T2D, we found two significantly upregulated lncRNAs (ENSG00000287255, FDR = 0.017 and ENSG00000289424, FDR = 0.048) and one significantly downregulated lncRNA (ENSG00000276603, FDR = 0.017). Pathway analysis on DEGs revealed networks affecting cellular movement, growth, and development. Co-expression analysis revealed ENSG00000225822 (UBXN7-AS1) as the highest-scoring diabetes network-associated lncRNA. Analysis within T2D patients and CVD revealed one lncRNA upregulated in monocytes from patients with microvascular disease without clinically documented macrovascular disease. (ENSG00000261654, FDR = 0.046). Pathway analysis revealed DEGs involved in networks affecting metabolic and cardiovascular pathologies. Co-expression analysis identified lncRNAs strongly associated with diabetes networks, including ENSG0000028654, ENSG00000261326 (LINC01355), ENSG00000260135 (MMP2-AS1), ENSG00000262097, and ENSG00000241560 (ZBTB20-AS1) when we combined the results from all patients with CVD. Similarly, we identified from co-expression analysis of diabetes patients with a duration ≥ 10 years vs. <10 years two lncRNAs: ENSG00000269019 (HOMER3-AS10) and ENSG00000212719 (LINC02693). The comparison of patients with good vs. poor glycemic control also identified two lncRNAs: ENSG00000245164 (LINC00861) and ENSG00000286313. CONCLUSION We identified dysregulated diabetes-related genes and pathways in monocytes of diabetes patients with cardiovascular complications, including lncRNA genes of unknown function strongly associated with networks of known diabetes genes.
Collapse
Affiliation(s)
- Najeeb Halabi
- Epigenetics Cardiovascular Lab, Department of Genetic Medicine, Weill Cornell Medicine - Qatar, PO box 24144, Doha, Qatar
- Bioinformatics Core, Weill Cornell Medicine - Qatar, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine, New York, USA
| | - Binitha Thomas
- Epigenetics Cardiovascular Lab, Department of Genetic Medicine, Weill Cornell Medicine - Qatar, PO box 24144, Doha, Qatar
| | - Omar Chidiac
- Epigenetics Cardiovascular Lab, Department of Genetic Medicine, Weill Cornell Medicine - Qatar, PO box 24144, Doha, Qatar
| | - Amal Robay
- Epigenetics Cardiovascular Lab, Department of Genetic Medicine, Weill Cornell Medicine - Qatar, PO box 24144, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine, New York, USA
| | - Julien AbiNahed
- Technology Innovation Unit, Hamad Medical Corporation, Doha, Qatar
| | - Amin Jayyousi
- Department of Endocrinology, Hamad Medical Corporation, Doha, Qatar
| | | | - Martina Bradic
- Department of Genetic Medicine, Weill Cornell Medicine, New York, USA
- Marie-Josée & Henry R.Kravis Center for Molecular Oncology, Memorial Sloan Kettering, New York, USA
| | - Charbel Abi Khalil
- Epigenetics Cardiovascular Lab, Department of Genetic Medicine, Weill Cornell Medicine - Qatar, PO box 24144, Doha, Qatar.
- Department of Genetic Medicine, Weill Cornell Medicine, New York, USA.
- Heart Hospital, Hamad Medical Corporation, Doha, Qatar.
- Joan and Sanford I.Weill Department of Medicine, Weill Cornell Medicine, New York, USA.
| |
Collapse
|
2
|
Sharma S, Rastogi A. Genetic Signature for the Causation of Charcot Neuro-osteoarthropathy of Foot in Diabetes: A Systematic Review. INT J LOW EXTR WOUND 2024:15347346241252549. [PMID: 38711285 DOI: 10.1177/15347346241252549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Charcot neuro-osteoarthropathy (CNO) is a complication of diabetes occurring in people with diabetic neuropathy with a prevalence of 0.5% to 1% that may culminate to foot deformity, amputation, and early mortality. However, it is not known why only certain patients with diabetic neuropathy develop CNO. Hence, early recognition of risk factors, timely diagnosis, and appropriate intervention of CNO is pertinent. Recent understanding of the pathophysiology of CNO has expanded to suggest the involvement of RANKL-OPG pathways. But pharmaco-therapeutic interventions targeting bone metabolism predominantly inhibiting RANKL were not found to be useful. Moreover, there are not enough markers to help identify patients with diabetes who are at a higher risk of developing CNO. Hence, we explored the literature in the present systematic review of mainly case-control studies to identify genetic factors that could help in understanding the pathophysiology and risk factors for the development of CNO. We could identify 7 relevant studies identifying single nucleotide polymorphism of OPG and RANK genes. There is an isolated study identifying alterations of micro RNA associated with RANKL-OPG pathway. Another study found epigenetic alterations by performing whole methylome sequencing in people with CNO compared to control. These genetic factors can be used as a diagnostic marker and their functional counterparts as targets for future therapeutic interventions. However, we found that literature is sparse on the genetic risk factors for CNO in people with diabetic neuropathy and there is still a lot of scope for future studies towards finding the molecular and genetic markers for CNO.
Collapse
Affiliation(s)
- Sonali Sharma
- Department of Endocrinology and Metabolism, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashu Rastogi
- Department of Endocrinology and Metabolism, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
3
|
Ju CC, Liu XX, Liu LH, Guo N, Guan LW, Wu JX, Liu DW. Epigenetic modification: A novel insight into diabetic wound healing. Heliyon 2024; 10:e28086. [PMID: 38533007 PMCID: PMC10963386 DOI: 10.1016/j.heliyon.2024.e28086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Wound healing is an intricate and fine regulatory process. In diabetic patients, advanced glycation end products (AGEs), excessive reactive oxygen species (ROS), biofilm formation, persistent inflammation, and angiogenesis regression contribute to delayed wound healing. Epigenetics, the fast-moving science in the 21st century, has been up to date and associated with diabetic wound repair. In this review, we go over the functions of epigenetics in diabetic wound repair in retrospect, covering transcriptional and posttranscriptional regulation. Among these, we found that histone modification is widely involved in inflammation and angiogenesis by affecting macrophages and endothelial cells. DNA methylation is involved in factors regulation in wound repair but also affects the differentiation phenotype of cells in hyperglycemia. In addition, noncodingRNA regulation and RNA modification in diabetic wound repair were also generalized. The future prospects for epigenetic applications are discussed in the end. In conclusion, the study suggests that epigenetics is an integral regulatory mechanism in diabetic wound healing.
Collapse
Affiliation(s)
- Cong-Cong Ju
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
- Huankui Academy, Nanchang University, Nanchang, Jiangxi, PR China
| | - Xiao-Xiao Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Li-hua Liu
- Huankui Academy, Nanchang University, Nanchang, Jiangxi, PR China
| | - Nan Guo
- Nanchang University, Nanchang, Jiangxi, PR China
| | - Le-wei Guan
- Huankui Academy, Nanchang University, Nanchang, Jiangxi, PR China
| | - Jun-xian Wu
- Nanchang University, Nanchang, Jiangxi, PR China
| | - De-Wu Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
| |
Collapse
|
4
|
Novel Biomarkers Predictive of Diabetic Charcot Foot-An Overview of the Literature. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111944. [PMID: 36431079 PMCID: PMC9698200 DOI: 10.3390/life12111944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/05/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022]
Abstract
Background: Although Charcot diabetic foot (CDF) is a frequent complication of diabetic neuropathy, less is known about the possibility of its early prevention. Methods: A review of the original articles published in English, using the "biomarkers AND Charcot's foot" criterion, resulted in 33 articles from the PubMed database and seven articles from the Web of Science database. The five duplicates were eliminated, and two independent reviewers selected the most relevant articles, leaving a total of 21 articles. Results: The biomarkers identified are exhaustively described, related to the system of advanced glycation end products (AGEs) and their soluble receptors (sRAGE), inflammatory cascade, osteoclastogenesis, and, respectively, osteoblastic activity. Conclusions: This article highlights the importance of potential early identifiable biomarkers that can lead to microstructural changes in the affected bones.
Collapse
|
5
|
Bradic M, Taleb S, Thomas B, Chidiac O, Robay A, Hassan N, Malek J, Ait Hssain A, Abi Khalil C. DNA methylation predicts the outcome of COVID-19 patients with acute respiratory distress syndrome. J Transl Med 2022; 20:526. [PMID: 36371196 PMCID: PMC9652914 DOI: 10.1186/s12967-022-03737-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/30/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND COVID-19 infections could be complicated by acute respiratory distress syndrome (ARDS), increasing mortality risk. We sought to assess the methylome of peripheral blood mononuclear cells in COVID-19 with ARDS. METHODS We recruited 100 COVID-19 patients with ARDS under mechanical ventilation and 33 non-COVID-19 controls between April and July 2020. COVID-19 patients were followed at four time points for 60 days. DNA methylation and immune cell populations were measured at each time point. A multivariate cox proportional risk regression analysis was conducted to identify predictive signatures according to survival. RESULTS The comparison of COVID-19 to controls at inclusion revealed the presence of a 14.4% difference in promoter-associated CpGs in genes that control immune-related pathways such as interferon-gamma and interferon-alpha responses. On day 60, 24% of patients died. The inter-comparison of baseline DNA methylation to the last recorded time point in both COVID-19 groups or the intra-comparison between inclusion and the end of follow-up in every group showed that most changes occurred as the disease progressed, mainly in the AIM gene, which is associated with an intensified immune response in those who recovered. The multivariate Cox proportional risk regression analysis showed that higher methylation of the "Apoptotic execution Pathway" genes (ROC1, ZNF789, and H1F0) at inclusion increases mortality risk by over twofold. CONCLUSION We observed an epigenetic signature of immune-related genes in COVID-19 patients with ARDS. Further, Hypermethylation of the apoptotic execution pathway genes predicts the outcome. TRIAL REGISTRATION IMRPOVIE study, NCT04473131.
Collapse
Affiliation(s)
- Martina Bradic
- grid.5386.8000000041936877XDepartment of Genetic Medicine, Weill Cornell Medicine, New York, USA ,grid.51462.340000 0001 2171 9952Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Sarah Taleb
- grid.452146.00000 0004 1789 3191Division of Genomics and Translational Biomedicine, College of Health and Life Sciences- HBKU, Doha, Qatar
| | - Binitha Thomas
- grid.416973.e0000 0004 0582 4340Epigenetics Cardiovascular Lab, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Omar Chidiac
- grid.416973.e0000 0004 0582 4340Epigenetics Cardiovascular Lab, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Amal Robay
- grid.416973.e0000 0004 0582 4340Epigenetics Cardiovascular Lab, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Nessiya Hassan
- grid.413548.f0000 0004 0571 546XNursery and midwifery research department, Hamad Medical Corporation., Doha, Qatar
| | - Joel Malek
- grid.416973.e0000 0004 0582 4340Genomics Core. Weill Cornell Medicine-Qatar., Doha, Qatar
| | - Ali Ait Hssain
- grid.413548.f0000 0004 0571 546XMedical Intensive Care Unit, Hamad Medical Corporation., Doha, Qatar
| | - Charbel Abi Khalil
- Department of Genetic Medicine, Weill Cornell Medicine, New York, USA. .,Epigenetics Cardiovascular Lab, Weill Cornell Medicine-Qatar, Doha, Qatar. .,Joan and Sanford I. Weill Department of Medicine., Weill Cornell Medicine, New York, USA.
| |
Collapse
|
6
|
Khan A, Pasquier J, Ramachandran V, Ponirakis G, Petropoulos IN, Chidiac O, Thomas B, Robay A, Jayyousi A, Al Suwaidi J, Rafii A, Menzies RA, Talal TK, Najafi-Shoushtari SH, Abi Khalil C, Malik RA. Altered Circulating microRNAs in Patients with Diabetic Neuropathy and Corneal Nerve Loss: A Pilot Study. J Clin Med 2022; 11:jcm11061632. [PMID: 35329958 PMCID: PMC8956033 DOI: 10.3390/jcm11061632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/09/2022] [Accepted: 02/27/2022] [Indexed: 02/05/2023] Open
Abstract
An alteration in circulating miRNAs may have important diagnostic and therapeutic relevance in diabetic neuropathy. Patients with type 2 diabetes mellitus (T2DM) underwent an assessment of neuropathic symptoms using Douleur Neuropathique 4 (DN4), the vibration perception threshold (VPT) using a Neurothesiometer, sudomotor function using the Sudoscan, corneal nerve morphology using corneal confocal microscopy (CCM) and circulating miRNAs using high-throughput miRNA expression profiling. Patients with T2DM, with (n = 9) and without (n = 7) significant corneal nerve loss were comparable in age, gender, diabetes duration, BMI, HbA1c, eGFR, blood pressure, and lipid profile. The VPT was significantly higher (p < 0.05), and electrochemical skin conductance (p < 0.05), corneal nerve fiber density (p = 0.001), corneal nerve branch density (p = 0.013), and corneal nerve fiber length (p < 0.001) were significantly lower in T2DM patients with corneal nerve loss compared to those without corneal nerve loss. Following a q-PCR-based analysis of total plasma microRNAs, we found that miR-92b-3p (p = 0.008) was significantly downregulated, while miR-22-3p (p = 0.0001) was significantly upregulated in T2DM patients with corneal nerve loss. A network analysis revealed that these miRNAs regulate axonal guidance and neuroinflammation genes. These data support the need for more extensive studies to better understand the role of dysregulated miRNAs’ in diabetic neuropathy.
Collapse
Affiliation(s)
- Adnan Khan
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (A.K.); (G.P.); (I.N.P.)
- Faculty of Health Sciences, Khyber Medical University, Peshawar P.O. Box 25100, Pakistan
| | - Jennifer Pasquier
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (J.P.); (O.C.); (B.T.); (A.R.); (A.R.)
| | - Vimal Ramachandran
- MicroRNA Core Laboratory, Research Division, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (V.R.); (S.H.N.-S.)
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Georgios Ponirakis
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (A.K.); (G.P.); (I.N.P.)
| | - Ioannis N. Petropoulos
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (A.K.); (G.P.); (I.N.P.)
| | - Omar Chidiac
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (J.P.); (O.C.); (B.T.); (A.R.); (A.R.)
| | - Binitha Thomas
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (J.P.); (O.C.); (B.T.); (A.R.); (A.R.)
| | - Amal Robay
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (J.P.); (O.C.); (B.T.); (A.R.); (A.R.)
| | - Amin Jayyousi
- Hamad Medical Corporation, Doha P.O. Box 24144, Qatar; (A.J.); (J.A.S.); (R.A.M.); (T.K.T.)
| | - Jassim Al Suwaidi
- Hamad Medical Corporation, Doha P.O. Box 24144, Qatar; (A.J.); (J.A.S.); (R.A.M.); (T.K.T.)
| | - Arash Rafii
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (J.P.); (O.C.); (B.T.); (A.R.); (A.R.)
| | - Robert A. Menzies
- Hamad Medical Corporation, Doha P.O. Box 24144, Qatar; (A.J.); (J.A.S.); (R.A.M.); (T.K.T.)
| | - Talal K. Talal
- Hamad Medical Corporation, Doha P.O. Box 24144, Qatar; (A.J.); (J.A.S.); (R.A.M.); (T.K.T.)
| | - Seyed Hani Najafi-Shoushtari
- MicroRNA Core Laboratory, Research Division, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (V.R.); (S.H.N.-S.)
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Charbel Abi Khalil
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (J.P.); (O.C.); (B.T.); (A.R.); (A.R.)
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Correspondence: (C.A.K.); (R.A.M.); Tel.: +974-4492-8484 (C.A.K.); +974-4492-8256 (R.A.M.)
| | - Rayaz A. Malik
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (A.K.); (G.P.); (I.N.P.)
- Correspondence: (C.A.K.); (R.A.M.); Tel.: +974-4492-8484 (C.A.K.); +974-4492-8256 (R.A.M.)
| |
Collapse
|
7
|
Kloska A, Korzon-Burakowska A, Malinowska M, Bruhn-Olszewska B, Gabig-Cimińska M, Jakóbkiewicz-Banecka J. The role of genetic factors and monocyte-to-osteoclast differentiation in the pathogenesis of Charcot neuroarthropathy. Diabetes Res Clin Pract 2020; 166:108337. [PMID: 32707214 DOI: 10.1016/j.diabres.2020.108337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 05/07/2020] [Accepted: 07/16/2020] [Indexed: 12/29/2022]
Abstract
Charcot neuroarthropathy is a chronic, progressive condition of the skeletal system that affects some patients with diabetic neuropathy. It results in progressive destruction of bones of the foot and disorganisation of pedal joints and ligaments. Effective prevention and treatment for Charcot neuroarthropathy remain a challenge. Currently, there are no reliable repeatable markers to identify patients with diabetes who are at higher risk of developing Charcot neuroarthropathy. The pathogenesis underlying the development of Charcot neuroarthropathy also remains unclear. In this review, we provide an overview of the history, prevalence, symptoms, risk factors, diagnostics and treatment of Charcot neuroarthropathy. We also discuss the potential for OPG and RANKL gene variants to act as predictive markers for the development of Charcot neuroarthropathy. Finally, we summarise the latest research on the role of monocyte-to-osteoclast differentiation in the development of acute Charcot neuroarthropathy.
Collapse
Affiliation(s)
- Anna Kloska
- University of Gdańsk, Faculty of Biology, Department of Medical Biology and Genetics, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Anna Korzon-Burakowska
- Medical University of Gdańsk, Faculty of Medicine, Department of Hypertension and Diabetology, Dębinki 7, 80-211 Gdańsk, Poland
| | - Marcelina Malinowska
- University of Gdańsk, Faculty of Biology, Department of Medical Biology and Genetics, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Bożena Bruhn-Olszewska
- University of Gdańsk, Faculty of Biology, Department of Bacterial Molecular Genetics, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Magdalena Gabig-Cimińska
- University of Gdańsk, Faculty of Biology, Department of Medical Biology and Genetics, Wita Stwosza 59, 80-308 Gdańsk, Poland; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Molecular Biology, Kładki 24, 80-822 Gdańsk, Poland
| | - Joanna Jakóbkiewicz-Banecka
- University of Gdańsk, Faculty of Biology, Department of Medical Biology and Genetics, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| |
Collapse
|
8
|
Yates TH, Cooperman SR, Shofler D, Agrawal DK. Current concepts underlying the pathophysiology of acute Charcot neuroarthropathy in the diabetic foot and ankle. Expert Rev Clin Immunol 2020; 16:839-845. [PMID: 32735458 DOI: 10.1080/1744666x.2020.1804869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION With a complex and often misunderstood etiology, acute Charcot neuroarthropathy (ACN) is a devastating complication of peripheral neuropathy. In patients with diabetes, timely diagnosis of ACN in the foot and ankle is essential to prevent loss of both limb and life. AREAS COVERED Herein, the authors evaluate the growing body of evidence in identifying targeted pathways for future therapeutic interventions. A literature search was conducted through the PubMed research database. Searched terms included 'Charcot,' 'foot and ankle,' 'neuroarthropathy,' 'pathophysiology,' 'arthropathy,' 'diabetic foot,' and 'Charcot foot.' EXPERT OPINION The interplay between the acute inflammatory response, cytokine signaling, and bone metabolism equilibrium can now be better understood with the aid of several novel immunobiologic mechanisms. The more recently elucidated roles of advanced glycation end-products, neuropeptides, monocyte differentiation, and genomics combine with classical Charcot pathophysiology to aid researchers and clinicians alike in combatting this often puzzling consequence of peripheral neuropathy.
Collapse
Affiliation(s)
- Thomas H Yates
- Western University of Health Sciences, College of Podiatric Medicine , Pomona, California, USA
| | - Steven R Cooperman
- Western University of Health Sciences, College of Podiatric Medicine , Pomona, California, USA
| | - David Shofler
- Western University of Health Sciences, College of Podiatric Medicine , Pomona, California, USA
| | - Devendra K Agrawal
- Western University of Health Sciences, College of Podiatric Medicine , Pomona, California, USA
| |
Collapse
|
9
|
Charcot Neuroarthropathy Advances: Understanding Pathogenesis and Medical and Surgical Management. Clin Podiatr Med Surg 2019; 36:663-684. [PMID: 31466574 DOI: 10.1016/j.cpm.2019.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Understanding new theories of the epidemiology of Charcot neuroarthropathy is practice changing. Treatment of Charcot neuroarthropathy is evolving from a passive approach to one that sees the urgency of proactive, early recognition, thereby avoiding the cascading events that lead to the complex, limb-threatening deformities. Preventive medicine is the most efficient at avoiding severe deformity, with prolonged offloading and immobilization as the current mainstay of treatment. However, with recent advancements in medical and surgical modalities, this may become the treatment of the past as clinicians begin to favor medical management and early surgical intervention.
Collapse
|