1
|
Beňačka R, Szabóová D, Guľašová Z, Hertelyová Z. Non-Coding RNAs in Breast Cancer: Diagnostic and Therapeutic Implications. Int J Mol Sci 2024; 26:127. [PMID: 39795985 PMCID: PMC11719911 DOI: 10.3390/ijms26010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Breast cancer (BC) is one of the most prevalent forms of cancer globally, and has recently become the leading cause of cancer-related mortality in women. BC is a heterogeneous disease comprising various histopathological and molecular subtypes with differing levels of malignancy, and each patient has an individual prognosis. Etiology and pathogenesis are complex and involve a considerable number of genetic alterations and dozens of alterations in non-coding RNA expression. Non-coding RNAs are part of an abundant family of single-stranded RNA molecules acting as key regulators in DNA replication, mRNA processing and translation, cell differentiation, growth, and overall genomic stability. In the context of breast cancer, non-coding RNAs are involved in cell cycle control and tumor cell migration and invasion, as well as treatment resistance. Alterations in non-coding RNA expression may contribute to the development and progression of breast cancer, making them promising biomarkers and targets for novel therapeutic approaches. Currently, the use of non-coding RNAs has not yet been applied to routine practice; however, their potential has been very well studied. The present review is a literature overview of current knowledge and its objective is to delineate the function of diverse classes of non-coding RNAs in breast cancer, with a particular emphasis on their potential utility as diagnostic and prognostic markers or as therapeutic targets and tools.
Collapse
Affiliation(s)
- Roman Beňačka
- Department of Pathophysiology, Medical Faculty, Pavol Jozef Šafarik University, 04011 Košice, Slovakia;
| | - Daniela Szabóová
- Department of Pathophysiology, Medical Faculty, Pavol Jozef Šafarik University, 04011 Košice, Slovakia;
| | - Zuzana Guľašová
- Center of Clinical and Preclinical Research MEDIPARK, Pavol Jozef Šafarik University, 04011 Košice, Slovakia; (Z.G.); (Z.H.)
| | - Zdenka Hertelyová
- Center of Clinical and Preclinical Research MEDIPARK, Pavol Jozef Šafarik University, 04011 Košice, Slovakia; (Z.G.); (Z.H.)
| |
Collapse
|
2
|
İlhan B, Ender Ş, Kılıç B, Üçüncü M, Serilmez M, Tilgen Yasasever C, Oğuz Soydinç H, Kuras S, Erdoğan B, Alsaadoni H, Karanlık H, Bademler S. The Diagnostic Value of circFBXW7, circABCB10, and circ0103552 Levels in Breast Cancer. Curr Issues Mol Biol 2024; 46:14381-14393. [PMID: 39727990 DOI: 10.3390/cimb46120862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
Despite advances in cancer treatment, breast cancer (BC) remains one of the most common cancers affecting women worldwide. This study aimed to determine serum circFBXW7, circABCB10, and circ0103552 levels and compare BC patients and healthy controls to investigate their roles in the molecular mechanism of BC and the significance of these circRNAs in BC diagnosis. The study group consisted of 92 patients with BC and 31 healthy controls. Total RNA was isolated from serum samples. Following total RNA, complementary DNA was synthesized from this material. Following complementary DNA analysis, the circRNA levels were analyzed by the qRT-PCR method. Expression levels were evaluated in ΔCt values. High ΔCt values of circFBXW7 and circ0103552 and low ΔCt values of circABCB10 were correlated with BC diagnosis (circFBXW7, p = 0.043, r = 0.183, circ0103552, p < 0.001, r = 0.321, circABCB10, p = 0.001, r = -0.291). According to Fold Change (FC) values, circFBXW7 (FC = 0.30) and circ0103552 (FC = 0.26) showed low expression in the patient group compared to the control group, while circABCB10 (FC = 11.09) showed high expression (p < 0.05, for all comparisons). We think that our study is one of the rare studies investigating the relationship between BC and serum circRNA levels. This study concludes that the significant downregulation of circFBXW7 and circ0103552 and the upregulation of circABCB10 are directly related to the diagnosis of BC and can be used for diagnosis, but further studies are needed to elucidate the molecular mechanism of the relationship between circRNAs and BC.
Collapse
Affiliation(s)
- Burak İlhan
- Department of Surgery, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34093, Türkiye
| | - Şenol Ender
- Department of Surgery, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34093, Türkiye
| | - Berkay Kılıç
- Department of Surgery, Oncology Institute, Istanbul University, Istanbul 34093, Türkiye
| | - Muhammed Üçüncü
- Department of Anesthesia, Vocational School of Health Services, Istanbul Gelişim University, Istanbul 34310, Türkiye
| | - Murat Serilmez
- Department of Basic Oncology, Institute of Oncology, Istanbul University, Istanbul 34093, Türkiye
| | - Ceren Tilgen Yasasever
- Department of Basic Oncology, Institute of Oncology, Istanbul University, Istanbul 34093, Türkiye
| | - Hilal Oğuz Soydinç
- Department of Basic Oncology, Institute of Oncology, Istanbul University, Istanbul 34093, Türkiye
| | - Sibel Kuras
- Department of Medical Biochemistry, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul 34668, Türkiye
| | - Bekir Erdoğan
- Department of Physiology, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul 34668, Türkiye
| | - Hani Alsaadoni
- Department of Medical Biology, International School of Medicine, University of Health Sciences, Istanbul 34668, Türkiye
| | - Hasan Karanlık
- Department of Surgery, Oncology Institute, Istanbul University, Istanbul 34093, Türkiye
| | - Süleyman Bademler
- Department of Surgery, Oncology Institute, Istanbul University, Istanbul 34093, Türkiye
| |
Collapse
|
3
|
Hamdy NM, El-Sisi MG, Ibrahim SM, ElNokoudy H, Hady AA, Abd-Ellatef GEF, Sallam AAM, Barakat BM. In silico analysis and comprehensive review of circular-RNA regulatory roles in breast diseases; a step-toward non-coding RNA precision. Pathol Res Pract 2024; 263:155651. [PMID: 39454476 DOI: 10.1016/j.prp.2024.155651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
In the current comprehensive review, we first highlighted circRNAs, which are key ncRNAs. Next, we discussed the relationships among circRNAs and breast cancer subtypes via in silico databases analysis and extensive literature search. CircRNAs, that sponge miRNA axes or act as silencers of oncogenic mRNAs, have been extensively addressed in the context of this review. During BC pathogenesis, the circRNA/microRNA/messenger RNA (mRNA) axis plays a major role in disease growth, progression, and survival/resistance and could be targeted for improved treatment options. This review also aimed to address oncogenic and tumor suppressor mRNAs, which are regulated by various circRNAs in BC. Moreover, we mentioned the relation of different circRNAs with cancer hallmarks, patient survival together with drug resistance. Additionally, we discussed circRNAs as vaccines and biomarkers in BC. Finally, we studied exosomal circRNAs as a hot interesting area in the research. REVIEW SIGNIFICANCE: Via using in silico databases, bioinformatics analysis, and a thorough literature search to first highlight circRNA as a crucial ncRNA and its biogenesis, and then we explored the connection between circRNA and breast illnesses. In the framework of the review, circRNA sponged-miRNAs axis or as silencers to oncogenic mRNAs were extensively discussed. In the pathophysiology of BC, the circular RNA/microRNA/messenger RNA axis is crucial for the propagation of the disease and resistance that may be targeted for more effective treatment options, in order to confront tumor suppressor and oncogenic mRNAs that are presently regulated by circRNAs in BC. For better patient results, we advised further mechanistic research to elucidate additional ncRNA axis that may be targeted for the therapy of BC and for prognosis/ or early diagnosis.
Collapse
Affiliation(s)
- Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt.
| | - Mona G El-Sisi
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| | - Sherine M Ibrahim
- Biochemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Heba ElNokoudy
- Medication Management & Pharmacy Affairs, Egypt Healthcare Authority, Cairo, Egypt
| | - Ahmad A Hady
- Clinical Oncology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Gamal Eldein Fathy Abd-Ellatef
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt
| | - Al-Aliaa M Sallam
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt; Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Bassant Mohamed Barakat
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al Baha University, Al Baha 1988, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11651, Egypt
| |
Collapse
|
4
|
Tashakori N, Mikhailova MV, Mohammedali ZA, Mahdi MS, Ali Al-Nuaimi AM, Radi UK, Alfaraj AM, Kiasari BA. Circular RNAs as a novel molecular mechanism in diagnosis, prognosis, therapeutic target, and inhibiting chemoresistance in breast cancer. Pathol Res Pract 2024; 263:155569. [PMID: 39236498 DOI: 10.1016/j.prp.2024.155569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
Breast cancer (BC) is the most common cancer among women, characterized by significant heterogeneity. Diagnosis of the disease in the early stages and appropriate treatment plays a crucial role for these patients. Despite the available treatments, many patients due to drug resistance do not receive proper treatments. Recently, circular RNAs (circRNAs), a type of non-coding RNAs (ncRNAs), have been discovered to be involved in the progression and resistance to drugs in BC. CircRNAs can promote or inhibit malignant cells by their function. Numerous circRNAs have been discovered to be involved in the proliferation, invasion, and migration of tumor cells, as well as the progression, pathogenesis, tumor metastasis, and drug resistance of BC. Circular RNAs can also serve as a biomarker for diagnosing, predicting prognosis, and targeting therapy. In this review, we present an outline of the variations in circRNAs expression in various BCs, the functional pathways, their impact on the condition, and their uses in clinical applications.
Collapse
Affiliation(s)
- Nafiseh Tashakori
- Department of Medicine, Faculty of Internal Medicine,Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maria V Mikhailova
- Department of Prosthetic Dentistry, I.M. Schenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | | | | | - Usama Kadem Radi
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar 64001, Iraq
| | | | - Bahman Abedi Kiasari
- Microbiology & Immunology Group, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
5
|
Bao H, Li J, Zhao Q, Yang Q, Xu Y. Circular RNAs in Breast Cancer: An Update. Biomolecules 2024; 14:158. [PMID: 38397395 PMCID: PMC10887059 DOI: 10.3390/biom14020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/14/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Breast cancer (BC), characterized by high heterogeneity, is the most commonly reported malignancy among females across the globe. Every year, many BC patients die owing to delayed diagnosis and treatment. Increasing researches have indicated that aberrantly expressed circular RNAs (circRNAs) are implicated in the tumorigenesis and progression of various tumors, including BC. Hence, this article provides a summary of the biogenesis and functions of circRNAs, as well as an examination of how circRNAs regulate the progression of BC. Moreover, circRNAs have aroused incremental attention as potential diagnostic and prognostic biomarkers for BC. Exosomes enriched with circRNAs can be secreted into the tumor microenvironment to mediate intercellular communication, affecting the progression of BC. Detecting the expression levels of exosomal circRNAs may provide reference for BC diagnosis and prognosis prediction. Illuminating insights into the earlier diagnosis and better treatment regimens of BC will be potentially available following elucidation of deeper regulatory mechanisms of circRNAs in this malignancy.
Collapse
Affiliation(s)
- Haolin Bao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jiehan Li
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Qihang Zhao
- Department of Mammary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Qingling Yang
- Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, Bengbu 233030, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, Bengbu 233030, China
- State Key Laboratory of Oncology in South China, Cancer Center of Sun Yat-Sen University, Guangzhou 510060, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
- Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
6
|
Patel K, Rao DM, Sundersingh S, Velusami S, Rajkumar T, Nair B, Pandey A, Chatterjee A, Mani S, Gowda H. MicroRNA Expression Profile in Early-Stage Breast Cancers. Microrna 2024; 13:71-81. [PMID: 37873952 DOI: 10.2174/0122115366256479231003064842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Breast cancer is one of the leading causes of cancer deaths in women. Early diagnosis offers the best hope for a cure. Ductal carcinoma in situ is considered a precursor of invasive ductal carcinoma of the breast. In this study, we carried out microRNA sequencing from 7 ductal carcinoma in situ (DCIS), 6 infiltrating ductal carcinomas (IDC Stage IIA) with paired normal, and 5 unpaired normal breast tissue samples. METHODS We have deployed miRge for microRNA analysis, DESeq for differential expression analysis, and Cytoscape for competing endogenous RNA network investigation. RESULTS Here, we identified 76 miRNAs that were differentially expressed in DCIS and IDC. Additionally, we provide preliminary evidence of miR-365b-3p and miR-7-1-3p being overexpressed, and miR-6507-5p, miR-487b-3p, and miR-654-3p being downregulated in DCIS relative to normal breast tissue. We also identified a miRNA miR-766-3p that was overexpressed in earlystage IDCs. The overexpression of miR-301a-3p in DCIS and IDC was confirmed in 32 independent breast cancer tissue samples. CONCLUSION Higher expression of miR-301a-3p is associated with poor overall survival in The Cancer Genome Atlas Breast Cancer (TCGA-BRCA) dataset, indicating that it may be associated with DCIS at high risk of progressing to IDC and warrants deeper investigation.
Collapse
MESH Headings
- Humans
- Female
- MicroRNAs/genetics
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Breast Neoplasms/mortality
- Gene Expression Regulation, Neoplastic/genetics
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Middle Aged
- Neoplasm Staging
- Gene Expression Profiling
- Biomarkers, Tumor/genetics
- Transcriptome/genetics
Collapse
Affiliation(s)
- Krishna Patel
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 691001, India
| | - Deva Magendhra Rao
- Department of Molecular Oncology, Cancer Institute (WIA), Chennai 600036, India
| | | | - Sridevi Velusami
- Department of Surgical Oncology, Cancer Institute (WIA), Chennai, India
| | | | - Bipin Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 691001, India
| | - Akhilesh Pandey
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore 560029, India
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore 560066 India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Samson Mani
- Department of Molecular Oncology, Cancer Institute (WIA), Chennai 600036, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 691001, India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| |
Collapse
|
7
|
Terrazzan A, Crudele F, Corrà F, Ancona P, Palatini J, Bianchi N, Volinia S. Inverse Impact of Cancer Drugs on Circular and Linear RNAs in Breast Cancer Cell Lines. Noncoding RNA 2023; 9:ncrna9030032. [PMID: 37218992 DOI: 10.3390/ncrna9030032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/02/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023] Open
Abstract
Altered expression of circular RNAs (circRNAs) has previously been investigated in breast cancer. However, little is known about the effects of drugs on their regulation and relationship with the cognate linear transcript (linRNA). We analyzed the dysregulation of both 12 cancer-related circRNAs and their linRNAs in two breast cancer cell lines undergoing various treatments. We selected 14 well-known anticancer agents affecting different cellular pathways and examined their impact. Upon drug exposure circRNA/linRNA expression ratios increased, as a result of the downregulation of linRNA and upregulation of circRNA within the same gene. In this study, we highlighted the relevance of identifying the drug-regulated circ/linRNAs according to their oncogenic or anticancer role. Interestingly, VRK1 and MAN1A2 were increased by several drugs in both cell lines. However, they display opposite effects, circ/linVRK1 favors apoptosis whereas circ/linMAN1A2 stimulates cell migration, and only XL765 did not alter the ratio of other dangerous circ/linRNAs in MCF-7. In MDA-MB-231 cells, AMG511 and GSK1070916 decreased circGFRA1, as a good response to drugs. Furthermore, some circRNAs might be associated with specific mutated pathways, such as the PI3K/AKT in MCF-7 cells with circ/linHIPK3 correlating to cancer progression and drug-resistance, or NHEJ DNA repair pathway in TP-53 mutated MDA-MB-231 cells.
Collapse
Affiliation(s)
- Anna Terrazzan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Laboratory for Advanced Therapy Technologies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Francesca Crudele
- Genetics Unit, Institute for Maternal and Child Health, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) Burlo Garofolo, 34137 Trieste, Italy
| | - Fabio Corrà
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Pietro Ancona
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Jeffrey Palatini
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Stefano Volinia
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Laboratory for Advanced Therapy Technologies (LTTA), University of Ferrara, 44121 Ferrara, Italy
- Centrum Nauk Biologiczno-Chemicznych (Biological and Chemical Research Centre), University of Warsaw, 02-089 Warsaw, Poland
| |
Collapse
|
8
|
Liu Y, Liu Y, He Y, Zhang N, Zhang S, Li Y, Wang X, Liang Y, Chen X, Zhao W, Chen B, Wang L, Luo D, Yang Q. Hypoxia-Induced FUS-circTBC1D14 Stress Granules Promote Autophagy in TNBC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204988. [PMID: 36806670 PMCID: PMC10074116 DOI: 10.1002/advs.202204988] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/20/2022] [Indexed: 05/27/2023]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer that is suggested to be associated with hypoxia. This study is the first to identify a novel circular RNA (circRNA), circTBC1D14, whose expression is significantly upregulated in TNBC. The authors confirm that high circTBC1D14 expression is associated with a poor prognosis in patients with breast cancer. circTBC1D14-associated mass spectrometry and RNA-binding protein-related bioinformatics strategies indicate that FUS can interact with circTBC1D14, which can bind to the downstream flanking sequence of circTBC1D14 to induce cyclization. FUS is an essential biomarker associated with stress granules (SGs), and the authors find that hypoxic conditions can induce FUS-circTBC1D14-associated SG formation in the cytoplasm after modification by protein PRMT1. Subsequently, circTBC1D14 increases the stability of PRMT1 by inhibiting its K48-regulated polyubiquitination, leading to the upregulation of PRMT1 expression. In addition, FUS-circTBC1D14 SGs can initiate a cascade of SG-linked proteins to recognize and control the elimination of SGs by recruiting LAMP1 and enhancing lysosome-associated autophagy flux, thus contributing to the maintenance of cellular homeostasis and promoting tumor progression in TNBC. Overall, these findings reveal that circTBC1D14 is a potential prognostic indicator that can serve as a therapeutic target for TNBC treatment.
Collapse
Affiliation(s)
- Ying Liu
- Department of Breast SurgeryGeneral SurgeryQilu Hospital of Shandong UniversityJi'nanShandong250012P. R. China
| | - Yiwei Liu
- Department of Breast SurgeryGeneral SurgeryQilu Hospital of Shandong UniversityJi'nanShandong250012P. R. China
| | - Yinqiao He
- Department of Breast SurgeryGeneral SurgeryQilu Hospital of Shandong UniversityJi'nanShandong250012P. R. China
| | - Ning Zhang
- Department of Breast SurgeryGeneral SurgeryQilu Hospital of Shandong UniversityJi'nanShandong250012P. R. China
| | - Siyue Zhang
- Department of Breast SurgeryGeneral SurgeryQilu Hospital of Shandong UniversityJi'nanShandong250012P. R. China
| | - Yaming Li
- Department of Breast SurgeryGeneral SurgeryQilu Hospital of Shandong UniversityJi'nanShandong250012P. R. China
| | - Xiaolong Wang
- Department of Breast SurgeryGeneral SurgeryQilu Hospital of Shandong UniversityJi'nanShandong250012P. R. China
| | - Yiran Liang
- Department of Breast SurgeryGeneral SurgeryQilu Hospital of Shandong UniversityJi'nanShandong250012P. R. China
| | - Xi Chen
- Department of Breast SurgeryGeneral SurgeryQilu Hospital of Shandong UniversityJi'nanShandong250012P. R. China
| | - Weijing Zhao
- Pathology Tissue BankQilu Hospital of Shandong UniversityJi'nanShandong250012P. R. China
| | - Bing Chen
- Pathology Tissue BankQilu Hospital of Shandong UniversityJi'nanShandong250012P. R. China
| | - Lijuan Wang
- Pathology Tissue BankQilu Hospital of Shandong UniversityJi'nanShandong250012P. R. China
| | - Dan Luo
- Pathology Tissue BankQilu Hospital of Shandong UniversityJi'nanShandong250012P. R. China
| | - Qifeng Yang
- Department of Breast SurgeryGeneral SurgeryQilu Hospital of Shandong UniversityJi'nanShandong250012P. R. China
- Pathology Tissue BankQilu Hospital of Shandong UniversityJi'nanShandong250012P. R. China
- Research Institute of Breast CancerShandong UniversityJi'nanShandong250012P. R. China
| |
Collapse
|
9
|
Wang Z, Deng H, Jin Y, Luo M, Huang J, Wang J, Zhang K, Wang L, Zhou J. Circular RNAs: biology and clinical significance of breast cancer. RNA Biol 2023; 20:859-874. [PMID: 37882644 PMCID: PMC10730165 DOI: 10.1080/15476286.2023.2272468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2023] [Indexed: 10/27/2023] Open
Abstract
Circular RNAs (circRNAs) are novel noncoding RNAs with covalently closed-loop structures that can regulate eukaryotic gene expression. Due to their stable structure, circRNAs are widely distributed in the cytoplasm and have important biological functions, including as microRNA sponges, RNA-binding protein conjugates, transcription regulators, and translation templates. Breast cancer is among the most common malignant cancers diagnosed in women worldwide. Despite the development of comprehensive treatments, breast cancer still has high mortality rates. Recent studies have unmasked critical roles for circRNAs in breast cancer as regulators of tumour initiation, progression, and metastasis. Further, research has revealed that some circRNAs have the potential for use as diagnostic and prognostic biomarkers in clinical practice. Herein, we review the biogenesis and biological functions of circRNAs, as well as their roles in different breast cancer subtypes. Moreover, we provide a comprehensive summary of the clinical significance of circRNAs in breast cancer. CircRNAs are believed to be a hot focus in basic and clinical research of breast cancer, and innovative future research directions of circRNAs could be used as biomarkers, therapeutic targets, or novel drugs.Abbreviations: CeRNA: Competitive endogenous RNA; ciRNA: Circular intronic RNA; circRNA: Circular RNA; EIciRNA: Exon-intron circRNA; EMT: Epithelial-mesenchymal transition; IRES: Internal ribosome entry site; lncRNA: Long non-coding RNA; miRNA: MicroRNA; MRE: MiRNA response element; ncRNA: Non-coding RNA; RBP: RNA-binding protein; RNA-seq: RNA sequencing; RT-PCR: Reverse transcription-polymerase chain reaction.
Collapse
Affiliation(s)
- Zhanwei Wang
- Department of Breast Surgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Hao Deng
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Jin
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Luo
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Huang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Wang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kun Zhang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Wang
- Department of Emergency, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaojiao Zhou
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Liu D, Zhou Z, Guo Y, Du Q, Li L. CircCDK1 knockdown reduces CDK1 expression by targeting miR-489-3p to suppress the development of breast cancer and strengthen the sensitivity of Tamoxifen. Anticancer Drugs 2022; 33:286-299. [PMID: 34924499 DOI: 10.1097/cad.0000000000001266] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Circular RNAs (circRNAs) are implicated with the progression of multiple cancers, including breast cancer. Besides, circRNA dysregulation is involved in the chemoresistance of cancer development. This study aimed to investigate the role of circRNA-cyclin dependent kinase 1 (circCDK1) in breast cancer. Quantitative real-time PCR (qPCR) and western blot were applied for expression analysis. Cell viability was determined by the cell counting kit-8 (CCK-8). Cell proliferation was evaluated by CCK-8, colony formation and 5-ethynyl-2'-deoxyuridine assays. Cell apoptosis was assessed by flow cytometry and the activities of caspase3 and caspase9. The potential binding between miR-489-3p and circCDK1 or CDK1 was verified by RNA immunoprecipitation assay, dual-luciferase reporter assay and pull-down assay. Animal models were constructed to explore the role of circCDK1 in vivo. CircCDK1 was overexpressed in Tamoxifen-resistant breast cancer cells, LCC2 and LCC9. The expression of circCDK1 in tumor tissues with Tamoxifen resistance was higher than that in tissues without Tamoxifen resistance. CircCDK1 knockdown strengthened the sensitivity of Tamoxifen in LCC2 and LCC9 cells and reduced Tamoxifen IC50. The downregulation of circCDK1 inhibited LCC2 andLCC9 cell proliferation and promoted cell apoptosis. CDK1 was the parent gene of circCDK1 and circCDK1 positively regulated CDK1 expression by targeting miR- 489-3p. CDK1 overexpression reversed the effects of circCDK1 knockdown. MiR-489-3p inhibition also reversed the effects of circCDK1 knockdown. CircCDK1 knockdown was verified to enhance Tamoxifen sensitivity in animal models. CircCDK1 knockdown enhanced the sensitivity of Tamoxifen in breast cancer cells and suppressed cell growth and survival by depleting CDK1 expression via releasing miR- 489-3p.
Collapse
Affiliation(s)
- Di Liu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi
| | - Zhangjian Zhou
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi
| | - Yize Guo
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi
| | - Qin Du
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi
| | - Liang Li
- Department of Radiotherapy, Shaanxi Provincial Tumor Hospital, Xi'an, People's Republic of China
| |
Collapse
|
11
|
Zhang M, Bai X, Zeng X, Liu J, Liu F, Zhang Z. circRNA-miRNA-mRNA in breast cancer. Clin Chim Acta 2021; 523:120-130. [PMID: 34537217 DOI: 10.1016/j.cca.2021.09.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022]
Abstract
Among cancers, breast cancer has the highest incidence rate among women and poses a tremendous threat to women's health. Messenger RNA (mRNA), microRNA (miRNA) and circular RNA (circRNA) play vital roles in the progression of breast cancer through a variety of biological effects and mechanisms. Recently, the regulatory network formed by circRNAs, miRNAs and mRNAs has piqued attention and garnered interest. CircRNAs bind to miRNAs through a regulatory mechanism in which endogenous RNAs compete to indirectly regulate the expression of mRNA corresponding to downstream target genes of miRNAs, contributing to the progression of breast cancer. The circRNA-miRNA-mRNA axis may be a marker for the early diagnosis and prognosis of breast cancer and a potential breast cancer treatment target, providing unlimited possibilities for the development of breast cancer biomarkers and therapeutic strategies. This article reviews recent research progress on the circRNA-miRNA-mRNA axis as a regulatory network of competing endogenous RNAs in breast cancer. Herein, we focus on the mechanism and function of the circRNA-miRNA-mRNA axis in the occurrence and metastasis of breast cancer, and resistance to chemotherapy.
Collapse
Affiliation(s)
- Meilan Zhang
- Cancer Research Institute of Hengyang Medical College, University of South China, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hunan, Hengyang 421001, China
| | - Xue Bai
- Cancer Research Institute of Hengyang Medical College, University of South China, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hunan, Hengyang 421001, China
| | - Xuemei Zeng
- Cancer Research Institute of Hengyang Medical College, University of South China, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hunan, Hengyang 421001, China
| | - Jiangrong Liu
- Cancer Research Institute of Hengyang Medical College, University of South China, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hunan, Hengyang 421001, China
| | - Feng Liu
- Cancer Research Institute of Hengyang Medical College, University of South China, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hunan, Hengyang 421001, China
| | - Zhiwei Zhang
- Cancer Research Institute of Hengyang Medical College, University of South China, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hunan, Hengyang 421001, China
| |
Collapse
|
12
|
Xu J, Chen X, Sun Y, Shi Y, Teng F, Lv M, Liu C, Jia X. The Regulation Network and Clinical Significance of Circular RNAs in Breast Cancer. Front Oncol 2021; 11:691317. [PMID: 34307155 PMCID: PMC8299466 DOI: 10.3389/fonc.2021.691317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/23/2021] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is one of the most common malignant tumors in women worldwide. Circular RNA (circRNA) is a class of structurally stable non-coding RNA with a covalently closed circular structure. In recent years, with the development of high-throughput RNA sequencing, many circRNAs have been discovered and have proven to be clinically significant in the development and progression of breast cancer. Importantly, several regulators of circRNA biogenesis have been discovered. Here, we systematically summarize recent progress regarding the network of regulation governing the biogenesis, degradation, and distribution of circRNAs, and we comprehensively analyze the functions, mechanisms, and clinical significance of circRNA in breast cancer.
Collapse
Affiliation(s)
- Juan Xu
- Deparment of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiyi Chen
- Deparment of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Sun
- Deparment of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Yaqian Shi
- Deparment of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Fang Teng
- Deparment of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Mingming Lv
- Department of Breast, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Liu
- Department of Medical Genetics, Nanjing Medical University, Nanjing, China
| | - Xuemei Jia
- Deparment of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Li Q, Li N, Liu H, Du Y, He H, Zhang L, Liu Y. Estrogen-decreased hsa_circ_0001649 promotes stromal cell invasion in endometriosis. Reproduction 2021; 160:511-519. [PMID: 32698139 PMCID: PMC7497355 DOI: 10.1530/rep-19-0540] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 07/06/2020] [Indexed: 01/25/2023]
Abstract
Endometriosis (EMs) is an estrogen (E2)-dependent inflammatory disorder. Although EMs is considered a benign disease, it presents with malignant characteristics, such as migration and invasion. An increasing number of studies have shown that aberrantly expressed circular RNAs (circRNAs) play an essential role in disease development and progression. However, the mechanisms by which circRNAs exert their pathological effects in EMs remain unclear. Hsa_circ_0001649, a novel cancer-associated circRNA, has been previously reported to be downregulated in several cancer types and related to cell migration and invasion. In the present study, real-time PCR (qRT-PCR) was carried out to measure hsa_circ_0001649 levels in human tissues, human primary endometrial stromal cells (ESCs) and a human endometrial stromal cell line (ThESCs). Matrix metalloproteinase 9 (MMP9) levels in ESCs and ThESCs were assessed by qRT-PCR and Western blotting, and the migration and invasion capacities of ThESCs were evaluated by transwell assay. As a result, hsa_circ_0001649 expression was significantly decreased in ectopic and eutopic endometrial samples compared with that in normal endometrial samples. E2 decreased hsa_circ_0001649 expression but increased MMP9 expression in ESCs and ThESCs. Furthermore, ThESCs were more invasive under E2 stimulation. However, these effects disappeared when ICI or hsa_circ_0001649 transfection was used. Collectively, our findings reveal that decreased hsa_circ_0001649 expression plays a role in E2-increased MMP9 expression through E2 receptors (ERs), which have critical functions in EMs.
Collapse
Affiliation(s)
- Qi Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hengwei Liu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yu Du
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haitang He
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Li Y, Wang X, Xu H, Li G, Huo Z, Du L, Zhang K, Shen L, Li H, Xu B. Circ_0040039 May Aggravate Intervertebral Disk Degeneration by Regulating the MiR-874-3p-ESR1 Pathway. Front Genet 2021; 12:656759. [PMID: 34178027 PMCID: PMC8226233 DOI: 10.3389/fgene.2021.656759] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
The functional alteration of nucleus pulposus cells (NPCs) exerts a crucial role in the occurrence and progression of intervertebral disk degeneration (IDD). Circular RNAs and microRNAs (miRs) are critical regulators of NPC metabolic processes such as growth and apoptosis. In this study, bioinformatics tools, encompassing Gene Ontology pathway and Venn diagrams analysis, and protein–protein interaction (PPI) network construction were used to identify functional molecules related to IDD. PPI network unveiled that ESR1 was one of the most critical genes in IDD. Then, a key IDD-related circ_0040039-miR-874-3p-ESR1 interaction network was predicted and constructed. Circ_0040039 promoted miR-874-3p and repressed ESR1 expression, and miR-874-3p repressed ESR1 expression in NPCs, suggesting ESR1 might be a direct target of miR-874-3p. Functionally, circ_0040039 could enhance NPC apoptosis and inhibit NPC growth, revealing that circ_0040039 might aggravate IDD by stabilizing miR-874-3p and further upregulating the miR-874-3p-ESR1 pathway. This signaling pathway might provide a novel therapeutic strategy and targets for the diagnosis and therapy of IDD-related diseases.
Collapse
Affiliation(s)
- Yongjin Li
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin, China.,Graduate School, Tianjin Medical University, Tianjin, China.,Tianjin Hospital, Orthopedic Research Institute, Tianjin, China
| | - Xuke Wang
- Graduate School, Tianjin Medical University, Tianjin, China.,Department of Minimally Invasive Spine Surgery, Luoyang Orthopedic- Traumatological Hospital, Luoyang, China
| | - Haiwei Xu
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Guowang Li
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin, China.,Graduate School, Tianjin Medical University, Tianjin, China.,Tianjin Hospital, Orthopedic Research Institute, Tianjin, China
| | - Zhenxin Huo
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin, China.,Graduate School, Tianjin Medical University, Tianjin, China.,Tianjin Hospital, Orthopedic Research Institute, Tianjin, China
| | - Lilong Du
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin, China.,Graduate School, Tianjin Medical University, Tianjin, China.,Tianjin Hospital, Orthopedic Research Institute, Tianjin, China
| | - Kaihui Zhang
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin, China.,Graduate School, Tianjin Medical University, Tianjin, China.,Tianjin Hospital, Orthopedic Research Institute, Tianjin, China
| | - Li Shen
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin, China.,Graduate School, Tianjin Medical University, Tianjin, China.,Tianjin Hospital, Orthopedic Research Institute, Tianjin, China
| | - Hao Li
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin, China.,Graduate School, Tianjin Medical University, Tianjin, China.,Tianjin Hospital, Orthopedic Research Institute, Tianjin, China
| | - Baoshan Xu
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin, China.,Graduate School, Tianjin Medical University, Tianjin, China.,Tianjin Hospital, Orthopedic Research Institute, Tianjin, China
| |
Collapse
|
15
|
Liu D, Fang L. Current research on circular RNAs and their potential clinical implications in breast cancer. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0275. [PMID: 34018386 PMCID: PMC8330541 DOI: 10.20892/j.issn.2095-3941.2020.0275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BC) is one of the most common cancers and the leading causes of death among women worldwide, and its morbidity rate is growing. Discovery of novel biomarkers is necessary for early BC detection, treatment, and prognostication. Circular RNAs (circRNAs), a novel type of endogenous non-coding RNAs with covalently closed continuous loops, have been found to have a crucial role in tumorigenesis. Studies have demonstrated that circRNAs are aberrantly expressed in the tumor tissues and plasma of patients with BC, and they modulate gene expression affecting the proliferation, metastasis, and chemoresistance of BC by specifically binding and regulating the expression of microRNAs (miRNAs). Therefore, circRNAs can be used as novel potential diagnostic and prognostic markers, and therapeutic targets for BC. This article summarizes the properties, functions, and regulatory mechanisms of circRNAs, particularly current research on their association with BC proliferation, metastasis, and chemoresistance.
Collapse
Affiliation(s)
- Diya Liu
- Department of Thyroid and Breast Diseases, Shanghai Tenth People’s Hospital, Shanghai 200070, China
| | - Lin Fang
- Department of Thyroid and Breast Diseases, Shanghai Tenth People’s Hospital, Shanghai 200070, China
| |
Collapse
|
16
|
Gao Q, Wang T, Pan L, Qian C, Wang J, Xin Q, Liu Y, Zhang Z, Xu Y, He X, Cao Y. Circular RNAs: Novel potential regulators in embryogenesis, female infertility, and pregnancy-related diseases. J Cell Physiol 2021; 236:7223-7241. [PMID: 33876837 DOI: 10.1002/jcp.30376] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022]
Abstract
Circular RNAs (circRNAs) are endogenous noncoding RNAs with unique cyclic structures. Although they were previously considered as nonfunctional transcription byproducts, numerous studies have demonstrated that circRNAs regulate gene transcription and expression via different mechanisms. Reproductive health influences the quality of life and affects offspring propagation in women. CircRNAs have been found to modify pregnancy-related diseases, gynecologic cancers, polycystic ovary syndrome, aging, gamete, and embryo development. It's promising for circRNAs to be the novel diagnostic and therapeutic targets for multiple reproductive diseases. With the widespread application of assisted reproduction technology (ART), it has been revealed that circRNA identification contributes to estimating the quality of gametes and embryos, reflecting the success rate of ART. CRISPR-Cas9 gene editing technology has enabled the discovery of new roles of circRNAs. So far, the roles of circRNAs in the reproductive system remain poorly defined. In this review, we describe the classification and functions of circRNAs in embryogenesis and the female reproductive system diseases, revealing potential roles of circRNAs physiologically and pathologically. In so-doing, we provide ideas for developing circRNA-based therapeutic treatment and clinical application of various female reproductive system diseases.
Collapse
Affiliation(s)
- Qinyu Gao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, Anhui Medical University, Hefei, Anhui, China
| | - Tianjuan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, Anhui Medical University, Hefei, Anhui, China
| | - Linxin Pan
- College of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Cheng Qian
- Center for Scientific Research, Anhui Medical University, Hefei, Anhui, China
| | - Juan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Qiong Xin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Yajing Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Zhiguo Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Yuping Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Xiaojin He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
17
|
He X, Xu T, Hu W, Tan Y, Wang D, Wang Y, Zhao C, Yi Y, Xiong M, Lv W, Wu M, Li X, Wu Y, Zhang Q. Circular RNAs: Their Role in the Pathogenesis and Orchestration of Breast Cancer. Front Cell Dev Biol 2021; 9:647736. [PMID: 33777954 PMCID: PMC7991790 DOI: 10.3389/fcell.2021.647736] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/11/2021] [Indexed: 12/12/2022] Open
Abstract
As one of the most frequently occurring malignancies in women, breast cancer (BC) is still an enormous threat to women all over the world. The high mortality rates in BC patients are associated with BC recurrence, metastatic progression to distant organs, and therapeutic resistance. Circular RNAs (circRNAs), belonging to the non-coding RNAs (ncRNAs), are connected end to end to form covalently closed single-chain circular molecules. CircRNAs are widely found in different species and a variety of human cells, with the features of diversity, evolutionary conservation, stability, and specificity. CircRNAs are emerging important participators in multiple diseases, including cardiovascular disease, inflammation, and cancer. Recent studies have shown that circRNAs are involved in BC progress by regulating gene expression at the transcriptional or post-transcriptional level via binding to miRNAs then inhibiting their function, suggesting that circRNAs may be potential targets for early diagnosis, treatment, and prognosis of BC. Herein, in this article, we have reviewed and summarized the current studies about the biogenesis, features, and functions of circRNAs. More importantly, we emphatically elucidate the pivotal functions and mechanisms of circRNAs in BC growth, metastasis, diagnosis, and drug resistance. Deciphering the complex networks, especially the circRNA-miRNA target gene axis, will endow huge potentials in developing therapeutic strategies for combating BC.
Collapse
Affiliation(s)
- Xiao He
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Xu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijie Hu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufang Tan
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dawei Wang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yichen Wang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chongru Zhao
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Yi
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingchen Xiong
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenchang Lv
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingrui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Lyu L, Zhang S, Deng Y, Wang M, Deng X, Yang S, Wu Y, Dai Z. Regulatory mechanisms, functions, and clinical significance of CircRNAs in triple-negative breast cancer. J Hematol Oncol 2021; 14:41. [PMID: 33676555 PMCID: PMC7937293 DOI: 10.1186/s13045-021-01052-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/25/2021] [Indexed: 12/30/2022] Open
Abstract
Circular RNAs (circRNAs) are a new class of endogenous regulatory RNAs characterized by covalently closed cyclic structure lacking poly-adenylated tails, and are capable of regulating gene expression at transcription or post-transcription levels. Recently, plentiful circRNAs have been discovered in breast cancer and some circRNAs expression profiles are specifically involved in the triple-negative breast cancer (TNBC). TNBC is a type of malignant tumor defined by the lack of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 expression. Considering its clinical characteristics of high invasion, metastasis, poor prognosis, and lack of effective response to conventional chemotherapies or targeted therapies, it could be a promosing option to discover specific circRNAs as new targets for TNBC treatment. Meanwhile, accumulating evidence has demonstrated that circRNAs are dysregulated in TNBC tissues and are correlated with clinicopathological features and prognosis of TNBC patients. Furthermore, looking for circRNAs with high specificity and sensitivity will provide a new opportunity for the early diagnosis, clinical treatment, and prognosis monitoring of TNBC. Herein, we reviewed the biogenesis, regulatory mechanisms, and biological functions of circRNAs in TNBC and summarized the relationship between circRNAs expression and the clinicopathology, diagnosis, and prognosis of patients with TNBC.
Collapse
Affiliation(s)
- Lijuan Lyu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.,Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shizhen Zhang
- The Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yujiao Deng
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.,Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Meng Wang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinyue Deng
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Si Yang
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.,Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ying Wu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.,Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China. .,Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
19
|
Wang J, Wang Q, Gong Y, Hu Q, Zhang H, Ke S, Chen Y. Knockdown of circRNA circ_0087378 Represses the Tumorigenesis and Progression of Esophageal Squamous Cell Carcinoma Through Modulating the miR-140-3p/E2F3 Axis. Front Oncol 2021; 10:607231. [PMID: 33680929 PMCID: PMC7928419 DOI: 10.3389/fonc.2020.607231] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND We aimed to investigate the function and underlying mechanisms of circ_0087378 in esophageal squamous cell carcinoma (ESCC). METHODS We verified higher circ_0087378 expression in ESCC tissues by performing qRT-PCR assays. We further confirmed the oncogenic roles of circ_0087378 in ESCC cells through a series of biological function assays. Then, we used an RNA pull-down assay and luciferase reporter assay to identify miR-140-3p that directly interacts with circ_0087378. Subsequent studies were performed to demonstrate that the circ_0087378/miR-140-3p/E2F3 axis promotes ESCC development. RESULTS We demonstrated that upregulated circ_0087378 expression was positively associated with tumor size, histological grade, tumor stage, the presence of metastasis, and worse survival in patients with ESCC. Our results further revealed that knockdown of circ_0087378 suppressed the proliferation, migration, and invasion of ESCC cells and reduced tumor growth in vivo. Mechanistically, we showed that circ_0087378 could directly bind to miR-miR-140-3p and relieve the suppression for target E2F3, which accelerated cell proliferation, migration, and invasion. Correlation analysis in ESCC specimens supported the involvement of the circ_0087378/miR-140-3p/E2F3 axis in ESCC progression. CONCLUSIONS This study demonstrated that circ_0087378 might act as a competing endogenous RNA for miR-140-3p, which could inhibit the tumorigenesis and progression of ESCC through upregulating E2F3 expression.
Collapse
Affiliation(s)
- Jing Wang
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, The First Clinical College of Wuhan University, Wuhan, China
| | - Qiushuang Wang
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, The First Clinical College of Wuhan University, Wuhan, China
| | - Yi Gong
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, The First Clinical College of Wuhan University, Wuhan, China
| | - Qiu Hu
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, The First Clinical College of Wuhan University, Wuhan, China
| | - Haoliang Zhang
- Department of Oncology, Tangshan Workers' Hospital, Tangshan, China
| | - Shaobo Ke
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, The First Clinical College of Wuhan University, Wuhan, China
| | - Yongshun Chen
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, The First Clinical College of Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Circular RNA circTP63 enhances estrogen receptor-positive breast cancer progression and malignant behaviors through the miR-873-3p/FOXM1 axis. Anticancer Drugs 2020; 32:44-52. [PMID: 33136699 DOI: 10.1097/cad.0000000000001010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Circular RNAs (circRNAs) have been shown to play a functional role in a variety of cancers. However, few studies on circRNAs in estrogen receptor-positive breast cancer have been conducted. Here, we investigated the role of circRNA circTP63 in estrogen receptor-positive breast cancer progression and malignant behaviors. First, we observed increased expression of circTP63 in MCF7 cells relative to normal human mammary epithelial cell lines, such as DU4475 and MCF-10A, and the changed oncogenicity of MCF7 cells correlated with circTP63 overexpression and downregulation. Interestingly, a series of gain- and loss-of-function assays revealed that a higher level of FOXM1 was closely associated with MCF7 malignant behaviors induced by circTP63 overexpression. Further investigations showed that circTP63 sponged to miR-873-3p, which targeted FOXM1 mRNA and inhibited its expression. Mechanistically, circTP63 binds to miR-873-3p and prevents the targeting of FOXM1, thus inducing the progression and malignant behaviors of estrogen receptor-positive breast cancer, such as cell proliferation, cell cycle dysregulation, invasion, migration and even tumor growth. CircTP63 might be a potential biomarker or target to treat estrogen receptor-positive breast cancer patients in the future.
Collapse
|
21
|
Perspectives on the Role of Non-Coding RNAs in the Regulation of Expression and Function of the Estrogen Receptor. Cancers (Basel) 2020; 12:cancers12082162. [PMID: 32759784 PMCID: PMC7465269 DOI: 10.3390/cancers12082162] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022] Open
Abstract
Estrogen receptors (ERs) comprise several nuclear and membrane-bound receptors with different tissue-specific functions. ERα and ERβ are two nuclear members of this family, whereas G protein-coupled estrogen receptor (GPER), ER-X, and Gq-coupled membrane estrogen receptor (Gq-mER) are membrane-bound G protein-coupled proteins. ERα participates in the development and function of several body organs such as the reproductive system, brain, heart and musculoskeletal systems. ERβ has a highly tissue-specific expression pattern, particularly in the female reproductive system, and exerts tumor-suppressive roles in some tissues. Recent studies have revealed functional links between both nuclear and membrane-bound ERs and non-coding RNAs. Several oncogenic lncRNAs and miRNAs have been shown to exert their effects through the modulation of the expression of ERs. Moreover, treatment with estradiol has been shown to alter the malignant behavior of cancer cells through functional axes composed of non-coding RNAs and ERs. The interaction between ERs and non-coding RNAs has functional relevance in several human pathologies associated with estrogen regulation, such as cancers, intervertebral disc degeneration, coronary heart disease and diabetes. In the current review, we summarize scientific literature on the role of miRNAs and lncRNAs on ER-associated signaling and related disorders.
Collapse
|
22
|
Circular RNAs serve as miRNA sponges in breast cancer. Breast Cancer 2020; 27:1048-1057. [PMID: 32715419 DOI: 10.1007/s12282-020-01140-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
Circular RNAs are a large group of non-coding RNAs with a closed-loop structure. circRNAs play significant roles in many biological processes as miRNA sponges, regulators for gene transcription, combining with RNA-binding proteins and translation of protein. Nowadays, circRNAs have become a research hotspot in the field of cancer and molecular biology. Accumulating evidences have indicated that circRNAs participate in the initiation and development of various cancers such as breast cancer. Breast cancer is a heterogeneous disease, which is the most common malignancy in women. The incidence and mortality rates of breast cancer indicate that it is the leading cause of cancer-related deaths. The goal of the present review is to introduce biogenesis, function characteristics and types of circRNAs, and also their biological functions on breast cancer, especially as miRNA sponges. Additionally, we discuss their use as a new therapeutic target for the treatment of breast cancer.
Collapse
|
23
|
Zhang C, Wang J, Geng X, Tu J, Gao H, Li L, Zhou X, Wu H, Jing J, Pan W, Mou Y. Circular RNA expression profile and m6A modification analysis in poorly differentiated adenocarcinoma of the stomach. Epigenomics 2020; 12:1027-1040. [PMID: 32657141 DOI: 10.2217/epi-2019-0153] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aims: To profile and characterize the circular RNA (circRNA) expression pattern in poorly differentiated gastric adenocarcinoma (PDGA). Methods & materials: CircRNA expression profiles in PDGA and adjacent nontumor tissues were analyzed by microarray. Five randomly selected differentiated expressed circRNAs (DECs) were validated by real-time quantitative PCR. m6A qualification of the top 20 DECs was conducted by m6A-immunoprecipitation and real-time quantitative PCR. Results: A total of 65 DECs were found in PDGA compared with the control. Hsa_circRNA_0077837 had the largest area under the curve. Most DECs had m6A modifications, the trend of m6A modification alteration was mainly consistent with the circRNA expression level. Conclusion: Our study revealed a set of DECs and their m6A modification alterations, which may provide new insight for their potential function in PDGA.
Collapse
Affiliation(s)
- Chenjing Zhang
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, Zhejiang, PR China
| | - Jingya Wang
- Department of Gastroenterology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Xiaoge Geng
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, Zhejiang, PR China
| | - Jiangfeng Tu
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, Zhejiang, PR China
| | - Huiqin Gao
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, Zhejiang, PR China
| | - Lunan Li
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, Zhejiang, PR China
| | - Xiaolu Zhou
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, Zhejiang, PR China
| | - Hongguang Wu
- Department of Gastroenterology, the Second People's Hospital of Quzhou, Quzhou, Zhejiang, PR China
| | - Jiyong Jing
- Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang, PR China
| | - Wensheng Pan
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, Zhejiang, PR China
| | - Yiping Mou
- Department of Gastrointestinal & Pancreatic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, PR China
| |
Collapse
|
24
|
Chen X, Jiang J, Zhao Y, Wang X, Zhang C, Zhuan L, Zhang D, Zheng Y. Circular RNA circNTRK2 facilitates the progression of esophageal squamous cell carcinoma through up-regulating NRIP1 expression via miR-140-3p. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:133. [PMID: 32653032 PMCID: PMC7353745 DOI: 10.1186/s13046-020-01640-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/05/2020] [Indexed: 12/24/2022]
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent gastrointestinal malignancies with high mortality. Circular RNAs (CircRNAs) have become a research hotspot in recent years for their vital roles in cancer development and progression. This study aims to clarify the roles of circNTRK2 and its underlying molecular mechanisms in ESCC. Methods The levels of circNTRK2, miR-140-3p, and nuclear receptor-interacting protein 1 (NRIP1) mRNA were examined by qRT-PCR. The cell proliferation ability was detected via CCK-8, EdU and colony formation assays. The invasion capacity was tested by using transwell assay. The apoptotic rate was evaluated through flow cytometry. The protein levels of cleaved PARP, cleaved caspase-3, E-cadherin, vimentin, and NRIP1 were measured by western blot assay. The validation of circular structure was performed by Sanger sequencing, divergent primer PCR, and RNase R treatments. The ceRNA regulatory mechanism of circNTRK2 was observed via dual-luciferase reporter, RIP and RNA pull-down assays. The mice xenograft models were constructed to confirm the oncogenicity of circNTRK2 in ESCC in vivo. Results CircNTRK2 was highly expressed in ESCC tissues and cells. High expression of circNTRK2 was correlated with advanced TNM stage, lymph node metastasis and short survival. Knockdown of circNTRK2 inhibited ESCC cell proliferation, invasion and epithelial-mesenchymal transition (EMT), and accelerated apoptosis in vitro. Mechanistic assays disclosed that circNTRK2 could act as a sponge for miR-140-3p to abate its suppression on target NRIP1 expression. Moreover, miR-140-3p-induced inhibitory effects on ESCC cell malignant phenotypes were attenuated by the overexpression of circNTRK2. In addition, depletion of NRIP1 impeded cell proliferation, invasion and EMT, while enhanced apoptosis. Furthermore, silencing of circNTRK2 suppressed cell proliferation and invasion through regulating NRIP1 expression. Also, knockdown of circNTRK2 slowed ESCC tumor growth in vivo. Conclusion CircNTRK2 promoted ESCC progression by regulating miR-140-3p/NRIP1 pathway. Our findings contribute to a better understanding of circRNAs as miRNA sponges and highlight a promising therapy target in ESCC.
Collapse
Affiliation(s)
- Xiaoqi Chen
- Department of Gastroenterology, The First Affiliated Hospital of Henan University of Chinese Medicine, No. 19 Renmin Road, Jinshui District, Zhengzhou, 450000, China.
| | - Jing Jiang
- School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou, 450000, China.
| | - Yunxia Zhao
- Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Xinting Wang
- Department of Gastroenterology, The First Affiliated Hospital of Henan University of Chinese Medicine, No. 19 Renmin Road, Jinshui District, Zhengzhou, 450000, China
| | - Chuanlei Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Henan University of Chinese Medicine, No. 19 Renmin Road, Jinshui District, Zhengzhou, 450000, China
| | - Lv Zhuan
- Department of Medical Administration, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Danyang Zhang
- Department of Pharmacy, Zhengzhou Hospital of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Yuling Zheng
- Guoyitang, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| |
Collapse
|
25
|
Abstract
OBJECTIVE Evidence suggests that various diseases may contribute to the circular RNAs (circRNAs) expression disorder. This review was aimed at looking for appropriate biomarkers for the treatment of diseases. DATA SOURCES The comprehensive search used online literature databases including PubMed of National Center for Biotechnology Information and Web of Science. STUDY SELECTION The study selection was based on the following keywords: circRNAs, biogenesis, biologic function, and disease. The time limit for literature retrieval was from the year 1976 to 2019, with language restriction in English. Relevant articles were carefully reviewed, with no exclusions applied to study design and publication type. RESULTS CircRNAs are one of the critical non-coding RNAs (ncRNAs), which are covalently closed continuous loops that do not possess 5' and 3' ends. This makes them resistant to exoribonuclease activity and potentially more stable than their cognate linear transcripts, thus making them ideal candidates for biomarker development. Due to the stable and extensive tissue-specific expression of circRNAs, they can function as microRNA sponges and bind to RNA-binding proteins, regulate transcription and splicing, and translate into proteins to participate in the regulation of physiologic and pathologic processes. Moreover, the expression disorders of circRNAs in diseases, such as neurodegenerative disease, cardiovascular disease, and cancer, make them have potential applications for the diagnosis and treatment of diseases. CONCLUSIONS Changes in circRNA expression profiles related to various diseases, and circRNAs often exhibit low expression in cancer tissues. In addition, circRNAs can be detected in patient's body fluids to indicate that circRNAs are effective biomarkers for disease diagnosis. These characteristics make circRNAs have potential applications as novel therapeutic targets for diseases.
Collapse
|
26
|
Li Z, Chen Z, Hu G, Zhang Y, Feng Y, Jiang Y, Wang J. Profiling and integrated analysis of differentially expressed circRNAs as novel biomarkers for breast cancer. J Cell Physiol 2020; 235:7945-7959. [PMID: 31943203 DOI: 10.1002/jcp.29449] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 01/06/2020] [Indexed: 12/11/2022]
Abstract
Breast cancer (BC) is a globally common cancer with the highest and increasing morbidity and mortality among females. Novel biomarkers are warranted to be discovered for the early detection, treatment, and prognosis of BC. In this study, we investigated the profiles of differentially expressed (DE) circular RNAs (circRNAs) by competing endogenous RNAs (ceRNA) microarray to construct a genome-wide circRNA profile. Then, we performed Gene Ontology (GO) analysis and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway analysis of the host genes (HGs) of circRNAs. A total of 4,370 DE circRNAs were detected and GO and KEGG analysis showed that they were significantly associated with cell cycle, DNA replication, BC, and familial BC. We validated the differential circRNAs and relevant HGs through quantitative real-time polymerase chain reaction and constructed a putative circRNA-microRNA-messenger RNA regulatory network. Eight circRNAs, including hsa_circ_0069094, hsa_circ_0062558, hsa_circ_0074026, hsa_circ_0079876, hsa_circ_0017536, hsa_circ_0023302, hsa_circ_0017650, and hsa_circ_0017545, were validated significantly DE in BC tissue and associated with TNM staging, lymph node infiltration, and Ki67. Hsa_circ_0069094, hsa_circ_0079876, hsa_circ_0017650, and hsa_circ_0017526 were upregulated in plasma. This study revealed the general expression characteristics of specific DE circRNAs in BC and hsa_circ_0069094, hsa_circ_0079876, hsa_circ_0017650, and hsa_circ_0017526 might be promising candidate targets.
Collapse
Affiliation(s)
- Zehuan Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhanghan Chen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guohua Hu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yong Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanling Feng
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Ying Jiang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jin Wang
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Wang X, Dong Y, Wu Q, Lu T, Wang Y, Liu W, Liu C, Xu W. Analysis of circular RNA-associated competing endogenous RNA network in breast cancer. Oncol Lett 2020; 19:1619-1634. [PMID: 32002039 PMCID: PMC6960389 DOI: 10.3892/ol.2020.11247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023] Open
Abstract
As the most common type of cancer in female patients, the morbidity and mortality rates of breast cancer (BC) are high, and its incidence is gradually increasing worldwide. However, the underlying molecular and genetic mechanisms involved in the etiopathogenesis of BC remain unclear. Circular RNAs (circRNAs) are a novel type of non-coding RNAs that have been verified to serve a crucial role in tumorigenesis. However, the majority of functions and mechanisms of circRNAs remain unknown. The present study identified 47 differentially expressed circRNAs in a dataset from Gene Expression Omnibus. Using the cancer-specific circRNA database, the potential microRNA (miRNA) response elements, RNA-binding proteins and open reading frames of the candidate circRNAs were predicted. Combing the predictions of miRNAs and target mRNAs, a competing endogenous RNA network was constructed, which may serve as the theoretical basis for further research. Furthermore, the analyses conducted using Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways indicated that candidate circRNAs may serve a role in transcriptional regulation. Moreover, 20 BC tissue specimens and their paired adjacent normal tissue specimens were used to evaluate the expression levels of the screened circRNAs. Thus, the analyses of the raw microarray data conducted in the present study offer perspectives on the exploration of mechanisms associated with BC tumorigenesis with regard to the circRNA-miRNA-mRNA network.
Collapse
Affiliation(s)
- Xuekang Wang
- Department of Inspection, Medical Faculty of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yanhan Dong
- Center for Developmental Cardiology, Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Qiong Wu
- Clinical Laboratory, Qingdao Hiser Medical Center, Qingdao, Shandong 266034, P.R. China
| | - Tong Lu
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Wenchao Liu
- Clinical Laboratory Blood Transfusion Service, Qingdao Municipal Hospital, Qingdao, Shandong 266011, P.R. China
| | - Chengyu Liu
- Department of Inspection, Medical Faculty of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Wenhua Xu
- Department of Inspection, Medical Faculty of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
28
|
Li HM, Dai YW, Yu JY, Duan P, Ma XL, Dong WW, Li N, Li HG. Comprehensive circRNA/miRNA/mRNA analysis reveals circRNAs protect against toxicity induced by BPA in GC-2 cells. Epigenomics 2019; 11:935-949. [PMID: 31020848 DOI: 10.2217/epi-2018-0217] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To identify the circRNAs expression pattern and roles in bisphenol A (BPA) induced germ cell apoptosis. Materials & methods: We performed circRNA/miRNA/mRNA-Seq in 120 μM BPA treated and nontreated GC-2 cells. Bioinformatic analysis, qPCR, apoptosis assays, luciferase report were done in the function analysis. Results: A large number of apoptosis related circRNAs/miRNAs/mRNAs were differentially expressed with competing endogenous RNA network constructed. Interestingly, most investigated upregulated circRNAs, including circDcbld2, circMapk1, circMpp6 and circTbc1d20 showed protective effects in antagonizing BPA toxicity, with the effects individually and synergistically observed. CircMapk1 may take its role by sponging miR-214-3p. Conclusion: circRNAs can play protective roles via sponging miRNAs in toxicity. Some circRNAs may serve as novel targets for BPA toxicity intervention or as biomarkers.
Collapse
Affiliation(s)
- Hui-Min Li
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, PR China
| | - Yu-Wan Dai
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, PR China
| | - Jiang-Yu Yu
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, PR China
| | - Peng Duan
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, PR China
| | - Xiu-Lan Ma
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, PR China
| | - Wei-Wei Dong
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, PR China
| | - Na Li
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, PR China
| | - Hong-Gang Li
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, PR China.,Wuhan Tongji Reproductive Medicine Hospital, Wuhan, 430030, PR China
| |
Collapse
|
29
|
Liu LH, Tian QQ, Liu J, Zhou Y, Yong H. Upregulation of hsa_circ_0136666 contributes to breast cancer progression by sponging miR-1299 and targeting CDK6. J Cell Biochem 2019; 120:12684-12693. [PMID: 30993801 DOI: 10.1002/jcb.28536] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 01/03/2023]
Abstract
Circular RNAs (circRNAs) can participate in multiple cancers, including breast cancer. Increasing circRNAs are recognized in various cancers because of the high-throughput sequencing. However, the potential physiological effect of hsa_circ_0136666 in breast cancer progression is unknown. In our study, the biological role of hsa_circ_0136666 in breast cancer development was studied. It was displayed that hsa_circ_0136666 was greatly increased in breast cancer. In addition, overexpression of hsa_circ_0136666 was able to promote Michigan Cancer Foundation-7 (MCF7) and BT474 cell proliferation and triggered cell cycle in G2/M phase. microRNA plays critical role in tumor development and they can act as direct targets of circRNAs. miR-1299 has been implicated as a famous tumor suppressor in many cancers. Here, miR-1299 was predicted as the target of hsa_circ_0136666. Meanwhile, its Upregulation repressed breast cancer proliferation, migration and invasion capacity, which could be reversed by the increase of hsa_circ_0136666. Furthermore, Cyclin-dependent kinase 6 (CDK6) was speculated as the downstream target of miR-1299. In MCF7 and BT474 cells, CDK6 was greatly overexpressed and it was shown that CDK6 contributed a lot to breast cancer progression. Subsequently, it was implied that hsa_circ_0136666 could modulate CDK6 levels positively in vitro. In conclusion, it was revealed that Upregulation of hsa_circ_0136666 promoted breast cancer progression by sponging miR-1299 and targeting CDK6.
Collapse
Affiliation(s)
- Li-Hong Liu
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing-Qing Tian
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Liu
- Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Yong Zhou
- Department of Breast Surgery, The Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei, China
| | - Hongmei Yong
- Department of Oncology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, 62 South Huaihai Rode, Huai'an, China
| |
Collapse
|