1
|
Bérubé R, LeFauve MK, Khalaf A, Aminioroomi D, Kassotis CD. Effects of organic and inorganic contaminants and their mixtures on metabolic health and gene expression in developmentally exposed zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620642. [PMID: 39554096 PMCID: PMC11565930 DOI: 10.1101/2024.10.28.620642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Organic and inorganic chemicals co-occur in household dust, and these chemicals have been determined to have endocrine and metabolic disrupting effects. While there is increasing study of chemical mixtures, the effects of complex mixtures mimicking household dust and other environmental matrices have not been well studied and their potential metabolism disrupting effects are thus poorly understood. Previous research has demonstrated high potency adipogenic effects of residential household dust extracts using in vitro adipogenesis assays. More recent research simplified this to a mixture relevant to household dust and comprised of common co-occurring organic and inorganic contaminants, finding that these complex combinations often exhibited additive or even synergistic effects in cell models. This study aimed to translate our previous in vitro observation to an in vivo model, the developing zebrafish, to evaluate the metabolic effects of early exposure to organic and inorganic chemicals, individually and in mixtures. Zebrafish embryos were exposed from 1 day post fertilization (dpf) to 6 dpf, then metabolic energy expenditure, swimming behavior and gene expression were measured. Globally, we observed that most mixtures did not reflect the effects of individual chemicals; the BFR mixture produced a less potent effect when compared to the individual chemicals, while the PFAS and the inorganic mixtures seemed to have a more potent effect than the individual chemicals. Finally, the environmental mixture, mimicking household dust proportions, was less potent than the inorganic chemical mix alone. Additional work is necessary to better understand the mixture effect of inorganic and organic chemicals combined.
Collapse
Affiliation(s)
- Roxanne Bérubé
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202
| | - Matthew K. LeFauve
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202
| | - Aicha Khalaf
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202
| | - Darya Aminioroomi
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202
| | - Christopher D. Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202
| |
Collapse
|
2
|
Jarosiewicz M, Krześlak A. Epigenetic implications of common brominated flame retardants (PBDEs and TBBPA): Understanding the health risks of BFRs exposure. CHEMOSPHERE 2024; 361:142488. [PMID: 38821124 DOI: 10.1016/j.chemosphere.2024.142488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/17/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024]
Abstract
Brominated flame retardants (BFRs) are synthetic chemicals incorporated into a wide variety of products, both for industrial applications and everyday use, with the primary aim of reducing their flammability or reducing the material burning rate. These compounds find widespread use in plastics, textiles, and electrical/electronic devices. However, BFRs can be released from products and, thus are determined in many environmental matrices such as soil, water and air.This review discuss the potential health implications of selected BFRs (PBDEs and TBBPA) exposure arising from their impact on the epigenetic mechanisms. Epigenetic modifications, such as DNA methylation and histone acetylation or methylation, as well as changes in miRNA pattern, play significant roles in gene expression and cell function and can be influenced by environmental factors.The studies indicate that PBDEs exposure can lead to global DNA hypomethylation, disrupting normal gene regulation and contributing to genomic instability. In animal models, PBDEs have been associated with adverse effects on neurodevelopment, including impairments in memory and learning. TBBPA exposure has also been linked to changes in DNA methylation patterns, alterations in histone posttranslational modifications and non-coding RNA expression. These epigenetic changes may contribute to health issues related to growth, development, and endocrine functions.The growing evidence of epigenetic modifications induced by BFRs exposure highlights the importance of understanding their potential risks to human health. Further investigations are needed to fully elucidate the long-term consequences of altered epigenetic marks and their impact on human health.
Collapse
Affiliation(s)
- Monika Jarosiewicz
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236, Lodz, Poland.
| | - Anna Krześlak
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236, Lodz, Poland
| |
Collapse
|
3
|
Hood RB, Terrell ML, Mardovich S, Somers EC, Pearson M, Barton H, Tomlinson MS, Marder ME, Barr DB, Marcus M. Polybrominated biphenyls (PBBs) and prevalence of autoimmune disorders among members of the Michigan PBB registry. ENVIRONMENTAL RESEARCH 2023; 239:117312. [PMID: 37806482 PMCID: PMC10843028 DOI: 10.1016/j.envres.2023.117312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/15/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Polybrominated biphenyls (PBBs), a class of endocrine disrupting chemicals, were the main chemicals present in one of the largest industrial accidents in the United States. We investigated the association between serum PBB-153 levels and autoimmune disorders among members of the Michigan PBB Registry. METHODS Eight hundred and ninety-five members of the registry had both a serum PBB-153 measurement and had completed one or more questionnaires about autoimmune disorders. Autoimmune disorders were examined collectively and within specific organ systems. Sex-stratified unadjusted and adjusted log-binomial models were used to examine the association between tertiles of serum PBB-153 levels and autoimmune disorders. Models were adjusted by lifestage at exposure (in utero, childhood, adulthood), smoking history (never, past, current), and total serum lipid levels (continuous). We utilized cubic spline models to investigate non-linearity between serum PBB-153 levels and the prevalence of autoimmune disorders. RESULTS Approximately 12.9% and 20.7% of male and female participants reported having one or more autoimmune disorders, respectively. After adjustment for potential confounders, we observed no association between PBB-153 tertiles and the composite classification of 'any autoimmune disorder' in either sex. We observed some evidence for an association between serum PBB-153 levels and rheumatoid arthritis in males and females; however, this was not statistically significant in females. We also observed some evidence for an association between serum PBB-153 levels and neurological- and thyroid-related autoimmune disorders in females, but again this was not statistically significant. Additionally, we identified dose-response curves for serum PBB-153 levels and the prevalence of autoimmune disorders that differed by lifestage of exposure and sex. CONCLUSIONS We observed some evidence that increasing serum PBB-153 levels were associated with three specified autoimmune disorders. Studies focusing on these three autoimmune disorders and the potential non-linear trend differences by lifestage of exposure warrant further investigation.
Collapse
Affiliation(s)
- Robert B Hood
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA.
| | - Metrecia L Terrell
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Sarah Mardovich
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Emily C Somers
- Departments of Internal Medicine, Environmental Health Sciences and Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
| | - Melanie Pearson
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Hillary Barton
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Martha Scott Tomlinson
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - M Elizabeth Marder
- Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Michele Marcus
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA; Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| |
Collapse
|
4
|
Govender P, Ghai M, Okpeku M. Sex-specific DNA methylation: impact on human health and development. Mol Genet Genomics 2022; 297:1451-1466. [PMID: 35969270 DOI: 10.1007/s00438-022-01935-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/28/2022] [Indexed: 11/26/2022]
Abstract
Human evolution has shaped gender differences between males and females. Over the years, scientific studies have proposed that epigenetic modifications significantly influence sex-specific differences. The evolution of sex chromosomes with epigenetics as the driving force may have led to one sex being more adaptable than the other when exposed to various factors over time. Identifying and understanding sex-specific differences, particularly in DNA methylation, will help determine how each gender responds to factors, such as disease susceptibility, environmental exposure, brain development and neurodegeneration. From a medicine and health standpoint, sex-specific methylation studies have shed light on human disease severity, progression, and response to therapeutic intervention. Interesting findings in gender incongruent individuals highlight the role of genetic makeup in influencing DNA methylation differences. Sex-specific DNA methylation studies will empower the biotechnology and pharmaceutical industry with more knowledge to identify biomarkers, design and develop sex bias drugs leading to better treatment in men and women based on their response to different diseases.
Collapse
Affiliation(s)
- Priyanka Govender
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Meenu Ghai
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa.
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| |
Collapse
|
5
|
Svoboda LK, Perera BPU, Morgan RK, Polemi KM, Pan J, Dolinoy DC. Toxicoepigenetics and Environmental Health: Challenges and Opportunities. Chem Res Toxicol 2022; 35:1293-1311. [PMID: 35876266 PMCID: PMC9812000 DOI: 10.1021/acs.chemrestox.1c00445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The rapidly growing field of toxicoepigenetics seeks to understand how toxicant exposures interact with the epigenome to influence disease risk. Toxicoepigenetics is a promising field of environmental health research, as integrating epigenetics into the field of toxicology will enable a more thorough evaluation of toxicant-induced disease mechanisms as well as the elucidation of the role of the epigenome as a biomarker of exposure and disease and possible mediator of exposure effects. Likewise, toxicoepigenetics will enhance our knowledge of how environmental exposures, lifestyle factors, and diet interact to influence health. Ultimately, an understanding of how the environment impacts the epigenome to cause disease may inform risk assessment, permit noninvasive biomonitoring, and provide potential opportunities for therapeutic intervention. However, the translation of research from this exciting field into benefits for human and animal health presents several challenges and opportunities. Here, we describe four significant areas in which we see opportunity to transform the field and improve human health by reducing the disease burden caused by environmental exposures. These include (1) research into the mechanistic role for epigenetic change in environment-induced disease, (2) understanding key factors influencing vulnerability to the adverse effects of environmental exposures, (3) identifying appropriate biomarkers of environmental exposures and their associated diseases, and (4) determining whether the adverse effects of environment on the epigenome and human health are reversible through pharmacologic, dietary, or behavioral interventions. We then highlight several initiatives currently underway to address these challenges.
Collapse
Affiliation(s)
- Laurie K Svoboda
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bambarendage P U Perera
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rachel K Morgan
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Katelyn M Polemi
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Junru Pan
- Department Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
6
|
Bao J, Jin H, Wang Y, Jin J, Chen L. New emerging polybromobiphenyls in serum of general population and their disruption on thyroid hormone receptor β 1. ENVIRONMENT INTERNATIONAL 2022; 166:107390. [PMID: 35810546 DOI: 10.1016/j.envint.2022.107390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
After the PBBs pollution incident in Michigan, a large number of studies focused on the exposure of people to 2,2',4,4',5,5'-hexabromobiphenyl (BB-153), but paid less attention to other PBBs congeners in human serum. In this study, three monobromobiphenyls (BB-1, BB-2 and BB-3), five dibromobiphenyls (BB-4, BB-7, BB-9, BB-10 and BB-15), decabromobiphenyl (BB-209) and BB-153 in the serum of the general population in Wuxi from 2012 to 2016 were detected by GC-MS/MS. The most abundant congeners in serum samples were BB-1(median 254 ng·g-1 lw), BB-10 (median 141 ng·g-1 lw) and BB-209 (median 68.4 ng·g-1 lw). The detection rate of BB-153 is less than 10%, and the concentration is far lower than that in other areas. The concentrations of BB-1, BB-10 and BB-209 are 3-4 orders of magnitude higher than the maximum concentration of BB-153. Serum concentrations of BB-209 increased significantly from 2012 to 2016 (p = 0.025). In addition, the concentrations of BB-1 in serum of females were significantly higher than that of males, and the concentrations of BB-1, BB-10 and BB-209 in serum of young adults were significantly higher than that of middle-aged adults. Finally, we found that BB-1 and BB-10 may have similar disruption on the binding of T3 and TRβ1 as BB-153, while BB-209 has little effect on the binding of T3 and TRβ1. This suggests that we should pay more attention to the damage of BB-1 and BB-10 to thyroid in the future.
Collapse
Affiliation(s)
- Junsong Bao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Hongli Jin
- Department of Biomedicine, Beijing City University, Beijing 100094, China.
| | - Ying Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; Engineering Research Center of Food Environment and Public Health, Beijing 100081, China.
| | - Jun Jin
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; Engineering Research Center of Food Environment and Public Health, Beijing 100081, China.
| | - Limei Chen
- Wuxi Center for Disease Control and Prevention, Wuxi 214023, China; Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi 214023, China.
| |
Collapse
|
7
|
Zhou S, Zhang J, Zhou C, Gong F, Zhu X, Pan X, Sun J, Gao X, Huang Y. DNA Methylation of Patatin-Like Phospholipase Domain-Containing Protein 6 Gene Contributes to the Risk of Intracranial Aneurysm in Males. Front Aging Neurosci 2022; 14:885680. [PMID: 35898327 PMCID: PMC9309567 DOI: 10.3389/fnagi.2022.885680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
Objective: This study is aimed to investigate the contribution of patatin-like phospholipase domain-containing protein 6 (PNPLA6) DNA methylation to the risk of intracranial aneurysm (IA) in the Han Chinese population. Methods: A total of 96 age- and sex-matched participants were recruited to evaluate PNPLA6 methylation via bisulfite pyrosequencing. The PNPLA6 mRNA expression in the plasma was determined using real-time quantitative reverse transcription-polymerase chain reaction. Human primary artery smooth muscle cells (HPCASMC) were used for the in vitro function study. Results: PNPLA6 methylation was significantly higher in patients with IA than in healthy controls (p < 0.01). Sex group analysis showed that this correlation appeared in the male group (p < 0.01) but not in the female group (p > 0.05). PNPLA6 methylation was significantly associated with age in all participants (r = 0.306, p = 0.003) and in the control group (r = 0.377, p = 0.008) but not in the IA group (r = 0.127, p = 0.402). Furthermore, the PNPLA6 mRNA expression significantly decreased in patients with IA than that in the controls (p = 0.016). PNPLA6 expression was significantly inversely correlated with elevated DNA methylation in participants (r = −0.825, p < 0.0001). In addition, PNPLA6 transcription was significantly enhanced following treatment with 5-aza-2’-deoxycytidine methylation inhibitor in HPCASMC.The receiver operating characteristic analyses of curves showed that the PNPLA6 mean methylation [area under the curve (AUC) = 0.74, p < 0.001] and mRNA expression (AUC = 0.86, p < 0.001) could have a diagnostic value for patients with IA. Conclusion: Although future functional experiments are required to test our hypothesis, our study demonstrated that PNPLA6 methylation and mRNA expression were significantly associated with the risk of IA; thus, they show potential for use in the early diagnosis of IA.
Collapse
Affiliation(s)
- Shengjun Zhou
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, China
| | - Junjun Zhang
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, China
| | - Chenhui Zhou
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, China
| | - Fanyong Gong
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, China
| | - Xueli Zhu
- Department of Ultrasound, Ningbo First Hospital, Ningbo, China
| | - Xingqiang Pan
- Ningbo Center for Disease Control and Prevention, Ningbo, China
| | - Jie Sun
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, China
- *Correspondence: Jie Sun Xiang Gao Yi Huang
| | - Xiang Gao
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, China
- *Correspondence: Jie Sun Xiang Gao Yi Huang
| | - Yi Huang
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, China
- Medical Research Center, Ningbo First Hospital, Ningbo, China
- *Correspondence: Jie Sun Xiang Gao Yi Huang
| |
Collapse
|
8
|
Grant OA, Wang Y, Kumari M, Zabet NR, Schalkwyk L. Characterising sex differences of autosomal DNA methylation in whole blood using the Illumina EPIC array. Clin Epigenetics 2022; 14:62. [PMID: 35568878 PMCID: PMC9107695 DOI: 10.1186/s13148-022-01279-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/18/2022] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Sex differences are known to play a role in disease aetiology, progression and outcome. Previous studies have revealed autosomal epigenetic differences between males and females in some tissues, including differences in DNA methylation patterns. Here, we report for the first time an analysis of autosomal sex differences in DNAme using the Illumina EPIC array in human whole blood by performing a discovery (n = 1171) and validation (n = 2471) analysis. RESULTS We identified and validated 396 sex-associated differentially methylated CpG sites (saDMPs) with the majority found to be female-biased CpGs (74%). These saDMP's are enriched in CpG islands and CpG shores and located preferentially at 5'UTRs, 3'UTRs and enhancers. Additionally, we identified 266 significant sex-associated differentially methylated regions overlapping genes, which have previously been shown to exhibit epigenetic sex differences, and novel genes. Transcription factor binding site enrichment revealed enrichment of transcription factors related to critical developmental processes and sex determination such as SRY and ESR1. CONCLUSION Our study reports a reliable catalogue of sex-associated CpG sites and elucidates several characteristics of these sites using large-scale discovery and validation data sets. This resource will benefit future studies aiming to investigate sex specific epigenetic signatures and further our understanding of the role of DNA methylation in sex differences in human whole blood.
Collapse
Affiliation(s)
- Olivia A Grant
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
- Institute of Social and Economic Research, University of Essex, Colchester, CO4 3SQ, UK
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Yucheng Wang
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
- School of Computer Science and Electronic Engineering, University of Essex, Colchester, CO4 3SQ, UK
| | - Meena Kumari
- Institute of Social and Economic Research, University of Essex, Colchester, CO4 3SQ, UK
| | - Nicolae Radu Zabet
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK.
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK.
| | - Leonard Schalkwyk
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK.
| |
Collapse
|
9
|
Occean JR, Wani AH, Donglasan J, Aiello AE, Galea S, Koenen KC, Qu A, Wildman DE, Uddin M. DNA methylation of Nuclear Factor of Activated T Cells 1 mediates the prospective relation between exposure to different traumatic event types and post-traumatic stress disorder. Psychiatry Res 2022; 311:114510. [PMID: 35349860 PMCID: PMC9018623 DOI: 10.1016/j.psychres.2022.114510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/26/2022] [Accepted: 03/12/2022] [Indexed: 11/25/2022]
Abstract
The mechanisms through which exposure to differing trauma types become biologically embedded to shape the risk for post-traumatic stress disorder (PTSD) is unclear. DNA methylation (5-mC), particularly in stress-relevant genes, may play a role in this relationship. Here, we conducted path analysis using generalized structural equation modeling to investigate whether blood-derived 5-mC in Nuclear Factor of Activated T Cells 1 (NFATC1) mediates the prospective association between each of five different trauma types ("assaultive violence", "other injury or shocking experience", "learning of trauma to loved one", "sudden, unexpected death of a close friend or relative", and "other") and lifetime PTSD. All five trauma types were significantly associated with reduced methylation at NFATC1 CpG site, cg17057218. Two of the five trauma types were significantly associated with increased methylation at NFATC1 CpG site, cg22324981. Moreover, methylation at cg17057218 significantly mediated 21-32% of the total effect for four of the five trauma types, while methylation at cg22324981 mediated 27-40% of the total effect for two of the five trauma types. These CpG sites were differentially associated with transcription factor binding sites and chromatin state signatures. NFATC1 5-mC may be a potential mechanism in the relationship between some trauma types and prospective risk for PTSD.
Collapse
Affiliation(s)
- James R Occean
- Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA; Present address: Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Agaz H Wani
- Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Janelle Donglasan
- Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Allison E Aiello
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sandro Galea
- Boston University School of Public Health, Boston University, Boston, MA, USA
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Psychiatric and Neurodevelopmental Genetics Unit & Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Annie Qu
- Department of Statistics, University of California Irvine, Irvine, CA, USA
| | - Derek E Wildman
- Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Monica Uddin
- Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
10
|
Wang Z, Zhou S, Zhao J, Nie S, Sun J, Gao X, Lenahan C, Lin Z, Huang Y, Chen G. Tobacco Smoking Increases Methylation of Polypyrimidine Tract Binding Protein 1 Promoter in Intracranial Aneurysms. Front Aging Neurosci 2021; 13:688179. [PMID: 34295240 PMCID: PMC8292010 DOI: 10.3389/fnagi.2021.688179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/14/2021] [Indexed: 11/20/2022] Open
Abstract
DNA methylation at the gene promoter region is reportedly involved in the development of intracranial aneurysm (IA). This study aims to investigate the methylation levels of polypyrimidine tract-binding protein 1 (PTBP1) in IA, as well as its potential to predict IA. Forty-eight patients with IA and 48 age- and sex-matched healthy controls were recruited into this study. Methylation levels of CpG sites were determined via bisulfite pyrosequencing. The PTBP1 levels in the blood were determined using a real-time quantitative reverse transcription-polymerase chain reaction test. Significant differences were found between IAs and controls in CpG1 (p = 0.001), CpG2 (p < 0.001), CpG3 (p = 0.037), CpG4 (p = 0.003), CpG5 (p = 0.006), CpG6 (p = 0.02), and mean methylation (p < 0.001). The mRNA level of PTBP1 in the blood was much lower in IAs compared with controls (p = 0.002), and the PTBP1 expression was significantly associated with DNA methylation promoter levels in individuals (r = −0.73, p < 0.0001). In addition, stratification analysis comparing smokers and non-smokers revealed that tobacco smokers had significantly higher levels of DNA methylation in PTBP1 than non-smokers (p = 0.002). However, no statistical difference in PTBP1 methylation was found between ruptured and unruptured IA groups (p > 0.05). The ROC analyses of curves revealed that PTBP1 methylation may be a predictor of IA regardless of sex (both sexes, area under curve (AUC) = 0.78, p < 0.0001; male, AUC = 0.76, p = 0.002; female, AUC = 0.79, p < 0.0001). These findings suggest that long-term tobacco smoke exposure led to DNA methylation in the promoter region of the PTBP1 gene, which further decreased PTBP1 gene expression and participated in the pathogenesis of IA. The methylation of PTBP1 may be a potential predictive marker for the occurrence of IA.
Collapse
Affiliation(s)
- Zhepei Wang
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China.,Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengjun Zhou
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China.,Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jikuang Zhao
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China.,Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng Nie
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China
| | - Jie Sun
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China
| | - Xiang Gao
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Zhiqin Lin
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China
| | - Yi Huang
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China.,Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gao Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Benincasa G, DeMeo DL, Glass K, Silverman EK, Napoli C. Epigenetics and pulmonary diseases in the horizon of precision medicine: a review. Eur Respir J 2021; 57:13993003.03406-2020. [PMID: 33214212 DOI: 10.1183/13993003.03406-2020] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
Epigenetic mechanisms represent potential molecular routes which could bridge the gap between genetic background and environmental risk factors contributing to the pathogenesis of pulmonary diseases. In patients with COPD, asthma and pulmonary arterial hypertension (PAH), there is emerging evidence of aberrant epigenetic marks, mainly including DNA methylation and histone modifications which directly mediate reversible modifications to the DNA without affecting the genomic sequence. Post-translational events and microRNAs can be also regulated epigenetically and potentially participate in disease pathogenesis. Thus, novel pathogenic mechanisms and putative biomarkers may be detectable in peripheral blood, sputum, nasal and buccal swabs or lung tissue. Besides, DNA methylation plays an important role during the early phases of fetal development and may be impacted by environmental exposures, ultimately influencing an individual's susceptibility to COPD, asthma and PAH later in life. With the advances in omics platforms and the application of computational biology tools, modelling the epigenetic variability in a network framework, rather than as single molecular defects, provides insights into the possible molecular pathways underlying the pathogenesis of COPD, asthma and PAH. Epigenetic modifications may have clinical applications as noninvasive biomarkers of pulmonary diseases. Moreover, combining molecular assays with network analysis of epigenomic data may aid in clarifying the multistage transition from a "pre-disease" to "disease" state, with the goal of improving primary prevention of lung diseases and its subsequent clinical management.We describe epigenetic mechanisms known to be associated with pulmonary diseases and discuss how network analysis could improve our understanding of lung diseases.
Collapse
Affiliation(s)
- Giuditta Benincasa
- Dept of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Dawn L DeMeo
- Channing Division of Network Medicine and the Division of Pulmonary and Critical Care Medicine, Dept of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kimberly Glass
- Channing Division of Network Medicine and the Division of Pulmonary and Critical Care Medicine, Dept of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine and the Division of Pulmonary and Critical Care Medicine, Dept of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Claudio Napoli
- Dept of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy .,Clinical Dept of Internal and Specialty Medicine (DAI), University Hospital (AOU), University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|