1
|
Zhu HR, Wei YB, Guo JQ, Liu XF. Double-negative T cells with a distinct transcriptomic profile are abundant in the peripheral blood of patients with breast cancer. Breast Cancer Res Treat 2025; 209:103-115. [PMID: 39254769 PMCID: PMC11785702 DOI: 10.1007/s10549-024-07477-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/25/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Double-negative T (DNT) cells comprise a distinct subset of T lymphocytes that have been implicated in immune responses. The aim of this study was to characterize the peripheral DNT population in breast cancer (BC) patients. METHODS DNT cells were isolated from the peripheral blood samples of BC patients and healthy controls by flow cytometry. The sorted DNT cells were analyzed by the Smart-seq2 for single-cell full-length transcriptome profiling. The differentially expressed genes (DEGs) between the BC and control groups were screened and functionally annotated by Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses using R. The protein-protein interaction (PPI) network of the DEGs was constructed using the CytoHubba and MCODE plug-in of Cytoscape software to identify the core genes. Survival status, DNA methylation level, immune infiltration and immune checkpoint expression were analyzed using Kaplan-Meier Plotter, UALCAN, MethSeuvr, TIMER, and TISIDB respectively. The sequencing results were verified by RT-qPCR. RESULT The percentage of DNT cells was higher in the BC patients compared to healthy controls. We identified 289 DEGs between the DNT populations of both groups. GO and KEGG pathway analyses revealed that the DEGs were mainly related to immunoglobulin mediated immune response, complement activation, and B cell receptor signaling. The PPI networks of the common DEGs were constructed using Cytoscape, and 10 core genes were identified, including TMEM176B, C1QB, C1QC, RASD2, and IFIT3. The expression levels of these genes correlated with the prognosis and immune infiltration in BC patients, and were validated by RT-qPCR (P < 0.05). CONCLUSIONS DNT cells are abundant in patients with BC, and might exert anti-tumor immune responses by regulating genes such as TMEM176B and EGR1.
Collapse
Affiliation(s)
- Hui-Ru Zhu
- School of Medical Laboratory, Shandong Second Medical University, Weifang, China
- Department of Laboratory Medicine, the 960, Hospital of the PLA Joint Logistics Support Force, Jinan, 250031, China
| | - Yun-Bo Wei
- Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jia-Qi Guo
- School of Medical Laboratory, Shandong Second Medical University, Weifang, China
| | - Xiao-Fei Liu
- Department of Laboratory Medicine, the 960, Hospital of the PLA Joint Logistics Support Force, Jinan, 250031, China.
| |
Collapse
|
2
|
Horton MK, Nititham J, Taylor KE, Katz P, Ye CJ, Yazdany J, Dall'Era M, Hurabielle C, Barcellos LF, Criswell LA, Lanata CM. Changes in DNA methylation are associated with systemic lupus erythematosus flare remission and clinical subtypes. Clin Epigenetics 2024; 16:181. [PMID: 39696438 DOI: 10.1186/s13148-024-01792-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) has numerous symptoms across organs and an unpredictable flare-remittance pattern. This has made it challenging to understand drivers of long-term SLE outcomes. Our objective was to identify whether changes in DNA methylation over time, in an actively flaring SLE cohort, were associated with remission and whether these changes meaningfully subtype SLE patients. METHODS Fifty-nine multi-ethnic SLE patients had clinical visits and DNA methylation profiles at a flare and approximately 3 months later. Methylation was measured using the Illumina EPIC array. We identified sites where methylation change between visits was associated with remission at the follow-up visit using limma package and a time x remission interaction term. Models adjusted for batch, age at diagnosis, time between visits, age at flare, sex, medications, and cell-type proportions. Separately, a paired T-test identified Bonferroni significant methylation sites with ≥ 3% change between visits (n = 546). Methylation changes at these sites were used for unsupervised consensus hierarchical clustering. Associations between clusters and patient features were assessed. RESULTS Nineteen patients fully remitted at the follow-up visit. For 1,953 CpG sites, methylation changed differently for remitters vs. non-remitters (Bonferroni p < 0.05). Nearly half were within genes regulated by interferon. The largest effect was at cg22873177; on average, remitters had 23% decreased methylation between visits while non-remitters had no change. Three SLE patient clusters were identified using methylation differences agnostic of clinical outcomes. All Cluster 1 subjects (n = 12) experienced complete flare remission, despite similar baseline disease activity scores, medications, and demographics as other clusters. Methylation changes at six CpG sites, including within immune-related CD45 and IFI genes, were particularly distinct for each cluster, suggesting these may be good candidates for stratifying patients in the future. CONCLUSIONS Changes in DNA methylation during active SLE were associated with remission status and identified subgroups of SLE patients with several distinct clinical and biological characteristics. DNA methylation patterns might help inform SLE subtypes, leading to targeted therapies based on relevant underlying biological pathways.
Collapse
Affiliation(s)
- Mary K Horton
- Genomics of Autoimmune Rheumatic Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Joanne Nititham
- Genomics of Autoimmune Rheumatic Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kimberly E Taylor
- Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Patricia Katz
- Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Chun Jimmie Ye
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
| | - Jinoos Yazdany
- Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Maria Dall'Era
- Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Charlotte Hurabielle
- Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Lisa F Barcellos
- Division of Epidemiology, University of California, Berkeley, CA, USA
| | - Lindsey A Criswell
- Genomics of Autoimmune Rheumatic Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cristina M Lanata
- Genomics of Autoimmune Rheumatic Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Du J, Luo H, Ye S, Zhang H, Zheng Z, Liu K. Unraveling IFI44L's biofunction in human disease. Front Oncol 2024; 14:1436576. [PMID: 39737399 PMCID: PMC11682996 DOI: 10.3389/fonc.2024.1436576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/26/2024] [Indexed: 01/01/2025] Open
Abstract
Interferon-induced protein 44-like (IFI44L) is regarded as an immune-related gene and is a member of interferon-stimulated genes (ISGs). They participate in network transduction, and its own epigenetic modifications, apoptosis, cell-matrix formation, and many other pathways in tumors, autoimmune diseases, and viral infections. The current review provides a comprehensive overview of the onset and biological mechanisms of IFI44L and its potential clinical applications in malignant tumors and non-neoplastic diseases.
Collapse
|
4
|
Wang J, Dang X, Wu X, Xiang Z, Li Y, Fu Y, Shen T. DNA methylation of IFI44L as a potential blood biomarker for childhood-onset systemic lupus erythematosus. Pediatr Res 2024; 96:494-501. [PMID: 38514858 PMCID: PMC11343705 DOI: 10.1038/s41390-024-03135-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/20/2024] [Accepted: 02/15/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND IFN-induced protein 44-like (IFI44L) promoter methylation has been demonstrated to serve as an effective blood diagnostic biomarker for adult-onset SLE. However, its utility as a diagnostic marker for childhood-onset SLE (cSLE) remains to be verified. METHODS Initially, we conducted a differential analysis of gene methylation and mRNA expression patterns in cSLE whole blood samples obtained from the public GEO database to determine IFI44L gene expression and assess the methylation status at its CpG sites. Subsequently, we collected clinical whole blood samples from 49 cSLE patients and 12 healthy children, employing an HRM-qPCR-based IFI44L methylation detection technique to evaluate its diagnostic efficacy in pediatric clinical practice. RESULTS A total of 26 hypomethylated, highly expressed genes in cSLE were identified by intersecting differentially expressed genes (DEGs) and differentially methylation genes (DMGs). GO enrichment analysis for these 26 genes indicated a robust association with type I IFN. Among the overlapping genes, IFI44L exhibited the most pronounced differential expression and methylation. In subsequent clinical validation experiments, IFI44L methylation was confirmed as an effective blood-based diagnostic biomarker for cSLE, achieving an AUC of 0.867, a sensitivity of 0.753, and a specificity of 1.000. CONCLUSIONS IFI44L methylation is a promising blood biomarker for cSLE. IMPACT IFI44L promoter methylation was reported to serve as a highly sensitive and specific diagnostic marker for adult-onset SLE. However, the diagnostic efficacy of IFI44L in childhood-onset SLE (cSLE) still remains to be confirmed. In this study, we utilized bioinformatics analysis and conducted clinical experiments to demonstrate that IFI44L methylation can also serve as a promising blood biomarker for cSLE. The findings of this study can facilitate the diagnosis of cSLE and broaden our understanding of its molecular mechanisms, with a particular focus on those related to type I interferons.
Collapse
Affiliation(s)
- Jingwei Wang
- Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiqiang Dang
- Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaochuan Wu
- Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhongyuan Xiang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yongzhen Li
- Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yaqian Fu
- Health Management Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Tian Shen
- Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
5
|
Chen S, Ye J, Lin Y, Chen W, Huang S, Yang Q, Qian H, Gao S, Hua C. Crucial Roles of RSAD2/viperin in Immunomodulation, Mitochondrial Metabolism and Autoimmune Diseases. Inflammation 2024:10.1007/s10753-024-02076-5. [PMID: 38909344 DOI: 10.1007/s10753-024-02076-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/24/2024]
Abstract
Autoimmune diseases are typically characterized by aberrant activation of immune system that leads to excessive inflammatory reactions and tissue damage. Nevertheless, precise targeted and efficient therapies are limited. Thus, studies into novel therapeutic targets for the management of autoimmune diseases are urgently needed. Radical S-adenosyl methionine domain-containing 2 (RSAD2) is an interferon-stimulated gene (ISG) renowned for the antiviral properties of the protein it encodes, named viperin. An increasing number of studies have underscored the new roles of RSAD2/viperin in immunomodulation and mitochondrial metabolism. Previous studies have shown that there is a complex interplay between RSAD2/vipeirn and mitochondria and that binding of the iron-sulfur (Fe-S) cluster is necessary for the involvement of viperin in mitochondrial metabolism. Viperin influences the proliferation and development of immune cells as well as inflammation via different signaling pathways. However, the function of RSAD2/viperin varies in different studies and a comprehensive overview of this emerging theme is lacking. This review will describe the characteristics of RSAD2/viperin, decipher its function in immunometabolic processes, and clarify the crosstalk between RSAD2/viperin and mitochondria. Furthermore, we emphasize the crucial roles of RSAD2 in autoimmune diseases and its potential application value.
Collapse
Affiliation(s)
- Siyan Chen
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Jiani Ye
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Yinfang Lin
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Wenxiu Chen
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Shenghao Huang
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Qianru Yang
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Hengrong Qian
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China.
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China.
| |
Collapse
|
6
|
Huang X, Tan Y, Wu R, Li Q, Luo S. MicroRNA-98-5p Inhibits IFI44L-Mediated Differentiation of Dendritic Cells and Activation of Interferon Pathway in Systemic Lupus Erythematosus. Immunol Invest 2024; 53:475-489. [PMID: 38198612 DOI: 10.1080/08820139.2023.2300346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
MicroRNA-98-5p (miR-98-5p) plays a protective role in the pathogenesis of autoimmune diseases through anti-inflammatory effects, but little is known about its role in Systemic lupus erythematosus (SLE). Our previous study suggested Interferon-inducible 44 like (IFI44L) overexpressed in monocytes which contributes to the pathogenesis of SLE by enhancing the maturation and functions of monocyte-derived dendritic cells (Mo-DCs), and miR-98-5p can regulate the expression of IFI44L. In this study, we identified miR-98-5p lowly expressed in both peripheral blood mononuclear cells (PBMCs) and monocytes of SLE patients along with high expression of IFI44L. IFI44L serves as target gene of miR-98-5p which inhibits differentiation of Mo-DCs and IFI44L-mediated activation of interferon pathway. We further showed that miR-98-5p promotes methylation of the IFI44L promoter to down-regulate its expression in SLE. Our results reveal an important role for miR-98-5p in the IFI44L-mediated immune imbalance of SLE and suggest a potential therapeutic target for SLE in the future.
Collapse
Affiliation(s)
- Xin Huang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yixin Tan
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ruifang Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qianwen Li
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shuaihantian Luo
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
7
|
Mohan S, Hakami MA, Dailah HG, Khalid A, Najmi A, Zoghebi K, Halawi MA. Bridging autoimmunity and epigenetics: The influence of lncRNA MALAT1. Pathol Res Pract 2024; 254:155041. [PMID: 38199135 DOI: 10.1016/j.prp.2023.155041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024]
Abstract
Autoimmune disorders represent a heterogeneous spectrum of conditions defined by an immune system's atypical reactivity against endogenous constituents. In the complex anatomy of autoimmune pathogenesis, lncRNAs have appeared as pivotal arbiters orchestrating the mechanisms of ailment initiation, immune cascades, and transcriptional modulation. One such lncRNA, MALAT1, has garnered attention for its potential association with the aetiology of several autoimmune diseases. MALAT1 has been shown to influence a wide spectrum of cellular processes, which include cell multiplication and specialization, as well as apoptosis and inflammation. In autoimmune diseases, MALAT1 exhibits both disease-specific and shared patterns of dysregulation, often correlating with disease severity. The molecular mechanisms underlying MALAT1's impact on autoimmune disorders include epigenetic modifications, alternative splicing, and modulation of gene expression networks. Additionally, MALAT1's intricate interactions with microRNAs, other lncRNAs, and protein-coding genes further underscore its role in immune regulation and autoimmune disease progression. Understanding the contribution of MALAT1 in autoimmune pathogenesis across different diseases could offer valuable insights into shared pathways, thereby clearing a path for the creation of innovative and enhanced therapeutic approaches to address these complex disorders. This review aims to elucidate the complex role of MALAT1 in autoimmune disorders, encompassing rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease (Crohn's disease and ulcerative colitis), type 1 diabetes, systemic lupus erythematosus, and psoriasis. Furthermore, it discusses the potential of MALAT1 as a diagnostic biomarker, therapeutic target, and prognostic indicator.
Collapse
Affiliation(s)
- Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia; School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India; Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia.
| | - Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan 45142, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Maryam A Halawi
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
8
|
Lu DQ, Yao XY, Ren YT, Zhang KY, Zhu XC, Hong T, Yu X, Xie ZM, Chen LY, Wang XC. Genome-wide DNA methylation sequencing reveals epigenetic features and potential biomarkers of Sjögren syndrome. Int J Rheum Dis 2023; 26:2223-2232. [PMID: 37740638 DOI: 10.1111/1756-185x.14918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/08/2023] [Accepted: 09/03/2023] [Indexed: 09/24/2023]
Abstract
AIM Sjögren syndrome (SS) is a slowly progressive, inflammatory, autoimmune disease. The aim of this study was to construct the DNA methylation profiles of whole blood of SS patients and healthy controls (HC), and to explore the role of differentially methylated genes in the pathogenesis of the disease. METHODS Whole-genome bisulfite sequencing was performed on three SS patients and four HC. The biological function of genes associated with differentially methylated regions (DMRs) was investigated using Gene Ontology functional analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis, using network-based key driver analysis (KDA) to find KDA genes. In clinical samples of SS patients and controls, the expression levels of KDA genes were validated by quantitative real-time polymerase chain reaction and immunohistochemical analysis. Moreover, the diagnostic value of KDA genes for SS was confirmed using receiver operating characteristic curves. RESULTS We identified 322 DMRs, annotated as 162 associated genes. Six genes were selected via the number of networks of KDA genes. Differential expression of genes such as human leukocyte antigen (HLA) class I, ADAR, and OAS2 was observed in patients' peripheral blood mononuclear cells and the minor salivary glands, which can be used as potential diagnostic biomarkers for SS. CONCLUSION Clinical sample validation suggested that HLA class I, ADAR, and OAS2 might play a role in the development of SS. Our study shows epigenetic regulatory mechanisms and potential disease markers associated with SS, which in turn will enable us to identify new therapeutic targets.
Collapse
Affiliation(s)
- Ding-Qi Lu
- Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Xin-Yi Yao
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Ya-Ting Ren
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Kai-Yuan Zhang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Xin-Chao Zhu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Tao Hong
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Xue Yu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Zhi-Min Xie
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Li-Ying Chen
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Xin-Chang Wang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| |
Collapse
|
9
|
Wu YY, Xing J, Li XF, Yang YL, Shao H, Li J. Roles of interferon induced protein with tetratricopeptide repeats (IFIT) family in autoimmune disease. Autoimmun Rev 2023; 22:103453. [PMID: 37741527 DOI: 10.1016/j.autrev.2023.103453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Interferon-induced tetrapeptide repeat (IFIT) family proteins are an important component of the antiviral immune response. There are four known members of the human IFIT family, namely IFIT1, IFIT2, IFIT3 and IFIT5. More and more evidence shows that IFIT family members are involved in a variety of pathophysiological processes in vivo, regulate the homeostasis and differentiation of a variety of cells including immune cells, and are closely related to a variety of autoimmune diseases, which is expected to become a new therapeutic target. This review reviews the biological roles of different IFIT proteins in various autoimmune diseases, and highlights the potential use of these molecules as biomarkers and prognostic factors in autoimmune diseases, with a view to providing ideas for exploring the diagnosis and treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Yuan-Yuan Wu
- Department of Pharmacy, Zhong da Hospital of Southeast University, No. 87 Ding Jia Qiao, Nanjing 210009, China
| | - Jun Xing
- China Medical University, Shenyang 110122, China
| | - Xiao-Feng Li
- Anhui Institute of Innovative Drugs, the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province; School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Ying-Li Yang
- Anhui Institute of Innovative Drugs, the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province; School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Hua Shao
- Department of Pharmacy, Zhong da Hospital of Southeast University, No. 87 Ding Jia Qiao, Nanjing 210009, China.
| | - Jun Li
- Anhui Institute of Innovative Drugs, the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province; School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
10
|
Akhil A, Bansal R, Anupam K, Tandon A, Bhatnagar A. Systemic lupus erythematosus: latest insight into etiopathogenesis. Rheumatol Int 2023:10.1007/s00296-023-05346-x. [PMID: 37226016 DOI: 10.1007/s00296-023-05346-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disorder of unknown etiology. Multifactorial interaction among various susceptible factors such as environmental, hormonal, and genetic factors makes it more heterogeneous and complex. Genetic and epigenetic modifications have been realized to regulate the immunobiology of lupus through environmental modifications such as diet and nutrition. Although these interactions may vary from population to population, the understanding of these risk factors can enhance the perception of the mechanistic basis of lupus etiology. To recognize the recent advances in lupus, an electronic search was conducted among search engines such as Google Scholar and PubMed, where we found about 30.4% publications of total studies related to genetics and epigenetics, 33.5% publications related to immunobiology and 34% related to environmental factors. These outcomes suggested that management of diet and lifestyle have a direct relationship with the severity of lupus that influence via modulating the complex interaction among genetics and immunobiology. The present review emphasizes the knowledge about the multifactorial interactions between various susceptible factors based on recent advances that will further update the understanding of mechanisms involved in disease pathoetiology. Knowledge of these mechanisms will further assist in the creation of novel diagnostic and therapeutic options.
Collapse
Affiliation(s)
- Akhil Akhil
- Department of Biochemistry, BMS-Block II, South Campus, Panjab University, Chandigarh, 160014, India
| | - Rohit Bansal
- Department of Biochemistry, BMS-Block II, South Campus, Panjab University, Chandigarh, 160014, India
| | - Kumari Anupam
- Department of Pathology, Saint Louis University, St. Louis, MO, 63103, USA
| | - Ankit Tandon
- Department of Endocrinology, PGIMER, Chandigarh, 160012, India
| | - Archana Bhatnagar
- Department of Biochemistry, BMS-Block II, South Campus, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
11
|
Ehtesham N, Habibi Kavashkohie MR, Mazhari SA, Azhdari S, Ranjbar H, Mosallaei M, Hazrati E, Behroozi J. DNA methylation alterations in systemic lupus erythematosus: A systematic review of case-control studies. Lupus 2023; 32:363-379. [PMID: 36573333 DOI: 10.1177/09612033221148099] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Traditionally, the diagnosis and monitoring of disease activity in systemic lupus erythematosus (SLE) are contingent upon clinical manifestations and serological markers. However, researchers are struggling to find biomarkers with higher sensitivity and specificity. DNA methylation has been the most studied epigenetic feature in SLE. So, in this study, we performed a systematic review of studies about DNA methylation alterations in SLE patients compared to healthy controls. METHODS By searching PubMed, Scopus, and Google Scholar up to July 2022, all case-control studies in which DNA methylation of specific genes was assessed by a non-high-throughput technique and passed the quality of bias assessment were included. RESULTS In total, 44 eligible studies underwent a data extraction process. In all, 3471 SLE patients and 1028 healthy individuals were included. Among the studies that reported the patients' gender (n = 2853), 89.41% were female and 10.59% were male. Forty studies have been conducted on adult patients. The number of works on fractionated and unfractionated blood cells was almost equal. In this regard, 22 studies were conducted on whole blood or peripheral blood mononuclear cells and two studies on unfractionated white blood cells. Sorted blood cells were biological sources in 20 studies. The most investigated gene was IFI44L. Sensitivity, specificity, and diagnostic power of methylation levels were only reported for IFI44L in five studies. The most employed methylation profiling method was bisulfite sequencing polymerase chain reaction. The correlation between methylation patterns and clinical parameters was explored in 22 studies, which of them 16 publications displayed a remarkable association between DNA methylation status and clinical indices. CONCLUSIONS The methylation status of some genes especially IFI44L, FOXP3, and MX1 has been suggested as promising SLE biomarkers. However, given the conflicting findings between studies because of potential confounders such as different sample types, methylation profiling methods, and ethnicity as well as shared DNA methylation patterns of SLE and other autoimmune diseases, DNA methylation biomarkers are currently not reliable diagnostic biomarkers and do not represent surrogate markers of SLE disease activity. Future investigations on a larger scale with the discarding of limitations of previous studies would probably lead to a consensus.
Collapse
Affiliation(s)
- Naeim Ehtesham
- Department of Genetics and Advanced Medical Technology, Faculty of Medicine, 162996AJA University of Medical Sciences, Tehran, Iran.,Student Research Committee, 48533University of Social Welfare and Rehabilitation Science, Tehran, Iran
| | | | - Seyed Amirhossein Mazhari
- Department of Medical Biology and Genetics, 217747Azerbaijan Medical University (AMU), Baku, Azerbaijan
| | - Sara Azhdari
- Department of Anatomy and Embryology, School of Medicine, 394237Bam University of Medical Sciences, Bam, Iran
| | - Hamta Ranjbar
- Student Research Committee, 48463Kerman University of Medical Sciences, Kerman, Iran
| | - Meysam Mosallaei
- Student Research Committee, 48533University of Social Welfare and Rehabilitation Science, Tehran, Iran.,Department of Genetics and Molecular Biology, School of Medicine, 48455Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ebrahim Hazrati
- Department of Anesthesiology and Intensive Care, Medical Faculty, 162996AJA University of Medical Sciences, Tehran, Iran
| | - Javad Behroozi
- Department of Genetics and Advanced Medical Technology, Faculty of Medicine, 162996AJA University of Medical Sciences, Tehran, Iran.,Research Center for Cancer Screening and Epidemiology, 162996AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Li Z, Wang Z, Sun T, Liu S, Ding S, Sun L. Identifying key genes in CD4+ T cells of systemic lupus erythematosus by integrated bioinformatics analysis. Front Genet 2022; 13:941221. [PMID: 36046235 PMCID: PMC9420982 DOI: 10.3389/fgene.2022.941221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by excessive activation of T and B lymphocytes and breakdown of immune tolerance to autoantigens. Despite several mechanisms including the genetic alterations and inflammatory responses have been reported, the overall signature genes in CD4+ T cells and how they affect the pathological process of SLE remain to be elucidated. This study aimed to identify the crucial genes, potential biological processes and pathways underlying SLE pathogenesis by integrated bioinformatics. The gene expression profiles of isolated peripheral CD4+ T cells from SLE patients with different disease activity and healthy controls (GSE97263) were analyzed, and 14 co-expression modules were identified using weighted gene co-expression network analysis (WGCNA). Some of these modules showed significantly positive or negative correlations with SLE disease activity, and primarily enriched in the regulation of type I interferon and immune responses. Next, combining time course sequencing (TCseq) with differentially expressed gene (DEG) analysis, crucial genes in lupus CD4+ T cells were revealed, including some interferon signature genes (ISGs). Among these genes, we identified 4 upregulated genes (PLSCR1, IFI35, BATF2 and CLDN5) and 2 downregulated genes (GDF7 and DERL3) as newfound key genes. The elevated genes showed close relationship with the SLE disease activity. In general, our study identified 6 novel biomarkers in CD4+ T cells that might contribute to the diagnosis and treatment of SLE.
Collapse
Affiliation(s)
- Zutong Li
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhilong Wang
- Department of Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Tian Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Shanshan Liu
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Shuai Ding
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- *Correspondence: Lingyun Sun, ; Shuai Ding,
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- *Correspondence: Lingyun Sun, ; Shuai Ding,
| |
Collapse
|
13
|
Dal Col J, Lamberti MJ, Nigro A, Casolaro V, Fratta E, Steffan A, Montico B. Phospholipid scramblase 1: a protein with multiple functions via multiple molecular interactors. Cell Commun Signal 2022; 20:78. [PMID: 35650588 PMCID: PMC9158361 DOI: 10.1186/s12964-022-00895-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/30/2022] [Indexed: 01/18/2023] Open
Abstract
Phospholipid scramblase 1 (PLSCR1) is the most studied protein of the scramblase family. Originally, it was identified as a membrane protein involved in maintaining plasma membrane asymmetry. However, studies conducted over the past few years have shown the involvement of PLSCR1 in several other cellular pathways. Indeed, PLSCR1 is not only embedded in the plasma membrane but is also expressed in several intracellular compartments where it interacts with a diverse repertoire of effectors, mediators, and regulators contributing to distinct cellular processes. Although most PLSCR1 interactors are thought to be cell-type specific, PLSCR1 often exerts its regulatory functions through shared mechanisms, including the trafficking of different molecules within intracellular vesicles such as endosomes, liposomes, and phagosomes. Intriguingly, besides endogenous proteins, PLSCR1 was also reported to interact with exogenous viral proteins, thereby regulating viral uptake and spread. This review aims to summarize the current knowledge about the multiple roles of PLSCR1 in distinct cellular pathways. Video Abstract
Collapse
Affiliation(s)
- Jessica Dal Col
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy.
| | - Marìa Julia Lamberti
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy.,INBIAS, CONICET-UNRC, Río Cuarto, Córdoba, Argentina
| | - Annunziata Nigro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Elisabetta Fratta
- Division of Immunopathology and Cancer Biomarkers, Centro Di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Agostino Steffan
- Division of Immunopathology and Cancer Biomarkers, Centro Di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Barbara Montico
- Division of Immunopathology and Cancer Biomarkers, Centro Di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy.
| |
Collapse
|